皮肤穿透肽的研究进展

黄钰卿^{1,2#},王宇岐^{2,3#},丁平田²,张柯达^{2*},谢媛媛^{1*} 1.广东药科大学 中药学院,广东 广州 510006 2.深圳技术大学 药学院,广东 深圳 518118 3.沈阳药科大学 药学院,辽宁 沈阳 110016

摘 要:皮肤穿透肽(SPP)是一类能够促进药物或活性成分通过皮肤屏障的肽类分子。SPP具有良好的生物相容性和安全性,可用于输送各种类型的药物或活性成分,包括小分子药物、蛋白质和核酸。这些特点使得SPP在医药和化妆品领域中具有广泛的应用前景。目前国内外科研人员对于SPP的结构、机制、设计和应用进行了广泛的探索和实验。按来源分类,SPP可分为3类:蛋白质来源的SPP、基因重组来源的SPP和人工设计合成的SPP;其促渗机制可以从作用于角质层和作用于皮肤附属器这2个方面来阐述;其主要的应用方式包括4种:SPP与药物的物理混合、SPP与药物形成共价连接、SPP与蛋白类药物形成融合蛋白、SPP修饰药物载体,综述SPP不同来源SPP种类、不同SPP的促渗机制及应用方式,分析其研究与应用中存在的问题,以期为SPP的开发和创新提供有价值的参考。

关键词: 皮肤穿透肽; 促渗; 皮肤递送; 皮肤屏障; 肽类

中图分类号: R945 文献标志码: A 文章编号: 1674-6376 (2024) 07-1653-16 **DOI**: 10.7501/j.issn.1674-6376.2024.07.026

Advances on skin penetrating peptide

HUANG Yuqing^{1, 2}, WANG Yuqi^{2, 3}, DING Pingtian², ZHANG Keda², XIE Yuanyuan¹

1. College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China

3. College of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China

Abstract: Skin-penetrating peptides (SPP) are a type of peptide molecules that can promote the passage of drugs or active ingredients through the skin barrier. SPP has good biocompatibility and safety, and can be used to deliver various types of drugs or active ingredients, including small molecule drugs, proteins and nucleic acids. These characteristics make SPP have broad application prospects in the fields of medicine and cosmetics. Global researchers have conducted extensive exploration and experiments on the structure, mechanism, design and application of SPP. According to the source, SPP can be classified into three categories: protein-derived SPP, recombinant-derived SPP, and artificially designed and synthesized SPP. Its osmotic mechanism can be elaborated from the aspects of its action on the stratum corneum and its action on the skin appendages, and its main application modes include four types: the physical mixing of SPP and drugs, the formation of covalent linkage between SPP and drugs, the formation of drug carriers by SPP. The main application modes include four types: physical mixing of SPP and drug, covalent linkage of SPP and drug, fusion of SPP and protein drug, and modification of drug carrier by SPP. We will review the types of SPP from different sources of SPP, the mechanism of promotion of infiltration and application modes of different SPPs, and analyze the problems in their research and application, in order to provide valuable references for the development and innovation of SPP.

Key words: skin penetrating peptide; penetration enhancement; skin delivery; skin barrier; peptides

收稿日期: 2024-03-10

基金项目:深圳技术大学新引进高端人才财政补助科研启动项目(20200215)

[#]共同第一作者:黄钰卿,硕士研究生。E-mail:897618997@qq.com

王宇岐,硕士研究生。E-mail:2458885846@qq.com

^{*}共同通信作者:谢媛媛,博士,教授,硕士生导师,研究方向为中药质量评价方法研究。E-mail:yuanyuan8078@163.com 张柯达,博士,助理教授,硕士生导师,研究方向为中药外用制剂开发及其研究方法。E-mail:zhangkeda@sztu.edu.cn

皮肤是人体最大的器官,是保护身体免受外部 环境不利因素影响的第一道防线,其面积为1.5~ 2.0 m²,约占一个成年人体质量的15%^[1]。另一方 面,皮肤也提供了一个颇具吸引力的给药途径,避 免了药物在胃肠道或肝脏中降解,并能持续、可控 地释放药物。经皮给药作为一种替代口服和注射 的给药方式,已广泛应用于各种疾病的治疗。

角质层是药物透过皮肤的主要屏障,主要由 10~20层扁平、无细胞核的角质细胞堆砌而成[2-3]。 角质细胞内部充满密集平行的角蛋白中间丝,并且 被无定形丝聚蛋白所包裹。角质细胞间隙的基质 主要由脂质如神经酰胺、胆固醇和脂肪酸等组成, 这些脂质以多层双分子薄片的形式存在[2-3]。药物 要想穿透角质层有2种途径,一是细胞间途径,药物 通过连续的细胞间脂质进入活性表皮层;二是跨细 胞途径,药物穿过角质细胞到达活性表皮层。药物 穿过细胞时需要经多次亲水/亲脂区域的分配过程, 导致跨细胞途径对药物经皮吸收贡献极小[4-5]。除 了角质层外,皮肤附属器(毛囊、汗腺和皮脂腺)也 为药物穿透皮肤提供了另一条途径[5]。因皮肤附属 器仅占皮肤面积的0.1%左右,该途径不是药物经皮 吸收的主要途径。因此,药物分子主要经细胞间质 途径进入皮肤深层,继而吸收入体循环。通常认 为,只有亲脂性适中(油水分配系数1~5)且相对分 子质量<500的中性分子可以较好地通过细胞间的 脂质区域[6-7]。因此如何有效提升不具备理想理化 性质的化合物(如亲水性化合物、生物大分子)的皮 肤吸收一直是经皮给药领域的首要问题。

目前,多种多样的物理和化学促渗技术已被开 发出来,并应用于临床。其中,常见的物理促渗技 术包括离子导入^[8]、超声导入^[9]、电致孔^[10]、微针^[11]、 热消融^[12]和射频消融^[13],而化学促渗技术主要涉及

到离子对和渗透促进剂的使用。其中,化学渗透促 进剂已广泛用于许多经皮给药制剂和化妆品,如二 甲基亚砜(DMSO)^[14-15]、氮酮^[16]、脂肪酸类^[17]、醇 类[18]。它们主要通过破坏角质层的脂质双分子层、 与蛋白质相互作用或改变药物在角质层中的分配 系数来促进药物对皮肤的渗透[5]。然而化学渗透促 进剂高浓度使用可能会引起皮肤瘙痒、发炎和脱屑 等不良反应,长期使用甚至可能引发皮肤疾病,部 分患者接受度低[15,19]。作为新型具有生物学背景的 促渗剂,皮肤穿透肽(SPP)是一类具有促渗效果的 短肽(少于30个氨基酸残基),多为阳离子肽(主要 由精氨酸和赖氨酸组成)或两亲性肽(主要由赖氨 酸组成,序列中还分布有亲水性或疏水性的其他氨 基酸残基)^[20]。与传统的化学渗透促进剂相比,SPP 具有良好的生物相容性、序列构建多样性的优 点[20-23],展示了良好的临床应用前景。本文总结了 近年来关于 SPP 的研究成果,重点阐述了 SPP 的来 源与分类、作用机制及其应用方式,为SPP的发展和 创新提供有价值的参考。

1 SPP的来源与分类

SPP最初源于细胞穿膜肽。鉴于细胞穿膜肽具 有穿透脂质双分子层和组织屏障的能力,Rothbord 等^[24]将聚精氨酸七聚物(R7,一种常用的细胞穿膜 肽)共价连接到环孢素A,显著增强了环孢素A的透 皮吸收,并有效抑制皮肤急性炎症反应,由此产生 了新型的透皮促渗剂一SPP。随后,科研人员陆续 发现一些细胞穿膜肽也具有皮肤促渗效果,促进药 物的皮肤吸收。直至Chen等^[25]使用噬菌体展示技 术(PDT)筛选出透皮短肽TD-1,才真正意义上开始 针对 SPP的研究。目前按照来源,SPP可分为3类: 蛋白质来源的 SPP、基因重组来源的 SPP和人工设 计合成的 SPP(表1)。

Table 1Amino acids sequences, sources, and mechanisms of action of SPP					
SPP	氨基酸序列	来源	年份	作用机制	
AA3H ^[26]	MASIWVGHRG	膜联蛋白A家族	2017	与硫酸肝素蛋白聚糖静电作用,与	
				磷脂相互作用	
ANTP ^[27]	RQIKIWFQNRRMKWKK	果蝇触角蛋白	2004	未知	
$AP^{[28]}$	RRRWCKRRR	星型细胞糖蛋白1	2018	未知	
AT1002 ^[29]	IGRLC	人工设计合成	2011	与角质细胞中的紧密连接相互作用	
DL-2 ^[30]	KWSSKKSKHCG-NH ₂	人工设计合成	2019	作用于毛囊	
DLCC-2 ^[30]	$KCSSKKSKHCG-NH_2$	人工设计合成	2019	作用于毛囊	
$DLP^{[31]}$	ACKTGSHNQCG	噬菌体展示技术	2011	角蛋白的结构变化	
DRTTLTN ^[32]	DRTTLTN	噬菌体展示技术	2016	与角质层脂质双分子层结构、角蛋	
				白相互作用	

表1 具有促渗作用的SPP氨基酸序列、来源及作用机制

表1 (续)				
SPP	氨基酸序列	来源	年份	作用机制
Hph-1-PTD ^[33]	YARVRRRGPRR-OH	人类转录因子	2012	未知
IMT-P8 ^[34]	RRWRRWNRFNRRRCR	人蛋白质	2015	作用于毛囊
LMWP ^[35]	VSRRRRGGRRRR	天然鱼精蛋白	2012	破坏角质层脂质双分子层结构;通
				过开放通道形成浓度梯度;破坏
				角质细胞的紧密连接
LP-12 ^[36]	HIITDPNMAEYL	噬菌体展示技术	2015	角蛋白的结构变化
$MAP^{[26]}$	KLALKALKALKAALKLA	人工设计合成	2017	未知
Mgpe-9 ^[37]	CRRLRHLRHHYRRRWHRFRC	人类蛋白磷酸酶	2021	角质层脂质双分子层结构变化,角
				蛋白的结构变化
MTD1067 ^[38]	MRAAPAVAA	人工设计合成	2022	未知
$P1^{[39]}$	ACSSQPPYACG	噬菌体展示技术	2011	未知
Pep-1 ^[40]	KETWWETWWTEWSQPKKKRKV	人工设计合成	2001	与角质层脂质结构相互作用
Penetratin ^[41-42]	RQIKIWFQNRRMKWKK	果蝇触角蛋白	2005	破坏角质层脂质双分子层结构
Pep-c19 ^[43]	VVNKLIRNNKMNC	蚕的30Kc19蛋白	2021	作用于毛囊
PKU-12 ^[44]	ACSSTKKHCG	噬菌体展示技术	2023	未知
$POD^{[45]}$	GGG[ARKKAAKA] ₄	人工设计合成	2010	未知
R5H3 ^[46]	RRRRRHHH	人工设计合成	2023	破坏角质层的脂质双分子层结构
R8H3 ^[47]	RRRRRRRHHH	人工设计合成	2018	破坏角质层的脂质双分子层结构
$R9Z^{[48]}$	CRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR	带正电的序列	2007	聚精氨酸胍基与细胞膜结合
	RRRRRC			
RALA ^[49]	RALARALARALRALAR	人工设计合成	2008	未知
SPACE ^[31]	AC-TGSTQHQ-CG	噬菌体展示技术	2011	角蛋白的结构变化
$T2^{[50]}$	LVGVFH	噬菌体展示技术	2012	与角质层脂质双分子层结构相互作用
$TAT(47 \sim$	YGRKKRRQRRR	HIV-1 TAT 蛋白	2005	未知
57)[51]				
TAT-PTD ^[52]	RKKRRQRRR	HIV-1 TAT 蛋白	2002	未知
$TD-1^{[25]}$	ACSSSPSKHCG	噬菌体展示技术	2006	作用于毛囊
TD-34 ^[53]	ACSSKKSKHCG	人工设计合成	2013	作用于毛囊
TDN ^[53]	ACSSKKSKHCG-NH ₂	人工设计合成	2013	作用于毛囊
$WLR^{[54]}$	WLRRIKAWLRRIKAWLRRIKA	人工设计合成	2008	未知
YARA ^[51]	YARAAARQARA	人工设计合成	2005	未知
聚精氨	Rn, n=7, 9, 11	带正电的序列	2000	聚精氨酸胍基与细胞膜结合
酸[24,48,55]			2007、	
			2012	
聚赖氨	KKKKKKKK	带正电的序列	2002	未知
酸(K9) ^[52]				
蛙皮素[56]	GIGKFLHSAKKFGKAFVGEIMNS	非洲爪蟾的皮肤	2007	角质层脂质双分子层结构破坏加
				剧,角蛋白的结构变化

1.1 蛋白质来源的SPP

蛋白质来源的 SPP 是由天然蛋白质或其片段衍 生而来的短肽。这些肽具有独特的氨基酸序列和 结构特性,使其能够穿透细胞膜。由于其天然来 源,通常具有较低的免疫原性,不易引起免疫反 应^[57-58]。TAT-PTD 是最早发现的细胞穿膜肽。 Frankel课题组和 Green课题组分别于 1988 年报道 了人类免疫缺陷病毒(HIV-1)的TAT蛋白可以被细胞跨膜摄取并转移到细胞核中^[59-60]。自然界中这类 天然存在的多肽能够安全有效地实现外源生物大 分子的跨膜转导,被称为蛋白质转导结构域(PTD) 家族。TAT中含有一个与蛋白转导功能密切相关的 多肽片段(富含碱性氨基酸且带正电荷),进一步研 究证实,TAT中第47~57位的11个氨基酸残

· 1655 ·

基(YGRKKRRQRRR)可独立穿过多种类型的细胞 膜,穿膜效率比全长 TAT 还要高,于是此段肽链被 归为 TAT 蛋白转导结构域(TAT-PTD)^[61]。TAT-PTD 可递送双氯芬酸钠^[49]、热休克蛋白 P20^[54]、人类酪氨 酸酶质粒^[62]、盐酸利多卡因(LID)^[63]、降钙素^[64]和塞 来昔布^[65]等药物进入皮肤,并发挥良好的治疗 作用。

Penetratin 来源于果蝇触角蛋白异型的转录调 节蛋白ANTP。ANTP是比较经典的细胞穿膜肽之 一。ANTP由60个氨基酸序列组成,包含3个α-螺 旋结构,其中第3螺旋结构中的16个氨基酸多肽片 段(43~58位)在蛋白转导中发挥着关键作用,该多 肽序列即为Penetratin^[66]。Penetratin可有效增强卵 清蛋白(OVA_{257~264}、OVA₈)的穿透皮肤表面能力,从 而引发高水平的OVA特异性CD8+T细胞应答[27]。 Penetratin 修饰的微乳显著增加紫杉醇活性表皮层 和真皮层的沉积量[67]。低分子量鱼精蛋 白(LWMP)是天然鱼精蛋白通过酶消化产生的肽片 段。LWMP成本低、易于批量生产,是目前研究比 较广泛的细胞穿膜肽。LMWP与TAT-PTD 具有显 著的结构相似性,其结构也有10个精氨酸残基,与 TAT-PTD 的促渗机制也相似^[68]。LMWP 与 OVA 结 合后,可以显著提高OVA穿透皮肤的能力^[69]。 LMWP修饰的聚乙烯亚胺/DNA 复合物(PEI/DNA) 纳米粒的皮肤累积透过量明显优于未修饰的 PEI/ DNA纳米粒^[70]。

除TAT、ANTP和LMWP,从家蚕的30kc19蛋白 中发现的Pep-c19^[43],人源蛋白中得到的IMT-P8^[34] 和来源于非洲爪蟾皮肤的蛙皮素^[56],人类蛋白磷酸 酶中发现的Mgpe-9^[37],从人类转录因子中鉴别出的 Hph-1-PTD等蛋白质来源的细胞穿膜肽同样具有促 进透皮吸收的作用^[33]。目前所知,仅少数细胞穿膜 肽具有皮肤促渗的作用。因此,天然蛋白质序列是 有限的,可能限制了SPPs的创新与发展。

1.2 基因重组来源的SPP

这类 SPP 是通过基因工程技术(如常用的 PDT) 筛选得到的短肽。PDT 为开发新型 SPP 提供一种高 效的手段。它将外源肽的编码基因插入噬菌体(通 常是 M13、T4或 T7 噬菌体)的外壳蛋白基因中,构 建噬菌体展示文库。噬菌体展示文库可以包含大 量不同的肽序列,增加筛选成功的可能性。基于 PDT 发现的 SPP 主要通过"生物淘洗法"得到。通常 其流程是先将噬菌体颗粒应用到活体/离体皮肤上, 再收集、扩增可以穿透皮肤的噬菌体,将这些可以 穿透皮肤的噬菌体再次应用到皮肤上。经过几轮筛选后,通过穿透噬菌体的基因组DNA测序,鉴定可以持续穿透进入皮肤的肽序列。经筛选鉴定的肽通过透皮实验进一步评价其促渗效果^[25,71]。其优势主要体现在,可从数以亿计的氨基酸序列中筛选出目标肽 SPPs,实现高通量筛选。但是,找到高效穿透皮肤屏障的肽序列可能需要多轮筛选和优化,过程耗时较长。筛选得到的肽序列通常生物相容性较好,但在实际应用中仍需评估其潜在的免疫原性和毒性。

Chen 等^[25]利用体内 PDT 筛选得到一种具有 11 个氨基酸由二硫键成环的短肽 TD-1(ACSSSPSKHCG)。TD-1是第一个被报道能通过 经皮给药途径有效携带蛋白质药物(胰岛素)的 SPP。TD-1具有序列特异性和浓度依赖性,缺失其 中的某些氨基酸都会降低透皮速率,并且随着TD-1 浓度的升高,透皮增强效果也随之提高[25]。Hsu和 Mitragotri使用离体猪皮进行 PDT 筛选,获得可以同 时增强大分子穿透活性表皮和真皮细胞膜的 SPACE 肽和 DLP^[31]。这2个多肽在人体皮肤、小鼠 皮肤、猪皮上均可实现高效穿透。其中关于 SPACE 肽研究开展的更加广泛^[19],例如siRNA^[72]、环孢素 A^[36]、透明质酸^[73]等。由于大多数 SPP(包括 TD-1、 SPACE 肽等)肽链较长,出于方便合成以及降低成 本考虑, Kumer 等^[50] 筛选出更短的线性肽 T 2(LVGVFH),这种肽不需与药物结合就能发挥促 渗作用。Gennari等^[32]也利用PDT筛选了用于增强 肝素皮肤渗透的七肽 DRTTLTN。

1.3 人工设计合成的 SPP

人工设计合成的 SPP 是根据天然蛋白质和基因 重组来源 SPP 的特点设计得到的新 SPP。该方法不 受限于天然肽或蛋白质的序列,可以探索新的序列 组合和功能,提高创新性^[30,46,74]。较早发现的天然 来源细胞穿膜肽(如 TAT、ANTP)的一个典型特征 是其中含有高浓度的精氨酸或者其他碱性带正电 的氨基酸。聚精氨酸(Rn)在进入细胞时比赖氨酸、 鸟氨酸或组氨酸组成的类似长度聚合物更有效,这 表明精氨酸在穿透细胞膜过程中起着重要的作 用^[75]。Rothbord等^[24]首次将聚精氨酸(R7)应用到 皮肤渗透研究中,以提高环孢素 A 的跨皮肤转运。 聚精氨酸的皮肤渗透深度取决于施用精氨酸的数 量和浓度。Shah等^[76]比较了不同数量精氨酸的序 列增强纳米脂质载体促进皮肤渗透的能力,精氨酸 数量从11增加到15时,皮肤渗透能力降低,这被归因于精氨酸的长度导致的饱和效应或空间位阻。 需要指出的是,不同药物可能需要不同长度的聚精 氨酸。例如,R4显著提高三肽-1(甘氨酰-组氨酰-赖 氨酸,GHK)的渗透率^[77];R6连接免疫蛋白OVA应 用到雄性小鼠皮肤上,增强了抗原特异性抗体的诱导^[78];TD-1与R8联用可促进MITF-siRNA皮肤渗 透,显著抑制黑色素合成^[79];R9提高绿色荧光蛋 白(GFP)和胰岛素的皮肤渗透^[55];R11修饰的塞来 昔布纳米结构脂质载体比未修饰载体有更高的透 皮效率^[80]。此外,还有一些含有精氨酸残基的肽具 有皮肤促渗作用,如R5H3^[46]、R8H3^[81]等。

Ho等[82]发现TAT蛋白的47~57位残基具有很 强的α-螺旋特征,且表面上带电的精氨酸残基与其 透皮转导功能有着密切的关系,于是增强了该肽段 的α-螺旋和精氨酸残基特征得到了一种新的穿膜 肽 YARA (YARAAARQARA)。在相同浓度下, YARA的皮肤渗透量为TAT(47~57)的30倍以上, 且YARA介导热休克蛋白P20穿透皮肤的效果明显 优于 TAT(47~57)^[51]。Morris 等^[40]利用细胞穿膜肽 的两亲特性设计了嵌合肽Pep-1,Pep-1是第一个商 业化的细胞穿膜肽,以Chariot[™]的商品名上市多年。 该肽可将各种多肽和蛋白质以完全生物活性的形 式有效地输送到几个细胞系中,无需与载荷蛋白进 行化学共价连接或使载荷蛋白发生变性。Pep-1由 富含色氨酸的疏水性氨基序 列(KETWWETWWTEW)和富含赖氨酸亲水性结 构域(KKKKV)以及分隔2个结构域的间隔 区(WSQP)组成。Pep-1可与肉毒杆菌神经毒素结 合进入小鼠皮肤,有效渗透到表皮和真皮^[83];Pep-1 也可与超氧化物歧化酶(SOD)融合,转导到皮肤组 织中,实现对缺血性脑损伤的有效治疗^[84]。Chang 等^[53]发现TD-1中环状结构是多肽经皮促渗活性的 关键,若环肽的二硫键打开则其经皮促渗活性则完 全消失。他们通过部分精氨酸或赖氨酸扫描法合 成了一系列的阳离子环肽,其中用赖氨酸双取代 TD-1 的 N-5 和 N-6 位 得 到 的 TD-34(ACSSKKSKHCG)显示出良好的促渗活性。由 于 SPP 容易被蛋白水解酶降解,近年来开发了多种 增强 SPP 稳定性的方法。其中最稳定和可靠的方法 是 N- 乙 酰 化 和 C- 酰 胺 化^[85-86]。 TDN(ACSSKKSKHCG-NH₂)是在TD-1的C末端酰 胺化修饰获得的,TDN的稳定性明显高于TD-1^[53]。 之后,Tian 等^[30]将TD-34的N-1和N-2氨基酸进行取 代,且C末端进行酰胺化,合成线性肽DL-2(KWSSKKSKHCG-NH₂)和环状肽DLCC-2(KCSSKKSKHCG-NH₂)在皮肤中能维持相对稳定的有效SPP浓度,促进药物的皮肤吸收。总得来说,人工设计合成的SPP具有高度可定制化、无天然限制和精确控制等优点,使其在药物递送和生物医学应用中具有巨大潜力。然而在实际研发过程中,需要克服成本高、设计复杂性以及潜在的生物相容性问题等限制和不足。

2 SPP 的促渗机制

SPP 作为一种新型的皮肤促渗剂,目前其作用 机制尚缺乏深入的研究。已有研究显示,不同 SPP 的促渗机制均有所差异,但它们都与药物穿透皮肤 的途径密切有关。因此,从作用于角质层和作用于 皮肤附属器这2个方面来阐述 SPP 的促渗机制。

2.1 作用于角质层

SPP与角质层中的脂质相互作用是其主要促渗 机制之一。这种相互作用会使脂质双分子层结构 不稳定,导致皮肤通透性增加。比如,蛙皮素通过 与角质层中的胆固醇相互作用影响胆固醇代谢,导 致皮肤屏障功能的紊乱,以及改变脂质酰基链的构 象来破坏脂质双分子层的有序性,增加皮肤的通透 性,从而促进物质的渗透^[56]。类似地,T2肽通过改 变脂质酰基链的构象破坏脂质双分子层结构,从而 增强亲水性药物在角质层中的分配。T2肽中C末 端的组氨酸对角质层脂质结构的破坏是重要的,而 且这种破坏具有pH值依赖性。在较低pH值下,组 氨酸带正电荷,与角质层的阴离子脂质相互作用, 造成脂质结构的改变。研究显示,使用丙氨酸替代 T2肽中的C末端的组氨酸时,该肽失去了增强药物 渗透皮肤的能力。在pH值升高时,也未观察到角 质层脂质结构的变化^[50]。另外,TD-1、SPACE、DLP 等SPP在C末端也含有组氨酸,这表明SPP中C末 端组氨酸可能在 SPP 的破坏脂质结构的过程中发挥 至关重要的作用^[36]。Penetratin 是通过疏水的色氨 酸残基嵌入疏水的脂质区域,极性残基与膜表面的 亲水性磷酸基团结合,形成一个发夹结构,造成角 质层脂质的六边形对称排列向无序状态转变,使药 物更快地通过角质层扩散并递送更多的药物[42]。

此外,一些SPP会引起角蛋白由β-折叠向α-螺 旋转变,扰乱角蛋白的二级结构,促进药物渗透进 入皮肤。例如,SPACE通过氢键和弱静电相互作用 与角蛋白相互作用,使角蛋白二级结构发生变化, 促进药物向角质层分配,从而增强药物透过皮肤屏 障的能力^[36]。在生理条件下,带正电的聚精氨酸能 够与带负电的角蛋白进行静电结合,该结合涉及角 蛋白的多个位点。尽管聚精氨酸对每个结合位点 的亲和力较低,但由于多价性增强了整体相互作 用。这种相互作用导致了角蛋白二级结构的变化, 从而提高了药物在皮肤上的渗透性^[36]。此外,LP-12通过疏水作用、静电相互作用以及少量氢键相互 作用与角蛋白相结合,改变角蛋白的二级结构^[36]。 在另1项研究中也发现酰化硬脂酸-R9与角质层中 的角蛋白反应,改变其二级结构,使药物渗透角 质层^[23]。

事实上,SPACE、DRTTLTN、Mape-9、蛙皮素等 促渗肽既对细胞间脂质产生影响,又改变了角蛋白 的二级结构^[32,36-37,87]。SPP的促渗机制可能与其相 对分子质量存在一定的相关性,即当SPP的相对分 子质量小于1000时,主要影响角质细胞间脂质结 构,而相对分子质量大于1000时,SPP既影响角质 细胞间脂质区域又改变角质细胞中的角蛋白 结构^[32]。

2.2 作用于皮肤附属器

对于一些离子型药物或极性较强的大分子药物,由于难以通过富含类脂的角质层,因此经皮肤附属器途径就成为其透过皮肤的主要途径。Chen等^[25]进行了作用时效研究,在糖尿病大鼠皮肤上预处理TD-15min,洗去TD-1并等待一段时间后在同

一位置涂抹胰岛素。当等待时间增加到15 min或 更长时,胰岛素的透皮效率大幅下降,皮肤切片结 果显示胰岛素深入毛囊,表明TD-1可能短暂作用于 毛囊,加快胰岛素的皮肤吸收。毛囊漏斗部到下部 中央/上部上鞘部区域密布着紧密连接,与Caco-2细 胞单层具有类似的结构^[88]。因此, Chang等^[53,89]利 用Caco-2细胞单层模型预测胰岛素的皮肤吸收行 为,研究发现TD-1、TD-34和TDN系列环肽可逆地 降低Claudins-1(Claudins-1是紧密连接的主要组成 蛋白之一,具有维持紧密连接屏障的功能)的免疫 反应性,造成Claudin-1的表达失调,松开Caco-2细 胞单层的紧密连接,致使膜屏障受损,从而增 强胰岛素的吸收。此外, IMT-P8、POD 等一些 SPP 促进药物进入皮肤后主要沉积在毛囊中, 它们的促渗机制是否与毛囊有关仍有待进一步 研究^[34,90]。总的来说, SPP 基于皮肤附属器途 径的促渗机制研究尚处于起步阶段。SPP在这 个过程中有所作用,但具体的作用过程还未阐 明,仍有很大的研究空间[91]。

3 SPP的应用及其方式

目前关于 SPP 应用的研究报道较多,其中主要的应用方式包括4种:SPP 与药物的物理混合、SPP 与药物形成共价连接、SPP 与蛋白类药物形成融合蛋白、SPP 修饰药物载体,具体 SPP 的应用方式见表2。

应用方式	药物	SPP	效果
物理混合	双氯芬酸钠	酰化硬脂酸-R9	使用0.5%和1%的酰化硬脂酸-R9作为增强剂后,10h后的累积药量
			分别为(155.19±0.16)μg·cm ⁻² 和(369.05±4.12)μg·cm ⁻² 。双氯芬 酸钠穿透小鼠皮肤的累积量是阴性对照的20倍以上 ^[23]
	胰岛素	TD-1	TD-1与胰岛素混合涂抹于皮肤上,使全身胰岛素水平升高,并抑制 血清葡萄糖水平至少11 h ^[53]
	胰岛素	TD-34	在糖尿病大鼠皮肤给予2.1 IU胰岛素和0.5 μmol TD-348h后,血糖 水平降至初始水平的26%左右 ^[53]
	siRNA	TD-1	荧光显微镜显示,FAM标记的siRNA和TD-1从表皮到皮下组织分
			布均匀;实时灾光定量PCR显示,局部应用TD-1/甘油醛-3-磷酸脱
			氢酶-siRNA后,甘油醛-3-磷酸脱氢酶水平在24h和72h分别下降
			∫ 36% 相 49% ^[92]
	荧光素钠	SPACE	SPACE肽明显增加了荧光素钠在角质层的沉积 ^[93]
	环孢素A	SPACE、聚精氨酸、	与对照组(45%乙醇)相比,SPACE肽、聚精氨酸和TD-1能明显增强
		TD-1,DLP,LP-12	环孢素 A 对皮肤的渗透; DLP 和 LP-12 没有明显增强环孢素 A 的 皮肤渗透性 ^[36]
	siRNA	TD-1,R8	由 TD-1 与 R8 联合促渗 siRNA,显著抑制黑色素合成的酪氨酸酶途径,在临床试验中没有表现出明显的不良反应 ^[79]

表 2 不同 SPP 在皮肤递药系统中的应用 Table 2 Application of different skin penetrating peptides in skin drug delivery system

表7(续)			
应用方式	药物	SPP	效果
	抗坏血酸 2-葡萄 糖苷(AA2G)	自组装棕榈酰-甘氨 酸-组氨酸(Pal-GH)	在使用 AA2G 和 Pal-GH 预混合后,重建皮肤中 AA2G 的数量与 Pal-GH 的数量相关 ^[94]
	肉毒杆菌神经毒 素 A	TD-1	在后爪皮肤上同时涂抹TD-1和肉毒杆菌神经毒素A,可显著降低电刺激诱发的血浆外渗 ^[95]
	GFP	TAT-PTD、R9、SR9、 R9Z	用 SR9加 GFP、TAT-PTD加 GFP、R9加 GFP或 R9Z加 GFP 混合物处 理的皮肤切片在表皮、真皮、脂肪层甚至皮下都显示出强烈的荧 光 ^[53]
	环孢素A	SPACE	 SPACE与环孢素A外用24h内,的环孢素A累积透过率为29.9%±6.2%, 是对照溶液的(2.9±0.9)倍。SPACE还增加了环孢素A在活性表 皮中的沉积;5.8%±2.2%的环孢素A渗入表皮,是对照组的(8.7± 4.8)倍。沉积在皮肤中的环孢素A与渗透皮肤的环孢素A之比为 76.7±13.7,明显高于对照药液(33.1±8.9)^[96]
	胰岛素	R9	含 R9 的纳米分散体渗透进入尤卡坦小型猪皮肤的胰岛素浓度比不 含 R9 的纳米分散体高4.5 倍;与水溶液相比,含有 R9 的 S 纳米分 散体的渗透性比水溶液高25 倍 ^[97]
	人酪氨酸酶质粒	TAT-PTD	TAT-PTD和弹性阳离子囊泡包裹可增强人酪氨酸酶质粒的透皮吸收 ^[62]
	降钙素	TAT-PTD	6h后,TAT-PTD-降钙素混合物中渗透到接收液的降钙素百分比最高,为58.36%±12.33%,是游离降钙素的3.50倍 ^[64]
共价连接	雷公藤甲素	R7	雷公藤甲素经皮给药6h后,药物在活性表皮层中浓度趋于稳定,72h内在 血浆的药物浓度并未检测到。而衍生物经皮给药6~12h,活性表 皮层中的药物浓度仍在缓慢上升,持续地维持一定的浓度,且能在 血浆中检测到雷公藤甲素 ^[98]
	生长激素释放六 肽-6(GHRP-6)	MTD 1067	FITC标记的MTD-GHRP-6的药物渗透量比GHRP-6增加了约5 倍 ^[38]
	氢醌	R11	与单独使用氢醌相比,局部使用氢醌-R11能明显抑制紫外线照射引起的豚鼠色素沉着 ^[48]
	肝素、LID、普萘 洛尔	DRTTLTN	DRTTLTN与肝素共价连接后,通量比未共价连接的肝素增加了 24~36倍;LID和普萘洛尔的通量分别增加了2.6倍和3.8倍 ^[32]
	双氯芬酸	TAT-PTD	与TAT-PTD共价连接后,双氯芬酸通过人体表皮(到达受体)的穿透 力增强,TAT-PTD-双氯芬酸的穿透力增强了3倍 ^[99]
	P20	YARA	YARA-P20的渗透率明显高于非共价连接的P20 ^[51]
	环孢素A	R7	生物素 R7-环孢素 A 结合物可渗透到所有皮肤组织层;表皮中的几 乎所有角质细胞和真皮中的许多细胞都被严重染色 ^[24]
	P20	YARA,WLR	在1 mmol·L ⁻¹ 时,YARA使P20在角质层中的保留率提高了2.33倍; WLR能使P20在有活性皮肤中的渗透率大幅提高(2.88倍);与未 连接的形式相比,共价连接的WLR片段在促进P20穿透活性皮肤 面的效果要高出2倍 ^[54]
	OVA ₂₅₇₋₂₆₄	ANTP	将与ANTP连接的OVA ₂₅₇₋₂₆₄ 局部涂抹在小鼠贴有胶带的皮肤上,可 增强抗原通过皮肤的传递,而仅OVA ₂₅₇₋₂₆₄ 则仍均匀地分布在皮肤 表面 ^[27]
	甲氨蝶呤	Hph-1-PTD	甲氨蝶呤在体内外均能有效穿透关节皮肤,且能显著改善类风湿性 关节炎的各种炎症症状 ^[33]
	GKH	TAT-PTD	TAT-PTD-GKH对离体无毛小鼠皮肤的渗透效率是GKH的36倍 ^[100]
	氟轻松	LMWP	LMWP 促进氟轻松快速渗透皮肤,并沉积在表皮层和真皮层,从而 发挥治疗银屑病的作用 ^[101]

· 1660 · 第47卷第7期 2024年7月 药均润研究 Drug Evaluation Research Vol. 47 No. 7 July 2024

表 7	(续)

应用方式	药物	SPP	效果
融合蛋白	荧光蛋白	AP	AP-dTomato在表皮层和真皮层都成功地进行了细胞内定位;未连接
	dTomato		任何肽的 dTomato 蛋白的信号仅限于皮肤表面,而 TAT-PTD- dTomato的细胞内信号则很少 ^[28]
	EGF	AA3H,MAP,TAT-	在离体小鼠皮肤中的渗透顺序为EGF-Pep-1>EGF-TAT-PTD>EGF-
		PTD, Pep-1	$AA3H \ge rhEGF^{[26]}$
	EGF	LMWP	LMWP-EGF在三维人造人体皮肤构建物中的渗透性明显提高, LMWP-EGF在切除小鼠皮肤中的累积透过率是EGF的约11倍 ^[35]
	hEGF	TAT-PTD	在昆明小鼠背部皮肤上给药2h后,TAT-PTD-hEGF-CD47比hEGF- CD47更能穿透表皮层 ^[102]
	hEGF	TD-1	TD1-hEGF不仅具有与天然hEGF相似的生物活性,而且药物皮肤渗 透率远高于hEGF和TD-1与hEGF联合给药 ^[103]
	bFGF	Pep-c19	在皮肤表皮层观察到30Kc19α-bFGF,30Kc19α-bFGF可以穿透存在 毛囊的完整皮肤 ^[43]
	GFP、促凋亡	IMT-P8	IMT-P8穿透角质层,进入活性表皮,并在毛囊内积聚。局部施用
	所《KLA)		IMI-P8-KLA和IMI-P8-GFP 后,它们都会闪化到及床的毛囊和具 皮组织中 ^[34]
	GFP	R11	外用 GFP时,仅在皮肤表面观察到信号;GFP-R11 外敷可促进蛋白质 渗透进入真皮层 ^[48]
	GFP	TAT-PTD	用谷胱甘肽-S-转移酶-TAT-PTD-GFP和谷胱甘肽-S-转移酶-GFP- TAT-PTD局部涂抹1h后,在整个表皮中显示出强烈的绿色荧光; 当施药时间增加至2h时,表皮和真皮中的荧光信号更强、更深;局 部给药6h后,GST-GFP-TAT-PTD和GST-TAT-PTD-GFP组均达到 最大透皮量 ^[104]
	GFP	TAT-PTD	6 h时,接收池溶液中GFP累积透过量为(22.61±2.87)µg·cm ⁻² ;GFP 的通量为(3.77±0.48)µg·cm ⁻² ·h ^{-1[105]}
	IFN-γ	Penetratin	表达和纯化的Penetratin-IFN-γ具有比天然IFN-γ更有效的转导特性;与天然IFN-γ相比,Pentratin-IFN-γ在培养基中外源添加时表现出相似的活性 ^[41]
	siRNA	SPACE-EGF	SPACE-EGF通过SPACE-EGF-siRNA复合物增强了siRNA的穿透力[106]
	SOD	TAT-PTD	由TAT-PTD肽介导的SOD透皮给药可以有效地穿透皮下组织[107]
	SOD	TAT-PTD\K9	TAT-PTD-SOD和K9-SOD融合蛋白喷涂于小鼠皮肤时,能有效穿透 表皮和真皮;转导后的K9-SOD的酶活性高于TAT-PTD-SOD,说 明K9-SOD在皮肤中的渗透效率更高 ^[52]
	胰岛素样生长因	MTD 1067	MTD-胰岛素样生长因子-I在真皮层的荧光强度比胰岛素样生长因
	子-I、血小板衍		子-I高14倍;罗丹明标记的MTD-血小板衍生生长因子在真皮层
	生生长因子BB		也显示出更高的荧光强度,与PDGF-BB相比提高了约32倍 ^[38]
	的截短形式		
	肉毒杆菌神经毒 素 A	Pep-1	PEP-1-肉毒杆菌神经毒素A融合蛋白喷洒在小鼠皮肤上时,能有效 渗透到表皮层和真皮层 ^[83]
修饰药物载 体	姜黄素	TD-1	TD-1修饰的脂质体透皮能力提高4.48倍 ^[108]
	石蒜碱	R5H3	R5H3修饰的传递体进一步增强了石蒜碱的皮肤渗透[46]
	当归提取物	R6	R6修饰的当归提取物脂质体累积透过量为100.01 μg·cm ⁻² ,是对照 组的1.74倍 ^[109]

第47卷第7期 2024年7月 《始诉研究 Drug Evaluation Research Vol. 47 No. 7 July 2024

•	1661	•
---	------	---

表7(续)			
应用方式	药物	SPP	效果
	硫酸软骨素	Mgpe-9	 1:2纳米复合物能以浓度依赖性方式渗入皮肤膜;在小鼠皮肤中,1: 2纳米复合物明显出现在15~20 μm的表皮层,而对照组和仅有硫酸软骨素处理的组织切片在这一区域没有观察到荧光信号^[37]
	紫杉醇	R8H3	传递体上修饰的R8H3肽进一步促进了紫杉醇的透皮渗透 ^[47]
	氯诺昔康	R11	体外皮肤渗透研究表明,R11(0.02%)比其他成分(0.01%或0.04%) 具有更好的渗透增强能力 ^[110]
	紫杉醇	TAT-PTD,Penetratin	12 h后, Penetratin 微乳还能促进紫杉醇向表皮和真皮的输送量显著 增加; TAT-PTD 微乳的渗透率为 1.6 倍 ^[67]
	维莫非尼	TD	维莫非尼-TD-脂质体组渗透量明显高于维莫非尼脂质体组;TD修饰 后维莫非尼渗透量显著高于TD联合给药 ^[111]
	siRNA	SPACE	SPACE 醇脂体显著增强了 siRNA 在体外猪皮中的渗透,与水溶液相比,siRNA 的累积透过率显著提高了 6.3 倍,并且在表皮的沉积量 也增加了约 10 倍 ^[72]
	siRNA	TAT-PTD	用 TAT-PTD 功能化的纳米颗粒可大幅提高 siRNA 的皮肤穿透力,从 而增强液晶纳米颗粒作为皮肤载体的效果 ^[112]
	双氯芬酸钠	RALA	在含有 RALA 的体系中,双氯芬酸钠的最大累积浓度比空白体系高 60%;在含有 1.4% RALA 的情况下,渗透系数提高了 2.2 倍 ^[49]
	双氯芬酸钠	Penetratin	Penetratin提高了双氯芬酸钠从H _{II} 中间相通过猪皮的透皮输送率,也 提高了通过皮肤的累积输送率;Penetratin加快了药物通过角质层 向不同皮肤层的扩散 ^[42]
	何首乌提取物	Peptide (GRRRRRRR RRGTL-Cysteamine)	当使用 SPP-L-α-二油酸磷脂酰胆碱脂质体(252.89 mg·cm ⁻² ,50.58%) 时,何首乌提取物的渗透性最大,其次是L-α-二油酸磷脂酰胆碱脂 质体(202.76 mg·cm ⁻² ,40.55%)和1,3-丁二醇溶液(107.52 mg·cm ⁻² , 21.50%) ^[113]
	视黄醇	TAT-PTD	与丙二醇/乙醇对照组相比,TAT-PTD可变形载体的t ₁ 增加了110% 以上,与裸载体相比增加了60%(t ₁ 是视黄醇渗入皮肤过程中与吸 收系数相关的衰减常数) ^[114]
	Spantide II(SP)、 酮洛芬	R11	在皮肤渗透24h后,局部施用NLC-R11后保留在真皮中的SP和酮 洛芬量明显高于溶液和NLC。与对照溶液和NLC相比,酮洛芬在 接收液中的含量分别增加了约7.9倍和2.6倍 ^[76]
	丹酚酸B	TAT-PTD	丹酚酸B脂质体和丹酚酸B-TAT-PTD脂质体的累积透过率分别为 12.63%和17.21% ^[115]
	质粒DNA	Mgpe-9	Mgpe-9可以穿透皮肤,进入皮肤细胞,在体外和体内有效地传递质粒DNA,而没有毒性或损害皮肤完整性 ^[116]
	透明质酸	SPACE	SKH1无毛小鼠进行的体内实验证实,使用该递送系统可增加HA的 皮肤渗透;与PBS 对照组相比,渗透率提高了5倍 ^[73]
	花旗松素 3-O-β- D-葡萄糖硫苷	Pep-1	与水溶液、柔性脂质体或Pep-1肽混合柔性脂质体相比,Pep1-柔性脂质体的吸收效果更佳。与使用水溶液治疗的对照组相比,使用 Pep1-柔性脂质体治疗组明显加快了皮肤屏障功能的恢复[117]
	塞来昔布(Cxb)	TAT-PTD\YKA	与单独使用CXBN相比,CXBNT配方的角质层中塞来昔布的浓度 增加了3倍;使用Cxb-S、CXBN、CXBNT和CXBNY制剂24h后, 表皮中Cxb浓度分别为(3.59±0.1)、(37.28±3.0)、(92.94±9.1) 和(57.53±8.1)µg·g ^{-1[18]}
	质粒DNA	LMWP	皮肤渗透显著,经皮累积递送量高达给药剂量的14% ^[70]
	左布比卡因、 右美托咪定	TAT-PTD	经 TAT-PTD 修饰的纳米粒子比未经修饰的纳米粒子具有更强的药物渗透性 ^[119]

· 1662 · 第47卷 第7期 2024年7月 当時活动玩克 Drug Evaluation Research Vol. 47 No. 7 July 2024

表7(续)			
应用方式	药物	SPP	效果
	罗哌卡	TAT-PTD	给药48h后,TAT-PTD-NLCs-RVC/MLX、NLCs-RVC/MLX和游离
	因(RVC)、美洛		RVC/MLX的RVC渗透量分别为(898.3±28.9)、(513.7±
	昔康(MLX)		20.9)、(312.6±15.5) μg·cm ⁻² ; TAT-PTD-NLCs-RVC/MLX的渗透 量最大,是游离RVC/MLX的2.6倍 ^[120]
	雷洛昔芬	TAT-PTD	雷洛昔芬-D-α-生育酚聚乙二醇1000琥珀酸酯-传递体-TAT-PTD载 药膜12h后的透过率为99.33%,而雷洛昔芬原料药载药膜的透过 率为49.73% ^[121]
	RVC	TAT-PTD	TAT-PTD-RVC/NCs、RVC/NCs和RVC/IJ的药物稳态透过速率分别 为19.7±1.1、14.2±1.2和8.6±0.8;TAT-PTD-RVC/NCs的皮肤渗 透率最高;TAT-PTD-RVC/NCs的药物稳态透过速率明显高于 RVC/NCs ^[122]
	双氯芬酸钠、塞 来昔布	TAT-PTD	TAT-PTD 显著增加了双氯芬酸钠和塞来昔布从立方体体系中的扩散,分别增加了6倍和9倍;TAT-PTD 对药物从层状体系中扩散的影响分别被限制在1.3倍和1.7倍 ^[65]
	LID	TAT-PTD	LID-TAT-PTD聚合物脂质囊泡的透皮通量分别是LID溶液和LID脂 质体的4.17倍和1.75倍 ^[63]
	LID	TAT-PTD	TAT-PTD/PB-LID-NLC[(851.2±25.3)mg·cm ⁻²]的经皮渗透能力明 显优于 PB-LID-NLC[(610.7±22.1)µg·cm ⁻²]和 TAT-PTD-LID- NLC[(551.9±21.8)µg·cm ⁻²] ^[123]
	LID	TAT-PTD	与LID 溶液相比,TAT-PTD-NLCs-LID 和 NLCs-LID 在 48 h 内分别将 LID 的渗透率提高了 3.8 倍和 2 倍 ^[124]
	LID	TAT-PTD	12 h 后的 LID 渗透量大小如下:LID-TAT-PTD 聚合物脂质囊泡>LID 聚合物脂质囊泡>LID 脂质体>LID 溶液。与LID 脂质体相比, LID-TAT-PTD 聚合物脂质囊泡和LID 聚合物脂质囊泡在12 h 内分 别将 LID 的渗透率提高了 2.28 倍和 1.70 倍 ^[125]

3.1 SPP 与药物的物理混合

. . . .

SPP 与药物进行简单的物理混合,即可达到促 进药物的透皮吸收的效果。早期基于物理混合给 药方法的研究多集中在大分子药物的促渗上。 PKU-12 与 siRNA 混合涂抹后,可以促进靶向 HPVE6、E7和L1的siRNA的皮肤吸收,显著抑制目 标mRNA的表达水平从而抑制小鼠皮下宫颈癌细 胞的生长。没有 PKU-12 肽的作用下, siRNA 主要 聚积在表皮层中,无法发挥作用^[44]。SPACE肽与环 孢素A混合给药后,环孢素A的皮肤沉积量为不使 用 SPACE 肽时的 2.9 倍,其中活性表皮层中沉积量 明显增加。当SPACE肽质量浓度在0~25 mg·mL⁻¹ 时,环孢素A的皮肤沉积量与SPACE肽质量浓度呈 正比,而质量浓度增加到50 mg·mL⁻¹时,皮肤沉积 量无显著变化。进一步体内实验结果表明,局部应 用 50 mg·mL⁻¹ SPACE 肽溶液显著增加了环孢素 A 在皮肤中的分布[(113.1±13.6)µg·g⁻¹·mg⁻¹],导致 环孢素A的皮肤/血液分布比率(443.4±181.5)和皮 肤/肝脏分布比率(1059.5±110.8)显著升高^[96]。雷 公藤甲素分别与DL-2、DLCC-2 混合成饱和溶液应 用于皮肤上, 雷公藤甲素累积透过量是对照组的1.4 倍和1.7倍, 在DLCC-2 的作用下, 雷公藤甲素的累 积透过量在12h内增加了1.71倍, 表现出比TD-34 更好的药物促渗能力^[30]。

3.2 SPP 与药物形成共价连接

SPP可以直接或通过连接体(如短肽、二硫键、 胺键、酯键等)与药物形成共价连接,从而促进药物 的透皮吸收。然而该方法需要进行化学合成,而且 涉及优化每个 SPP 与药物之间的共价连接方案。 Pep-1通过连接体 HaBP(一种短肽)与透明质酸连 接,可以显著提高透明质酸在表皮细胞中的穿透作 用,且没有明显的过敏或其他不良反应^[126]。雷公藤 甲素通过二硫键共价连接 R7,该衍生物在体外和体 内均具有较小的皮肤毒性;雷公藤甲素经皮给药6h 后,药物在活性表皮层中浓度趋于稳定,72 h内在血 浆的药物浓度并未检测到;而衍生物经皮给药6~ 12 h,活性表皮层中的药物浓度仍在缓慢上升,持续 地维持一定的浓度,且能在血浆中检测到雷公藤甲 素,可以达到一个缓释和持久的药物治疗效果^[98]。 DRTTLTN通过酯键与肝素共价连接之后,使得肝 素稳态透过速率增加24~36倍^[32]。此外, DRTTLTN还可用于增强小分子药物LID与普萘洛 尔的皮肤渗透,药物稳态透过速率分别提升了2.6 倍和3.8倍,且缩短了普萘洛尔测定的时滞(3h→1h)^[32]。 单独使用GHK时,其累积透过率仅为2.53%,而与 R4 共价连接后,GHK的累积透过率明显增 加(17.75%)^[77]。

3.3 SPP与蛋白类药物形成融合蛋白

融合蛋白是重组 DNA 技术的产物,将2个或多 个蛋白质结构与基因融合在一起,融合蛋白产物可 以获得多种不同的功能^[127]。SPP可以与蛋白药物 形成融合蛋白,实现蛋白类药物的皮肤或经皮给 药。重组碱性成纤维细胞生长因子(bFGF)的不稳 定性意味着需要频繁应用于细胞或组织以获得持 续的治疗效果。bFGF与30KC19α蛋白(具有蛋白 稳定特性,含有一种Pep-c19肽链而具有细胞穿透 特性)的融合蛋白,不仅提高了bFGF的稳定性又保 留了bFGF的生物活性,增加了bFGF的皮肤累积透 过量,这有助于成纤维细胞的迁移和增殖以及内皮 细胞的血管生成^[43]。Chen等^[26]分别构建表皮生长 因子(EGF)与4种SPP(AA3H、MAP、TAT-PTD、 Pep-1)的融合蛋白,并比较它们的皮肤渗透性,结果 发现,这些EGF融合蛋白(经FITC荧光标记)均可 穿过角质层并到达活性表皮层和真皮层,而单用 EGF时EGF主要在角质层中沉积,且极少进入活性 表皮层。在这些融合蛋白中,EGF-Pep-1渗透效率 最好,其次是 EGF-TAT-PTD 和 EGF-AA3H。EGF-MAP在较高浓度下具有显著的细胞毒性^[26]。TAT-PTD与hEGF-CD47的重组融合蛋白能有效促进人 皮肤成纤维细胞和皮肤上皮细胞的增殖,且增殖作 用与TAT-PTD-hEGF-CD47浓度呈正相关,TAT-PTD 促进hEGF 渗透进入皮肤,CD47 片段可减慢单 核吞噬细胞清除 TAT-PTD-hEGF-CD47,使其在皮 肤中停留较长时间,延长给药间隔[102]。

3.4 SPP修饰药物载体

3.4.1 脂质体及其类似物 脂质体是由单个或多 个磷脂双分子层组成的囊泡,是一种广泛使用的药 物载体。磷脂是脂质体的主要成分,其与皮肤的结 构和组成相似因而增强药物的渗透性。SPP与脂质 体联合作用可显著提高一些药物的透皮吸收。姜 黄素脂质体经TD-1修饰,其累积透过量为41.195 μg·cm⁻², 显著高于未修饰的脂质体(14.917 μg·cm⁻²)^[108]。 TD-1修饰脂质体经皮递送维莫非尼的效率明显高 于未修饰脂质体,也高于维莫非尼与TD-1物理混合 给药^[111]。R6修饰的当归提取物脂质体累积透过量 为100.01 μg·cm⁻²,是对照组的1.74倍^[109]。TAT-PTD 修饰丹酚酸B脂质体进一步促进了丹酚酸B的皮肤 吸收,药物累积透过率为17.21%(对照组为 12.63%),真皮滞留量为44.39 μg·cm⁻²(对照组为 35.09 μg·cm⁻²)^[115]。由SPACE肽修饰的醇脂体被证 明能够显著增强siRNA在体外对皮肤的渗透吸收, 研究结果显示,使用这种醇脂体后,siRNA的累积透 过率显著提高了6.3倍,并且在表皮的沉积量也增 加了约10倍^[73]。多西他赛封装在R8H3修饰的传 递体中,在皮肤给药后,多西他赛的皮肤沉积量增 加,对细胞的杀伤力提高,明显抑制黑色素瘤的 生长^[81]。

3.4.2 纳米结构脂质载体 纳米结构脂质载 体(NLC)是由液态脂质与固态脂质混合在一起形 成的纳米粒,有较高的载药能力和物理化学稳定 性。通过SPP的修饰,NLC可以进一步优化药物的 皮肤渗透效率。相较于未修饰NLC,R11修饰的 NLC增强了氯诺昔康的皮肤吸收,氯诺昔康的皮肤 累积透过量和沉积量分别提高2.0倍和1.7倍^[110];在 角叉菜胶诱导的大鼠足肿胀模型中,氯诺昔康 -NLC-R11凝胶能抑制炎症细胞因子的产生,从而减 轻炎症反应。另1项研究中,TAT-PTD修饰的NLC 使得LID的皮肤渗透量(551.9 μg·cm⁻²)比未修饰 NLC增加1.25倍。而且,TAT-PTD所带的正电荷与 带负电的NLC相互作用,增加NLC的稳定性,使得 药物缓慢释放,发挥持久的麻醉镇痛效果^[123]。

4 展望

SPP开发和应用过程中也面临着一些挑战和困 难。首先是稳定性,SPP容易受到氧化、水解或蛋白 酶降解等化学反应的影响,从而影响其活性。此 外,SPP在特定的pH值、温度和溶剂条件下可能会 发生构象变化或聚集现象。目前,通过合适的设计 和处理,如N-乙酰化、C-乙酰化,可以提高其稳定 性^[85-86]。其次是不良反应和毒性问题,尽管许多研 究已证明SPP具有良好的生物相容性,但仍有研究 表明某些肽的使用浓度、特定基团等因素可能会引 起细胞毒性^[26,36]。因此需要进行全面的安全性评 估,并确保其对皮肤的安全性。而对于 SPP作用于 皮肤层的确切机制尚缺乏深入的研究,充分明确其 作用机制将有助于更好地设计和优化这些分子。 随着人工智能(AI)技术的不断进步,其在 SPP研究 中具有巨大的应用潜力。它有望通过高通量虚拟 筛选和优化、分子动力学模拟和机制解析、数据驱 动的创新与发现等方面等多方面推动该领域的 发展。

SPP作为一种前沿的生物皮肤促渗剂,具有潜在的广阔应用前景,可用于特应性皮炎^[29]、宫颈 癌^[44]、黑色素瘤^[81]、炎症^[110]、麻醉^[63,123-125]等治疗应 用。此外,SPP还在生物医学领域具有潜在的应用 价值,如局部递送生物标志物,用于疾病诊断等。 随着相关研究的不断深入和技术的快速发展,预计 未来将出现更多创新的SPP和应用方式,为人们提 供更加有效和安全的经皮给药制剂和美容护肤 产品。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- Kolarsick P A J, Kolarsick M A, Goodwin C. Anatomy and physiology of the skin [J]. Dermatol Nurses' Assoc, 2011, 3(4): 203-213.
- [2] Nafisi S, Maibach H I. Skin Penetration of Nanoparticles[M] Amsterdam: Elsevier, 2018.
- [3] Jijie R, Barras A, Boukherroub R, et al. Nanomaterials for transdermal drug delivery: Beyond the state of the art of liposomal structures [J]. J Mater Chem B, 2017, 5(44): 8653-8675.
- [4] El Maghraby G M, Barry B W, Williams A C. Liposomes and skin: From drug delivery to model membranes [J]. Eur J Pharm Sci, 2008, 34(4/5): 203-222.
- [5] Ramadon D, McCrudden M T C, Courtenay A J, et al. Enhancement strategies for transdermal drug delivery systems: Current trends and applications [J]. Drug Deliv Transl Res, 2022, 12(4): 758-791.
- [6] Pastore M N, Kalia Y N, Horstmann M, et al. Transdermal patches: History, development and pharmacology [J]. Br J Pharmacol, 2015, 172(9): 2179-2209.
- [7] Hmingthansanga V, Singh N, Banerjee S, et al. Improved Topical drug delivery: Role of permeation enhancers and advanced approaches [J]. Pharmaceutics, 2022, 14(12): 2818.
- [8] Junaid M S A, Banga A K. Transdermal delivery of baclofen using iontophoresis and microneedles [J]. AAPS PharmSciTech, 2022, 23(3): 84.
- [9] Ita K. Recent progress in transdermal sonophoresis [J]. Pharm Dev Technol, 2017, 22(4): 458-466.
- [10] Kis N, Kovács A, Budai-Szűcs M, et al. The effect of noninvasive dermal electroporation on skin barrier function and skin permeation in combination with different dermal formulations [J]. J Drug Deliv Sci Technol, 2022, 69:

103161.

- [11] Nagarkar R, Singh M, Nguyen H X, et al. A review of recent advances in microneedle technology for transdermal drug delivery [J]. J Drug Deliv Sci Technol, 2020, 59: 101923.
- [12] Parhi R, Mandru A. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products [J]. Drug Deliv Transl Res, 2021, 11(3): 817-841.
- [13] Aljuffali I A, Lin C F, Fang J Y. Skin ablation by physical techniques for enhancing dermal/transdermal drug delivery [J]. J Drug Deliv Sci Technol, 2014, 24(3): 277-287.
- [14] Mueller J, Trapp M, Neubert R H H. The effect of hydrophilic penetration/diffusion enhancer on stratum corneum lipid models: Part II*: DMSO [J]. Chem Phys Lipids, 2019, 225: 104816.
- [15] Williams A C, Barry B W. Penetration enhancers [J]. Adv Drug Deliv Rev, 2004, 56(5): 603-618.
- [16] Liu C, Guan Y L, Tian Q, et al. Transdermal enhancement strategy of ketoprofen and teriflunomide: The effect of enhanced drug-drug intermolecular interaction by permeation enhancer on drug release of compound transdermal patch [J]. Int J Pharm, 2019, 572: 118800.
- [17] van Zyl L, du Preez J, Gerber M, et al. Essential fatty acids as transdermal penetration enhancers [J]. J Pharm Sci, 2016, 105(1): 188-193.
- [18] Kopečná M, Macháček M, Nováčková A, et al. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers [J]. Sci Rep, 2019, 9(1): 14617.
- [19] Kanikkannan N, Singh M. Skin permeation enhancement effect and skin irritation of saturated fatty alcohols [J]. Int J Pharm, 2002, 248(1/2): 219-228.
- [20] Jiang T Y, Xu G, Chen G J, et al. Progress in transdermal drug delivery systems for cancer therapy [J]. Nano Res, 2020, 13(7): 1810-1824.
- [21] Nasrollahi S A, Taghibiglou C, Azizi E, et al. Cellpenetrating peptides as a novel transdermal drug delivery system [J]. Chem Biol Drug Des, 2012, 80(5): 639-646.
- [22] Madani F, Lindberg S, Langel U, et al. Mechanisms of cellular uptake of cell-penetrating peptides [J]. J Biophys, 2011, 2011: 414729.
- [23] Wang K, Zhao X Y, Yang F L, et al. Percutaneous delivery application of acylated steric acid-9-P (arginine) cell penetrating peptides used as transdermal penetration enhancer⁺[J].JBiomedNanotechnol,2019,15(3):417-430.
- [24] Rothbard J B, Garlington S, Lin Q, et al. Conjugation of arginine oligomers to cyclosporin A facilitates topical delivery and inhibition of inflammation [J]. Nat Med, 2000, 6(11): 1253-1257.
- [25] Chen Y P, Shen Y Y, Guo X, et al. Transdermal protein

delivery by a coadministered peptide identified via phage display [J]. Nat Biotechnol, 2006, 24(4): 455-460.

- [26] Chen J, Li H B, Chen J H. Human epidermal growth factor coupled to different structural classes of cell penetrating peptides: A comparative study [J]. Int J Biol Macromol, 2017, 105(Pt 1): 336-345.
- [27] Schutze-Redelmeier M P, Kong S, Bally M B, et al. Antennapedia transduction sequence promotes anti tumour immunity to epicutaneously administered CTL epitopes [J]. Vaccine, 2004, 22(15/16): 1985-1991.
- [28] Kim W J, Koo J H, Cho H J, et al. Protein tyrosine phosphatase conjugated with a novel transdermal delivery peptide, astrotactin 1-derived peptide recombinant protein tyrosine phosphatase (AP-rPTP), alleviates both atopic dermatitis-like and psoriasis-like dermatitis [J]. J Allergy Clin Immunol, 2018, 141(1): 137-151.
- [29] Uchida T, Kanazawa T, Takashima Y, et al. Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002 [J]. Chem Pharm Bull, 2011, 59(2): 196-201.
- [30] Tian T, Zhang X D, Sun Y M, et al. Synthesis, characterization, and evaluation of novel cell-penetrating peptides based on TD-34 [J]. J Pept Sci, 2019, 25(10): e3205.
- [31] Hsu T, Mitragotri S. Delivery of siRNA and other macromolecules into skin and cells using a peptide enhancer [J]. Proc Natl Acad Sci USA, 2011, 108(38): 15816-15821.
- [32] Gennari C G, Franzè S, Pellegrino S, et al. Skin penetrating peptide as a tool to enhance the permeation of heparin through human epidermis [J]. Biomacromolecules, 2016, 17(1): 46-55.
- [33] Lee S W, Kim J H, Park M C, et al. Alleviation of rheumatoid arthritis by cell-transducible methotrexate upon transcutaneous delivery [J]. Biomaterials, 2012, 33 (5): 1563-1572.
- [34] Gautam A, Nanda J S, Samuel J S, et al. Topical delivery of protein and peptide using novel cell penetrating peptide IMT-P8 [J]. Sci Rep, 2016, 6: 26278.
- [35] Choi J K, Jang J H, Jang W H, et al. The effect of epidermal growth factor (EGF) conjugated with lowmolecular-weight protamine (LMWP) on wound healing of the skin [J]. Biomaterials, 2012, 33(33): 8579-8590.
- [36] Kumar S, Zakrewsky M, Chen M, et al. Peptides as skin penetration enhancers: Mechanisms of action [J]. J Controled Release, 2015, 199: 168-178.
- [37] Mishra S, Reshma G B, Pal S, et al. Topical application of peptide-chondroitin sulfate nanoparticles allows efficient photoprotection in skin [J]. ACS Appl Mater Interfaces, 2021, 13(2): 2382-2398.

- [38] Shin H J, Bak S U, La H N, et al. Efficient transdermal delivery of functional protein cargoes by a hydrophobic peptide MTD1067 [J]. Sci Rep, 2022, 12(1): 10853.
- [39] 刘荣, 孙建宁, 郭亚健, 等. 具有透皮美白功效的短肽筛选和 评价研究 [J]. 中国美容医学, 2011, 20(9): 1409-1412.
 Liu R, Sun J N, Guo Y J, et al. Screening and assessment of short peptide with skin whitening efficacy [J]. Chin J Aesthetic Med, 2011, 20(9): 1409-1412.
- [40] Morris M C, Depollier J, Mery J, et al. A peptide carrier for the delivery of biologically active proteins into mammalian cells [J]. Nat Biotechnol, 2001, 19(12): 1173-1176.
- [41] Lee J, Jung E, Park J, et al. Transdermal delivery of interferon-gamma (IFN-gamma) mediated by penetratin, a cell-permeable peptide [J]. Biotechnol Appl Biochem, 2005, 42(Pt 2): 169-173.
- [42] Cohen-Avrahami M, Libster D, Aserin A, et al. Penetratin-induced transdermal delivery from H(II) mesophases of sodium diclofenac [J]. J Control Release, 2012, 159(3): 419-428.
- [43] Lee H, An Y H, Kim T K, et al. Enhancement of wound healing efficacy by increasing the stability and skinpenetrating property of bFGF using 30Kc19α -based fusion protein [J]. Adv Biol, 2021, 5(1): e2000176.
- [44] Deng Y, Song Y, Du Q, et al. Anti-HPV16 oncoproteins siRNA therapy for cervical cancer using a novel transdermal peptide PKU12 [J]. Front Oncol, 2023, 13: 1175958.
- [45] Johnson L N, Cashman S M, Kumar-Singh R. Cellpenetrating peptide for enhanced delivery of nucleic acids and drugs to ocular tissues including retina and cornea [J]. Mol Ther, 2008, 16(1): 107-114.
- [46] Li Y, Tai Z G, Ma J Y, et al. Lycorine transfersomes modified with cell-penetrating peptides for topical treatment of cutaneous squamous cell carcinoma [J]. J Nanobiotechnol, 2023, 21(1): 139.
- [47] Jiang T Y, Wang T, Li T, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma [J]. ACS Nano, 2018, 12(10): 9693-9701.
- [48] Candan G, Michiue H, Ishikawa S, et al. Combining polyarginine with the hydrophobic counter-anion 4- (1pyrenyl) -butyric acid for protein transduction in transdermal delivery [J]. Biomaterials, 2012, 33(27): 6468-6475.
- [49] Cohen-Avrahami M, Aserin A, Garti N. H(II) mesophase and peptide cell-penetrating enhancers for improved transdermal delivery of sodium diclofenac [J]. Colloids Surf B Biointerfaces, 2010, 77(2): 131-138.
- [50] Kumar S, Sahdev P, Perumal O, et al. Identification of a novel skin penetration enhancement peptide by phage

display peptide library screening [J]. Mol Pharm, 2012, 9 (5): 1320-1330.

- [51] Lopes L B, Brophy C M, Furnish E, et al. Comparative study of the skin penetration of protein transduction domains and a conjugated peptide [J]. Pharm Res, 2005, 22(5): 750-757.
- [52] Park J, Ryu J, Jin L H, et al. 9-Polylysine protein transduction domain: Enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin [J]. Mol Cells, 2002, 13(2): 202-208.
- [53] Chang M M, Li X H, Sun Y M, et al. Effect of cationic cyclopeptides on transdermal and transmembrane delivery of insulin [J]. Mol Pharm, 2013, 10(3): 951-957.
- [54] Lopes L B, Furnish E, Komalavilas P, et al. Enhanced skin penetration of P20 phosphopeptide using protein transduction domains [J]. Eur J Pharm Biopharm, 2008, 68(2): 441-445.
- [55] Hou Y W, Chan M H, Hsu H R, et al. Transdermal delivery of proteins mediated by non-covalently associated arginine-rich intracellular delivery peptides [J]. Exp Dermatol, 2007, 16(12): 999-1006.
- [56] Kim Y C, Ludovice P J, Prausnitz M R. Transdermal delivery enhanced by Magainin pore-forming peptide [J]. J Control Release, 2007, 122(3): 375-383.
- [57] Zhou M, Zou X, Cheng K, et al. The role of cellpenetrating peptides in potential anti-cancer therapy [J]. Clin Transl Med, 2022, 12(5): e822.
- [58] Vale N, Duarte D, Silva S, et al. Cell-penetrating peptides in oncologic pharmacotherapy: A review[J]. Pharmacol Res, 2020, 162: 105231.
- [59] Frankel A D, Pabo C O. Cellular uptake of the tat protein from human immunodeficiency virus [J]. Cell, 1988, 55 (6): 1189-1193.
- [60] Green M, Loewenstein P M. Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein [J]. Cell, 1988, 55(6): 1179-1188.
- [61] Vivès E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus [J]. J Biol Chem, 1997, 272(25): 16010-16017.
- [62] Manosroi J, Khositsuntiwong N, Manosroi W, et al. Potent enhancement of transdermal absorption and stability of human tyrosinase plasmid (pAH7/Tyr) by Tat peptide and an entrapment in elastic cationic niosomes [J]. Drug Deliv, 2013, 20(1): 10-18.
- [63] Wang Y, Su W Y, Li Q, et al. Preparation and evaluation of lidocaine hydrochloride-loaded TAT-conjugated polymeric liposomes for transdermal delivery [J]. Int J Pharm, 2013, 441(1/2): 748-756.

- [64] Manosroi J, Lohcharoenkal W, Götz F, et al. Transdermal absorption and stability enhancement of salmon calcitonin by Tat peptide [J]. Drug Dev Ind Pharm, 2013, 39(4): 520-525.
- [65] Cohen-Avrahami M, Shames A I, Ottaviani M F, et al. HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases [J]. J Phys Chem B, 2014, 118(23): 6277-6287.
- [66] Derossi D, Joliot A H, Chassaing G, et al. The third helix of the Antennapedia homeodomain translocates through biological membranes [J]. J Biol Chem, 1994, 269(14): 10444-10450.
- [67] Pepe D, Carvalho V F, McCall M, et al. Transportan in nanocarriers improves skin localization and antitumor activity of paclitaxel [J]. Int J Nanomedicine, 2016, 11: 2009-2019.
- [68] Byun Y, Singh V K, Yang V C. Low molecular weight protamine: A potential nontoxic heparin antagonist [J]. Thromb Res, 1999, 94(1): 53-61.
- [69] Huang Y Z, Park Y S, Moon C, et al. Synthetic skinpermeable proteins enabling needleless immunization [J]. Angew Chem Int Ed, 2010, 49(15): 2724-2727.
- [70] Yang Y X, Jiang Y F, Wang Z, et al. Skin-permeable quaternary nanoparticles with layer-by-layer structure enabling improved gene delivery [J]. J Mater Chem, 2012, 22(19): 10029-10034.
- [71] Hoogenboom H R, de Bruïne A P, Hufton S E, et al. Antibody phage display technology and its applications[J]. Immunotechnology, 1998, 4(1): 1-20.
- [72] Chen M, Zakrewsky M, Gupta V, et al. Topical delivery of siRNA into skin using SPACE-peptide carriers [J]. J Controlled Release, 2014, 179: 33-41.
- [73] Chen M, Gupta V, Anselmo A C, et al. Topical delivery of hyaluronic acid into skin using SPACE-peptide carriers [J]. J Controlled Release, 2014, 173: 67-74.
- [74] Zhang D, Wang J, Xu D. Cell-penetrating peptides as noninvasive transmembrane vectors for the development of novel multifunctional drug-delivery systems [J]. J Controlled Release, 2016, 229: 130-139.
- [75] Mitchell D J, Kim D T, Steinman L, et al. Polyarginine enters cells more efficiently than other polycationic homopolymers [J]. J Pept Res, 2000, 56(5): 318-325.
- [76] Shah P P, Desai P R, Channer D, et al. Enhanced skin permeation using polyarginine modified nanostructured lipid carriers [J]. J Control Release, 2012, 161(3): 735-745.
- [77] Park S I, Lee K W, Park S, et al. Transdermal delivery and biological activity of arginine oligomer conjugation of palmitoyl tripeptide-1 [J]. Ijirss, 2022, 5(3): 220-225.
- [78] Kitaoka M, Imamura K, Hirakawa Y, et al. Needle-free immunization using a solid-in-oil nanodispersion

enhanced by a skin-permeable oligoarginine peptide [J]. Int J Pharm, 2013, 458(2): 334-339.

- [79] Yi X, Zhao G, Zhang H J, et al. MITF-siRNA formulation is a safe and effective therapy for human melasma [J]. Mol Ther, 2011, 19(2): 362-371.
- [80] Desai P R, Shah P P, Patlolla R R, et al. Dermal microdialysis technique to evaluate the trafficking of surface-modified lipid nanoparticles upon topical application [J]. Pharm Res, 2012, 29(9): 2587-2600.
- [81] Liu C D, Ma Y D, Guo S, et al. Topical delivery of chemotherapeutic drugs using nano-hybrid hydrogels to inhibit post-surgical tumour recurrence [J]. Biomater Sci, 2021, 9(12): 4356-4363.
- [82] Ho A, Schwarze S R, Mermelstein S J, et al. Synthetic protein transduction domains: Enhanced transduction potential *in vitro* and *in vivo* [J]. Cancer Res, 2001, 61(2): 474-477.
- [83] Kim D W, Kim S Y, An J J, et al. Expression, purification and transduction of PEP-1-botulinum neurotoxin type A (PEP-1-BoNT/A) into skin [J]. J Biochem Mol Biol, 2006, 39(5): 642-647.
- [84] Eum W S, Kim D W, Hwang I K, et al. *In vivo* protein transduction: Biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult [J]. Free Radic Biol Med, 2004, 37(10): 1656-1669.
- [85] Soleymani-Goloujeh M, Nokhodchi A, Niazi M, et al. Effects of N-terminal and C-terminal modification on cytotoxicity and cellular uptake of amphiphilic cell penetrating peptides [J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup1): 91-103.
- [86] Sato A K, Viswanathan M, Kent R B, et al. Therapeutic peptides: Technological advances driving peptides into development [J]. Curr Opin Biotechnol, 2006, 17(6): 638-642.
- [87] Bechinger B, Juhl D W, Glattard E, et al. Revealing the mechanisms of synergistic action of two Magainin antimicrobial peptides [J]. Front Med Technol, 2020, 2: 615494.
- [88] Zorn-Kruppa M, Vidal-Y-Sy S, Houdek P, et al. Tight Junction barriers in human hair follicles - role of claudin-1 [J]. Sci Rep, 2018, 8(1): 12800.
- [89] Chang M M, Li X H, Sun Y M, et al. A potential mechanism of a cationic cyclopeptide for enhancing insulin delivery across Caco-2 cell monolayers [J]. Biol Pharm Bull, 2013, 36(10): 1602-1607.
- [90] Johnson L N, Cashman S M, Read S P, et al. Cell penetrating peptide POD mediates delivery of recombinant proteins to retina, cornea and skin [J]. Vision Res, 2010, 50(7): 686-697.

- [91] Shin H J, Lee B K, Kang H A. Transdermal Properties of Cell-Penetrating Peptides: Applications and skin penetration mechanisms [J]. ACS Applied Bio Materials, 2024, 7(1): 1-16.
- [92] Lin C M, Huang K, Zeng Y, et al. A simple, noninvasive and efficient method for transdermal delivery of siRNA [J]. Arch Dermatol Res, 2012, 304(2): 139-144.
- [93] Lin X K, Wang Z H, Ou H L, et al. Correlations between skin barrier integrity and delivery of hydrophilic molecules in the presence of penetration enhancers [J]. Pharm Res, 2020, 37(6): 100.
- [94] Imoto T, Goto M. Self-assembled palmitoyl-Glycinehistidine as a permeation enhancer for transdermal delivery [J]. Langmuir, 2021, 37(30): 8971-8977.
- [95] Carmichael N M E, Dostrovsky J O, Charlton M P. Peptide-mediated transdermal delivery of botulinum neurotoxin type A reduces neurogenic inflammation in the skin [J]. Pain, 2010, 149(2): 316-324.
- [96] Chen M, Kumar S, Anselmo A C, et al. Topical delivery of Cyclosporine A into the skin using SPACE-peptide [J]. J Control Release, 2015, 199: 190-197.
- [97] Tahara Y, Honda S, Kamiya N, et al. Transdermal delivery of insulin using a solid-in-oil nanodispersion enhanced by arginine-rich peptides [J]. Med Chem Commun, 2012, 3(12): 1496-1499.
- [98] Tian T, Song Y M, Li K, et al. Synthesis, characterization, and evaluation of triptolide cell-penetrating peptide derivative for transdermal delivery of triptolide [J]. Mol Pharm, 2018, 15(2): 560-570.
- [99] Mohammed Y, Teixidó M, Namjoshi S, et al. Cyclic dipeptide shuttles as a novel skin penetration enhancement approach: Preliminary evaluation with diclofenac [J]. PLoS One, 2016, 11(8): e0160973.
- [100]Lim J M, Chang M Y, Park S G, et al. Penetration enhancement in mouse skin and lipolysis in adipocytes by TAT-GKH, a new cosmetic ingredient [J]. J Cosmet Sci, 2003, 54(5): 483-491.
- [101]Cheng Y, Kong F. Low molecular weight protaminecorticosteroid conjugate for topical treatment of psoriasis: A hypothesis [J]. Med Hypotheses, 2022, 160: 110776.
- [102]Guo H F, Hu F R, Li K, et al. Expression, purification and functional identification of the modified hEGF protein [J]. Protein Expr Purif, 2021, 179: 105787.
- [103]Ruan R Q, Wang S S, Wang C L, et al. Transdermal delivery of human epidermal growth factor facilitated by a peptide chaperon [J]. Eur J Med Chem, 2013, 62: 405-409.
- [104]Chen X C, Chen J, Fu R, et al. Can the cellular internalization of cargo proteins be enhanced by fusing a tat peptide in the center of proteins? A fluorescence study [J]. J Pharm Sci, 2018, 107(3): 879-886.

- [105]Manosroi J, Lohcharoenkal W, Götz F, et al. Transdermal absorption enhancement of N-terminal Tat-GFP fusion protein (TG) loaded in novel low-toxic elastic anionic niosomes [J]. J Pharm Sci, 2011, 100(4): 1525-1534.
- [106]Ruan R Q, Chen M, Sun S J, et al. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier [J]. Sci Rep, 2016, 6: 29159.
- [107]Chen X C, Liu S T, Rao P F, et al. Topical application of superoxide dismutase mediated by HIV-TAT peptide attenuates UVB-induced damages in human skin [J]. Eur J Pharm Biopharm, 2016, 107: 286-294.
- [108]Zhu Y Y, Xiao W Q, Zhong W L, et al. Study of the skinpenetration promoting effect and mechanism of combined system of curcumin liposomes prepared by microfluidic chip and skin penetrating peptides TD-1 for topical treatment of primary melanoma [J]. Int J Pharm, 2023, 643: 123256.
- [109]Parka S I, Heob S H, Leec K W, et al. Antimicrobial effects of supercritical *Angelica gigas* Extracts and enhancement of skin permeability using cell penetrating peptide [J]. Turkish J Computer Math Edu, 2021, 12(12): 6063-6071.
- [110]Gao S S, Tian B C, Han J T, et al. Enhanced transdermal delivery of lornoxicam by nanostructured lipid carrier gels modified with polyarginine peptide for treatment of carrageenan-induced rat paw edema [J]. Int J Nanomedicine, 2019, 14: 6135-6150.
- [111]Zou L L, Ding W P, Zhang Y Y, et al. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin [J]. Biomaterials, 2018, 182: 1-12.
- [112]Petrilli R, Eloy J O, Praça F S, et al. Liquid crystalline nanodispersions functionalized with cell-penetrating peptides for topical delivery of short-interfering RNAs: A proposal for silencing a pro-inflammatory cytokine in cutaneous diseases [J]. J Biomed Nanotechnol, 2016, 12 (5): 1063-1075.
- [113]Kwon S S, Kim S Y, Kong B J, et al. Cell penetrating peptide conjugated liposomes as transdermal delivery system of *Polygonum aviculare* L. extract [J]. Int J Pharm, 2015, 483(1/2): 26-37.
- [114]Park D, Lee J Y, Cho H K, et al. Cell-penetrating peptidepatchy deformable polymeric nanovehicles with enhanced cellular uptake and transdermal delivery [J]. Biomacromolecules, 2018, 19(7): 2682-2690.
- [115]Shi J, Guo S Y, Wu Y T, et al. Behaviour of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B on the migration, proliferation, and survival of human skin fibroblasts [J]. J Liposome Res, 2020, 30(1): 93-106.

- [116] Vij M, Natarajan P, Pattnaik B R, et al. Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier [J]. J Control Release, 2016, 222: 159-168.
- [117]Kang M J, Eum J Y, Park S H, et al. Pep-1 peptideconjugated elastic liposomal formulation of taxifolin glycoside for the treatment of atopic dermatitis in NC/ Nga mice [J]. Int J Pharm, 2010, 402(1/2): 198-204.
- [118]Patlolla R R, Desai P R, Belay K, et al. Translocation of cell penetrating peptide engrafted nanoparticles across skin layers [J]. Biomaterials, 2010, 31(21): 5598-5607.
- [119]Li M, Feng S, Xing H X, et al. Dexmedetomidine and levobupivacaine co-loaded, transcriptional transactivator peptide modified nanostructured lipid carriers or lipidpolymer hybrid nanoparticles, which performed better for local anesthetic therapy? [J]. Drug Deliv, 2020, 27(1): 1452-1460.
- [120]Yuan S, Chen J, Feng S, et al. Combination anesthetic therapy: Co-delivery of ropivacaine and meloxicam using transcriptional transactivator peptide modified nanostructured lipid carriers *in vitro* and *in vivo* [J]. Drug Deliv, 2022, 29(1): 263-269.
- [121]Alhakamy N A, Fahmy U A, Ahmed O A A. Vitamin E TPGS based transferosomes augmented TAT as a promising delivery system for improved transdermal delivery of raloxifene [J]. PLoS One, 2019, 14(12): e0226639.
- [122]Chen C Y, You P J. A novel local anesthetic system: Transcriptional transactivator peptide-decorated nanocarriers for skin delivery of ropivacaine [J]. Drug Des Devel Ther, 2017, 11: 1941-1949.
- [123]Jiang T, Ma S S, Shen Y Y, et al. Topical anesthetic and pain relief using penetration enhancer and transcriptional transactivator peptide multi-decorated nanostructured lipid carriers [J]. Drug Deliv, 2021, 28(1): 478-486.
- [124]Wang Y, Wang S H, Shi P C. Transcriptional transactivator peptide modified lidocaine-loaded nanoparticulate drug delivery system for topical anesthetic therapy [J]. Drug Deliv, 2016, 23(9): 3193-3199.
- [125]Wang S, Zeng D, Niu J, et al. Development of an efficient transdermal drug delivery system with TAT-conjugated cationic polymeric lipid vesicles [J]. J Mater Chem B, 2014, 2(7): 877-884.
- [126]Yan L H, Zhang Y J, Hu H J, et al. Enhanced transdermal absorption of hyaluronic acid via fusion with pep-1 and a hyaluronic acid binding peptide [J]. Macromol Biosci, 2023, 23(3): e2200173.
- [127]Chen X Y, Zaro J L, Shen W C. Fusion protein linkers: Property, design and functionality [J]. Adv Drug Deliv Rev, 2013, 65(10): 1357-1369.