托伐普坦纳米结构脂质载体的制备与药动学研究

王 丹,任宁君,史步新^{*} 溧阳市人民医院 药剂科,江苏 溧阳 213300

摘 要:目的 制备托伐普坦纳米结构脂质载体 (ToI-NLCs),以提高托伐普坦 (ToI)的口服生物利用度。方法 根据溶解 度对辅料进行筛选,包括固体脂质 (双硬脂酸甘油酯、山嵛酸甘油酯、聚乙二醇-8 山嵛酸甘油酯、单硬脂酸甘油酯和单亚 油酸甘油酯)、液体脂质 (油酸聚乙二醇甘油酯、单油酸甘油酯、月桂酸聚乙二醇甘油酯和单辛酸丙二醇酯)和表面活性剂 (聚山梨酯 80、聚氧乙烯蓖麻油、聚乙二醇-15羟基硬脂酸酯和泊洛沙姆 188),采用乳化超声-低温固化法制备 ToI-NLCs,并使用 Box-Behankn 效应面法优化处方;分别采用电镜 (TEM)观察、粒径分布及 Zeta 电位测定、差示扫描量热法 (DSC)对制备的 ToI-NLCs进行表征,同时比较 ToI 原料药和 ToI-NLCs 体外药物释放特点、跨膜转运特征;比较 Tol 混 悬液和 ToI-NLCs经大鼠 ig给药后的体内药动学特征。结果 根据溶解度确定以山嵛酸甘油酯作为固体脂质,单油酸甘油酯 作为液体脂质,聚乙二醇-15羟基硬脂酸酯作为表面活性剂,通过优化得到 ToI-NLCs 的最佳处方;总脂质质量浓度为40.0 mgmL⁻¹,表面活性剂质量浓度为 25.0 mg·mL⁻¹,超声时间为6 min。在透射电镜下可观察到制备的 ToI-NLCs 呈类球状,分布均匀;ToI-NLCs的平均粒径为 (106.2±14.7) nm,PDI为 (0.196±0.004),Zeta 电位为 (~26.6±0.6) mV;药物在 ToI-NLCs 中以非结晶形式存在。ToI-NLCs 在 pH 6.8 磷酸盐缓冲液中表现为前期药物释放较快,后期药物释放平缓。Caco-2细胞跨膜转运结果显示,ToI-NLCs 的 P_{app (AP→BL})值为 (11.16±0.58) ×10⁻⁶ cm·s⁻¹, P_{app (BL→AP})值为 (4.51±0.46) ×10⁻⁶ cm·s⁻¹,与 ToI 溶 液相比,P_{app (AP→BL})值为 (11.16±0.58) ×10⁻⁶ cm·s⁻¹, P_{app (BL→AP})值为 (4.51±0.46) ×10⁻⁶ cm·s⁻¹,与 ToI 溶 植比, P_{app (AP→BL})</sub> 值为 (11.16±0.58) ×10⁻⁶ cm·s⁻¹, P_{app (BL→AP})</sub>值为 (4.51±0.46) ×10⁻⁶ cm·s⁻¹,与 ToI 溶 植比, P_{app} (AP→BL</sub>) 值为 (11.16±0.58) ×10⁻⁶ cm·s⁻¹, P_{app} (BL→AP</sub>)值为 (4.51±0.46) ×10⁻⁶ cm·s⁻¹, 与 ToI 溶 和乙烯 液 In Dol和 In Di和 In Di和

关键词: 托伐普坦: 纳米结构脂质载体; 生物利用度; 乳化超声-低温固化法; 药动学; 细胞跨膜转运中图分类号: R969.1
文献标志码: A
文章编号: 1674-6376 (2024) 04-0765-11
DOI: 10.7501/j.issn.1674-6376.2024.04.010

Preparation and pharmacokinetics of tolvaptan loaded nanostructured lipid carriers

WANG Dan, REN Ningjun, SHI Buxin

Department of Pharmacy, Liyang People's Hospital, Liyang 213300, China

Abstract: Objective To prepare tolvaptan loaded nanostructured lipid carriers (ToI-NLCs) for improving the oral bioavailability of tolvaptan. **Methods** Based on solubility, excipients were screened, including solid lipids (precirol ATO 5, campriitol 888 ATO, compritol HD5 ATO, glycerol monostearate, maisine CC), liquid lipids (labrafil M 1944 CS, peceol, gelucire 44/14, capryol 90) and surfactants (tween 80, cremophore EL, solutol HS15, poloxamer 188). Tol-NLCs were prepared using an emulsified ultrasound low-temperature curing method and the formulation was optimized using Box-Behankn effect surface methodology. The prepared Tol-NLCs were characterized by electron microscopy (TEM) observation, particle size distribution and Zeta potential measurement, and differential scanning calorimetry (DSC). At the same time, the *in vitro* drug release characteristics and transmembrane transport characteristics of Tol raw materials and Tol-NLCs were compared. Compare the *in vivo* pharmacokinetic characteristics of Tol suspension and Tol-NLCs after ig administration in rats. **Results** Based on the solubility, the optimal formula for Tol-NLCs was determined using glycerol valerate as a solid lipid, glycerol monooleate as a liquid lipid, and polyethylene glycol 15 hydroxystearate as a surfactant. Through optimization, the total lipid concentration was 40.0 mgmL⁻¹, the surfactant concentration was 25.0 mgmL⁻¹, and the ultrasound time was six minutes. Under transmission electron microscopy, the prepared Tol-NLCs can be observed to be

收稿日期: 2023-11-20

第一作者: 王丹,本科,副主任药师,主要从事药学研究。E-mail: wangdan202311@163.com

^{*}通信作者: 史步新(1984-),男,硕士,副主任药师,主要从事药学研究。E-mail: shibuxin1988@163.com

spherical in shape and evenly distributed. The average particle size of ToI-NLCs is (106.2 ± 14.7) nm, PDI is (0.196 ± 0.004) , and Zeta potential is (-26.6 ± 0.6) mV. The drug exists in an amorphous form in ToI-NLCs. ToI-NLCs exhibit faster drug release in the early stage and slower drug release in the later stage in pH 6.8 phosphate buffer. The results of Caco-2 cell transmembrane transport showed that the $P_{app(AP \rightarrow BL)}$ value of ToI-NLCs was $(11.16 \pm 0.58) \times 10^{-6}$ cm·s⁻¹, and the $P_{app(BL \rightarrow AP)}$ value was $(4.51 \pm 0.46) \times 10^{-6}$ cm·s⁻¹. Compared with ToI solution, $P_{app(AP \rightarrow BL)}$ showed a significant increase trend, while $P_{app(BL \rightarrow AP)}$ showed a significant decrease trend, indicating that ToI encapsulation in NLCs promoted drug absorption and inhibited the efflux of P-glycoprotein (P-gp). Compared with ToI suspension, the bioavailability of ToI increased by 2.5 times after ig of ToI-NLCs in rats. **Conclusion** ToI-NLCs prepared according to optimized prescription can significantly improve the bioavailability of drugs and have important value for the development of ToI dosage forms.

Key words: tovaptan; nanostructured lipid carriers; bioavailability; emulsification ultrasound low-temperature curing method; pharmacokinetics; cell transmembrane transport

托伐普坦(tolvaptan, Tol)是一种选择性抗利尿 素V2受体拮抗剂,通过阻断V2受体来抑制抗利尿激 素的作用,从而降低水通道蛋白表达^[1],临床上用于 治疗心力衰竭、肝硬化以及抗利尿激素分泌失调综 合征(SIADH)患者的高容量性和正常容量性低钠 血症^[2]。Tol属于生物药剂学分类系统(BCS)IV类 药物,其在水中的溶解度低(50 ng·mL⁻¹,25 ℃,pH 2~12)、渗透性差,在大鼠和犬体内的生物利用度 仅为0.63%和2%^[3]。为了提高Tol的口服生物利用 度,研究人员已将其开发成纳米晶体[4]、固体分散 体[5]、自乳化释药系统[3]和前药[6]等。纳米结构脂质 载体(NLCs)是采用可生物降解的固体和液体二元 混合脂质作为载体,将脂溶性药物以分子形式溶解 在混合脂质中,以提高难溶性药物的溶解度及口服 生物利用度^[7-8]。因此,本研究将Tol制备成纳米结 构脂质载体(Tol-NLCs),并通过大鼠体内药动学研 究评价其口服生物利用度,为其进一步的开发应用 提供理论依据。

1 材料

1.1 仪器

SM-650C 超声波纳米材料分散器(南京舜玛仪器设备有限公司);HWCL-3型集热式恒温磁力搅拌浴(郑州长城科工贸有限公司);TG16-WS台式高速离心机(湖南湘鑫仪器仪表有限公司);VORTEX21K高速冷冻离心机(上海麦尚科学仪器有限公司);NS-90Z Plus纳米粒度分析仪(英国 Malvern 公司);HT780型透射电子显微镜(日本日立公司);DSC-600型差示扫描量热仪(南京汇诚仪器仪表有限公司);透析袋(截留相对分子质量为12000,上海源叶生物科技有限公司)。

1.2 药品与试剂

Tol原料药(合肥信风科技开发有限公司,批号: 20210917,质量分数:99.9%);双硬脂酸甘油酯、山

嵛酸甘油酯、聚乙二醇-8山嵛酸甘油酯、单硬脂酸 甘油酯、油酸聚乙二醇甘油酯、单亚油酸甘油酯、月 桂酸聚乙二醇甘油酯、单油酸甘油酯、单辛酸丙二 醇酯均由法国嘉法狮公司惠赠;聚山梨酯80、聚氧 乙烯蓖麻油、聚乙二醇-15羟基硬脂酸酯、泊洛沙姆 188均由德国巴斯夫有限公司惠赠;磷钨酸(上海麦 克林生化科技股份有限公司);pH 6.8磷酸盐缓冲溶 液为实验室自制;其他试剂均为分析级。

1.3 实验动物

SD 大鼠(SPF 级),体质量 200~250 g,雌雄各半,由苏州大学实验动物中心提供,实验动物生产许可证号:SYXK(苏)2021-0065。实验设计通过苏州大学实验动物伦理委员会批准,批准号: 02308116。

1.4 细胞来源

Caco-2细胞购自通派(上海)生物科技有限 公司。

2 方法与结果

2.1 处方筛选

2.1.1 固体脂质种类筛选 NLCs中的固体脂质种 类会影响到药物包载率、释药速率以及制剂的物理 稳定性,因此需要对固体脂质种类进行筛选^[9]。精 密称取所筛选的固体脂质(双硬脂酸甘油酯、山嵛 酸甘油酯、聚乙二醇-8山嵛酸甘油酯、单硬脂酸甘 油酯和单亚油酸甘油酯)各1.0g,分别加入到玻璃 瓶中,再向每个玻璃瓶中加入Tol原料药50mg,在 所选脂质熔点以上5~10℃的水浴中加热玻璃瓶, 持续搅拌,观察药物溶解情况,若药物未完全溶解, 再向玻璃瓶中加入对应的固体脂质,直至药物完全 溶解,记录各固体脂质加入总量,粗略计算药物在 各固体脂质中的溶解度^[10],结果见表1。

选择对 Tol 溶解度较高的固体脂质制备纳米结构脂质载体,以提高载体的载药能力。所筛选的固

表1	Tol在不同固体脂质中的溶解度 $(x \pm s, n = 3)$)

Table 1 Solubility of Tol in different solid lipids $(x \pm s, n=3)$

固体脂质	溶解度/(mg·g ⁻¹)
双硬脂酸甘油酯	8.5±0.3
山嵛酸甘油酯	25.6±0.5
聚乙二醇-8山嵛酸甘油酯	19.4±0.4
单硬脂酸甘油酯	13.5±0.3
单亚油酸甘油酯	$10.4{\pm}0.4$

体脂质对 Tol 溶解度从大到小依次为山嵛酸甘 油酯>聚乙二醇-8山嵛酸甘油酯>单硬脂酸甘油酯> 单亚油酸甘油酯>双硬脂酸甘油酯。根据溶解度 测定结果,本研究选择对 Tol 原料药溶解能力最大 的山嵛酸甘油酯作为纳米结构脂质载体的固体脂 质进行处方考察。

2.1.2 液体脂质种类筛选 液体脂质可使 NLCs 中的固体脂质原有的有序晶体结构遭到破坏,更多的药物被 NLCs包载,且可以避免 NLCs在存放期间的药物泄露^[11],因此需要对液体脂质种类进行筛选。精密称取所筛选的液体脂质(油酸聚乙二醇甘油酯、单油酸甘油酯、月桂酸聚乙二醇甘油酯和单辛酸丙二醇酯)各1.0g,分别加入到玻璃瓶中,再向每个玻璃瓶中加入过量的 Tol 原料药,密闭后在 37 ℃下以 150 r·min⁻¹连续搅拌 48 h,将药物脂质混合物经5000 r·min⁻¹离心 30 min,分离上清液,适当稀释,经 HPLC 测定药物含量^[12],计算其在各液体脂质中的溶解度,结果见表2。

表2 Tol在不同液体脂质中的表观溶解度 $(x\pm s, n=3)$

Table 2 Solubility of Tol in various lipids $(x\pm s, n=3)$

液体脂质	溶解度/(mg·g ⁻¹)
油酸聚乙二醇甘油酯	8.8±0.3
单油酸甘油酯	26.4 ± 0.4
月桂酸聚乙二醇甘油酯	$20.7{\pm}0.6$
单辛酸丙二醇酯	11.3 ± 0.2

所筛选的液体脂质对 Tol 溶解度从大到小依次 为单油酸甘油酯>月桂酸聚乙二醇甘油酯>单辛 酸丙二醇酯>油酸聚乙二醇甘油酯。根据溶解度 测定结果,本研究选择对 Tol 原料药溶解能力最大 的单油酸甘油酯作为纳米结构脂质载体的液体脂 质进行处方考察。

2.1.3 表面活性剂种类筛选 表面活性剂可降低 NLCs 中脂质与水介质间的界面张力,形成粒径较

小的NLCs,并提高NLCs的物理稳定性,但是表面 活性剂在达到临界胶束浓度后会形成胶束,更多的 药物增溶在胶束中,会竞争性地降低药物在NLCs 中的包载量,且长时间放置药物会发生泄露^[13],因 此需要选择对药物溶解度较小的表面活性剂制备 NLCs。精密称取所筛选的表面活性剂(聚山梨酯80、聚 氧乙烯蓖麻油、聚乙二醇-15羟基硬脂酸酯和泊洛 沙姆188)10 mg,分别加入到玻璃瓶中,再分别加纯 化水至1.0 g,溶解后配制成10 mg·g⁻¹的表面活性剂 溶液;再向每个玻璃瓶中加入过量的Tol原料药,密 闭后在37 ℃下以150 r·min⁻¹连续搅拌48 h, 经5000 r·min⁻¹离心30 min,分离上清液,适当稀释, 经HPLC测定药物含量,计算其在各表面活性剂中 的溶解度,结果见表3。

表3 Tol在不同表面活性剂中的溶解度 $(x\pm s, n=3)$

Table 3	Solubility of Tol in different surfactants	(x±s,n=3))
---------	--	-----------	---

表面活性剂	溶解度/(mg·g ⁻¹)
聚山梨酯80	10.3±0.4
聚氧乙烯蓖麻油	14.6±0.5
聚乙二醇-15羟基硬脂酸酯	2.1 ± 0.2
泊洛沙姆188	9.8±0.3

所筛选的表面活性剂对Tol溶解度从大到小依 次为:聚氧乙烯蓖麻油>聚山梨酯80>泊洛沙姆 188>聚乙二醇-15羟基硬脂酸酯。根据溶解度测 定结果,本研究选择对Tol原料药溶解能力最小的 聚乙二醇-15羟基硬脂酸酯作为纳米结构脂质载体 的表面活性剂进行处方考察。

2.1.4 混合脂质比例筛选 选择 Tol溶解度最高的 固体脂质(山嵛酸甘油酯)和液体脂质(单油酸甘油 酯)按不同比例(100:0、90:10、80:20、70:30、60: 40)混合,脂质混合物在 80 ℃水浴中保温 30 min,使 脂质混合物充分融化,静置 30 min观察是否存在相 分层;取出未分层的样品在室温下保存 24 h,采用差 示扫描量热仪测定各组脂质的熔程^[14],测定方法 为:取各组样品 3~5 mg放置在铝锅中,加热温度为 25~85 ℃,升温速度为5 ℃·min⁻¹,氮气体积流量为 50 mL·min⁻¹,同时用空铝锅作为对照;并按 照"2.1.1"项下方法粗略测定药物在各比例混合脂 质中的溶解度;同时以不同比例固体脂质与液体脂 质配比制备 NLCs,按"2.3"项方法测定粒径分布,结 果见表4。

实验结果显示,不同比例的固体脂质和液体脂

	Table 4	Property evaluation of mix	ted lipids $(x \pm s, n=3)$	
固体脂质-液体脂质	相分层	熔程/℃	溶解度/(mg·g ⁻¹)	粒径分布/nm
100:0		65~77	25.6±0.5	342.5±26.5
90:10	无分层	58~67	42.3±0.3	241.9±21.7
80:20	无分层	48~56	45.6±0.7	166.8±12.9
70:30	无分层	45~52	46.8±0.4	211.4±22.3
60:40	无分层	44~52	48.4±0.6	256.4±18.7

表4 混合脂质性质评价 $(x \pm s, n=3)$

质在熔融状态互溶性良好,未出现相分离现象;随着液体脂质比例的增加(由100:0升至80:20),混合脂质的熔点呈降低趋势,再继续升高液体脂质比例(由80:20升至60:40),熔点降低趋势减缓;溶解度测定结果显示,随着液体脂质比例的增加,药物溶解度升高,这是由于液体脂质的加入破坏了固体脂质原有的有序晶体结构,提供了更多包的载药物的空间;而随着液体脂质占比增大,制备的NLCs的粒径先减小后增大。根据综合评估结果,本研究确定选择固体脂质与液体脂质比例为80:20制备纳米结构脂质载体。

2.2 Tol-NLCs的制备

采用乳化超声-低温固化法^[15]制备 ToI-NLCs。 按照质量比为80:20称取固体脂质(山嵛酸甘油酯) 和液体脂质(单油酸甘油酯)于同一个玻璃试管中, 在65℃水浴中加热至脂质完全熔融,称取处方量 Tol原料药加入到混合脂质中,搅拌至药物完全溶 解,作为油相,备用;另配制表面活性剂(聚乙二醇-15羟 基硬脂酸酯)水溶液,水浴加热至65℃,作为水相, 备用。将水相通过注射器缓慢滴加到油相中,并以 3 000 r·min⁻¹连续搅拌 30 min,形成初级乳液;通过 超声波纳米材料分散器以200 W恒定功率超声一段 时间,得到的胶体溶液在室温下缓慢冷却,即得到 ToI-NLCs。

2.3 粒径分布测定

使用 NS-90Z Plus 纳米粒度分析 仪测定 Tol-NLCs 的粒径分布。用移液枪移取 Tol-NLCs 200 µL 加入到厚度为 10 mm 的聚苯乙烯比色皿中,再加入 蒸馏水 800 µL 进行稀释,轻轻振摇,采用动态光散 射法测定粒径分布。测定参数设置如下:氦氖激光 器,功率为4 mW,波长为 633 nm,室温为 25°C,角 度固定为 90°。每份样品均测定 3 次,并取平均值。

2.4 包封率测定

使用低温超速离心法测定 Tol-NLCs 的包封率^[16]。移取 Tol-NLCs 溶液 4.0 mL 加入到超速离心

管中,固定到离心机中,设置离心温度为5°C, 10000 r·min⁻¹离心30 min,收集上层澄清液体,移取 1.0 mL 加甲醇稀释至10 mL,作为游离药物待测 液($C_{\#\pi}$);另取 Tol-NLCs 溶液1.0 mL 加甲醇稀释至 100 mL,振摇溶解,作为总药物待测液(C_{\pm});取上 述2种待测液,分别测定药物浓度,计算药物包封 率。每份样品均测定3次,并取平均值。

包封率= $(C_{a} \times 100 - C_{a} \times 10)/(C_{a} \times 100)$

2.5 处方优化

根据前期探索性实验研究结果,本研究以总脂 质浓度(X_1)、表面活性剂浓度(X_2)和超声时间(X_3) 作为自变量,以Tol-NLCs的粒径分布(Y_1)和包封 率(Y_2)作为因变量,通过Box-Behnken实验设计优 化Tol-NLCs处方。自变量水平值见表5,因变量 Y_1 目标为最小值,因变量 Y_2 目标为最大值。处方优化 共需制备15个处方,每个处方的制备量为50 mL, 并测定其粒径分布和包封率,结果见表6。

表 5 Box-Behnken 实验设计中自变量水平 Table 5 Level of independent variables in Box-Behnken

experimental design

白亦具	水平			
日文里	低(-1)	中(0)	高(+1)	
$X_{\rm l}/({\rm mg}{\cdot}{\rm mL}^{-1})$	20.0	40.0	60.0	
$X_2/(\mathrm{mg}\cdot\mathrm{mL}^{-1})$	10.0	20.0	30.0	
X ₃ /min	3	6	9	

 Y_1 采用多元二次(Quadratic)模型拟合较为合适(P < 0.05, F值为14.25), 失拟项不显著(P > 0.05, F值为0.022), 预测 R^2 为0.9643, 调整 R^2 为0.9667, 二者基本一致, 表明模型预测可信度较高。由方差分析可知(表7), X_1 、 X_2 为显著模型项(P < 0.05), 即对 Y_1 有显著影响, 其余模型项对 Y_1 无显著影响(P > 0.05), 3D效应面图见图1。

同样, Y_2 采用多元二次(Quadratic)模型拟合较 为合适(P < 0.05,F值为84.35),失拟项不显著(P >

	表6 Box	-Behnken 实验词	设计及结	果	
	Table 6 R	esults of experin	nental de	esign	
紽旦		自变量		因变	量
狮勺	$X_1/(\mathrm{mg}\cdot\mathrm{mL}^{-1})$	$X_2/(\mathrm{mg}\cdot\mathrm{mL}^{-1})$	X_3 /min	Y_1/nm	$Y_2/\%$
1	60.0	20.0	9	186.4	75.8
2	20.0	30.0	6	64.8	65.9
3	40.0	10.0	3	242.7	81.3
4	60.0	20.0	3	202.9	89.4
5	40.0	30.0	9	79.8	71.0
6	20.0	20.0	3	151.6	67.4
7	20.0	10.0	6	192.7	59.6
8	40.0	10.0	9	202.8	68.8
9	60.0	30.0	6	129.5	89.6
10	60.0	10.0	6	279.2	87.5
11	40.0	20.0	6	164.7	81.8
12	20.0	20.0	9	89.6	51.8
13	40.0	20.0	6	107.1	83.9
14	40.0	20.0	6	113.2	84.6
15	40.0	20.0	6	108.6	83.6

0.05, F 值为 1.24), 预测 R²为 0.981 7, 调整 R²为 0.9627,二者基本一致,表明模型预测可信度较高。 由方差分析可知(表8),X₁、X₂、X₃、X₁²为显著模型 项(P < 0.05),即对 Y_2 有显著影响,其余模型项对 Y_2 无显著影响(P>0.05),3D效应面图见图2。

以制备的Tol-NLCs的粒径最小化,包封率最大 化为目标,经Box-Behnken实验软件优化获得的最 优处方为:总脂质质量浓度为40.0 mg·mL⁻¹、表面活 性剂质量浓度为25.0 mg·mL⁻¹,超声时间为6 min, 其预测 Tol-NLCs 的粒径为 104.6 nm, 包封率为 85.6%。按照最优处方连续制备3批Tol-NLCs,其 粒径分布为(106.2±14.7) nm,包封率为(86.3± 1.6)%,实验值与预测值基本一致,模型预测准确性 良好。

2.6 Tol-NLCs 质量评价

2.6.1 微观形态电镜(TEM)观察 取适量 Tol-NLCs用去离子稀释,取少量稀释液铺展到300目涂

表7 X1、X2和X3对Y1影响的方差分析 Table 7 ANOVA results for effect of X_1 , X_2 and X_3 on Y_1

				17 2	1	
来源	平方和	自由度	平均值	<i>F</i> 值	<i>P</i> 值	显著性
模型	53 048.15	9	5 894.24	14.250	0.004 6	显著
X_1	11 197.56	1	11 197.56	27.070	0.003 5	显著
X_2	35 738.01	1	35 738.01	86.400	0.000 2	显著
X_3	2 708.48	1	2 708.48	6.550	0.050 7	不显著
X_1X_2	118.81	1	118.81	0.290	0.615 0	不显著
X_1X_3	517.56	1	517.56	1.250	0.314 2	不显著
$X_{2}X_{3}$	30.80	1	30.80	0.074	0.795 8	不显著
X_{1}^{2}	128.86	1	128.86	3.120	0.137 8	不显著
X_{2}^{2}	1 408.80	1	1 408.80	3.410	0.124 3	不显著
X_{3}^{2}	415.52	1	415.52	1.000	0.363 3	不显著
残差	2 068.14	5	413.63			
失拟项	65.74	3	21.91	0.022		不显著
纯误差	2 002.41	2	1 001.20			
总和	55 116.29	14				

有碳膜铜网格上,接着在铜网格上加入10 mg·mL⁻¹ 磷钨酸溶液染色,放置到阴凉处风干,样品在透射 电镜下观察并拍摄照片(图3)。电镜观察结果显 示,Tol-NLCs呈类球状,均匀分散,无聚集,粒径大 多数在100 nm 左右。

2.6.2 粒径分布及 Zeta 电位测定 采用 NS-90Z Plus 纳米粒度分析仪测定 Tol-NLCs 的粒径分布、多 聚分散系数(PDI)与Zeta电位。取新制备的Tol-NLCs,按照"2.3"项下方法测定粒径分布,每份样品 均测定3次,并取平均值。Zeta电位通过电泳光散

射原理测定,用移液枪移取Tol-NLCs 500 µL加入到 Zeta 电位样品池中,设定折射率为1.330,介电常数 为79,电流为5mA。每份样品均测定3次,并取平 均值。

图 4 结 果 显 示, Tol-NLCs 的 平 均 粒 径 为(106.2±14.7)nm, PDI为(0.196±0.004), Zeta电 位为(-26.6±0.6)mV。

2.6.3 差示扫描量热法(DSC) 采用 DSC 对优化 后的 Tol-NLCs 进行热分析。分别称取 Tol 原料药、 Tol与空白NLCs冻干粉物理混合物以及Tol-NLCs

· 769 ·

图 1 X_1, X_2 和 X_3 对 Y_1 影响的 3D 效应面图 Fig. 1 3D effect surface diagram of influence of X_1 , X_2 and X_3 on Y_1

Table 8ANOVA results for effect of X_1 , X_2 and X_3 on Y_2						
来源	平方和	自由度	平均值	F值	P值	显著性
模型	1 847.64	9	205.29	84.35	< 0.000 1	显著
X_1	1 190.72	1	1 190.72	489.24	< 0.000 1	显著
X_2	20.80	1	20.80	8.55	0.032 9	不显著
X_3	368.56	1	368.56	151.43	< 0.000 1	显著
X_1X_2	4.41	1	4.41	1.81	0.236 1	不显著
X_1X_3	1.00	1	1.00	0.41	0.549 7	不显著
X_2X_3	0.002 5	1	0.002 5	0.001 0	0.975 7	不显著
X_{1}^{2}	152.62	1	152.62	62.71	0.000 5	不显著
X_{2}^{2}	6.77	1	6.77	2.78	0.156 2	不显著
X_{3}^{2}	128.71	1	128.71	52.88	0.000 8	不显著
残差	12.17	5	2.43			
失拟项	7.92	3	2.64	1.24	0.474 7	不显著
纯误差	4.25	2	2.12			
总和	1 859.81	14				

	表8	X_1 、 X_2 和 X_3 对 Y_2 影响的方差分析	
able 8	ANC	OVA results for effect of X_1 , X_2 and X_3 on Y	7

图 2 X_1 、 X_2 和 X_3 对 Y_2 影响的 3D 效应面图 Fig. 2 3D effect surface diagram of influence of X_1 , X_2 and X_3 on Y_2

冻干粉各约5~7 mg,加入到铝质坩埚中,密封,并 以另一个密封空铝质坩埚作为对照,使用差示扫描 量热仪在30~300 ℃内进行热分析,氮气体积流量 为 50 mL·min⁻¹,升温速度为5 ℃·min⁻¹,结果 见图5。

测定结果显示, Tol 原料药与物理混合物均在

221 ℃出现一个明显的吸热熔融峰,该特征峰为药 物熔点,说明原料药均为结晶态;而 Tol-NLCs 在 221 ℃附近的药物吸热熔融峰消失,可推测 Tol 是以 无定型态存在于 NLCs之中。

2.6.4 体外药物释放 采用透析袋法(截留相对分子质量为12000)比较 Tol-NLCs 和 Tol 原料药的体

图 3 Tol-NLCs 透射电镜观察结果 Fig. 3 Observation results of Tol-NLCs by transmission electron microscopy

外释放速率。将透析袋在蒸馏水中浸泡24h使其充分活化。分别将Tol-NLCs(含Tol10mg)和Tol 原料药(10mg)加入到上述透析袋中,系紧两端,在 37℃下加入到pH6.8介质溶液中(体积为250mL),磁 力搅拌速度为75r·min⁻¹,每间隔一定时间(0.5、1、2、 4、6、8、12、24h)从烧杯中取出5mL释放介质,0.45μm滤 膜滤过,经适当稀释后检测药物含量,计算在各时 间点的累积释放率。

体外释放曲线如图6所示,可以观察到Tol-NLCs中药物呈双相释放模式,即最初的药物呈爆 发式释放,大约55%的药物在前4h内从制剂中释 放出来,随后相对较慢的释放持续到24h。爆发式 释放的药物主要是来自于富集在纳米粒子的外表 面或浅表面,这部分药物向释放介质的扩散路径较

Fig. 5 Differential scanning calorimetry

短,因此表现为释药速度较快:此外,处方中加入的 表面活性剂也会加速药物向介质中释放。而后期 药物以恒定速率持续缓慢释放,这部分药物主要来 源于纳米粒子的深层,通过扩散和脂质溶蚀使药物 释放达到平台。

2.7 Tol-NLCs细胞跨膜转运研究

取出Caco-2细胞株的冻存管在37℃水浴中迅速摇晃解冻,吸出细胞悬液转移至含有4mL

图 6 Tol-NLCs和 Tol 原料药在 pH 6.8 介质溶液中的体外 药物释放曲线(x±s, n=3)

DMEM细胞培养基的离心管中,用移液枪轻轻吹打 10~20次,混合均匀,2000 r·min⁻¹下离心3 min,弃 上清,加适量 DMEM细胞培养基轻轻吹打,使细胞 重新分散后转移至细胞培养瓶中,将培养瓶放置在 培养箱(37 ℃、5%CO₂)中培养3周,加入HBSS(pH 7.4)轻轻吹下细胞,并于2000 r·min⁻¹下离心3 min, 弃掉上清液,再向Caco-2细胞中加HBSS(pH 7.4) 新鲜培养基,轻轻摇晃,混匀。取Caco-2细胞以每 孔 5.0×10⁵个细胞的密度接种到 0.4 mm 孔的 12 mm Transwell 聚碳酸酯膜表面,在接种后第5天后更换 培养基(供给池1mL,接收池2mL),每2天更换1 次,直至21 d,得到Caco-2细胞单层,测量上皮电 阻(TEER)值,选择TEER值大于400 Ω ·cm²的单层 膜用于细胞跨膜转运研究^[17]。用含有5mg·mL⁻¹二 甲基亚砜的 HBSS (pH 7.4) 配制 Tol 溶液,使用 HBSS(pH 7.4)稀释 Tol-NLCs,2 份药液的最终药物 质量浓度均为1.0 mg·mL⁻¹;分别取上述2种药液各 1.0 mL加入到细胞膜的顶端(AP),作为供给池,再 取HBSS(pH 7.4)溶液各2.0 mL加入到细胞膜基底 外侧(BL),作为接收池,考察从AP至BL的跨膜转 运能力;同样方式,分别取上述2种药液各1.0mL加 入到细胞膜BL侧,作为供给池,再取HBSS(pH 7.4) 溶液各2.0 mL加入到AP侧,作为接收池,考察从 BL至AP的跨膜转运能力;在预设时间点从接收池 中取出接收液,适当稀释后检测药物含量,计算表 观渗透率 (P_{app}) ,结果见表9。

 $P_{anp} = dQ/dt \times 1/A \times 1/C_0$

dQ/dt为单位时间药物转运量($\mu g \cdot s^{-1}$),A为 Transwell 聚碳酸 酯 膜 面 积 (4.67 cm²), C_0 为 供 给 液 中 药 物 初 始 质 量 浓 度 ($\mu g \cdot mL^{-1}$)

表9 Tol和Tol-NLCs在Caco-2细胞中的 P_{app} 值($\overline{x}\pm s, n=3$) Table 9 Apparent permeability coefficients of Tol and Tol-

NLCs in Caco-2 cell $(x \pm s, n=3)$

9日 星山	$P_{\rm app}/(imes 10^-$	⁶ cm·s ⁻¹)	
===	$P_{app(AP \rightarrow BL)}$	$P_{\rm app(BL \rightarrow AP)}$	
Tol溶液	3.26±0.16	5.47±0.37	
Tol-NLCs	11.16±0.58	4.51±0.46	

Caco-2 细胞跨膜转运结果显示, Tol 溶液的 $P_{app(AP \to BL)}$ 值为(3.26±0.16)×10⁻⁶ cm·s⁻¹,而 $P_{app(BL \to AP)}$ 值为(5.47±0.37)×10⁻⁶ cm·s⁻¹,表明 Tol为 P-糖蛋白(P-gp)的底物, Tol 被肠细胞吸收后又会外 排至肠道内;而 Tol-NLCs 的 $P_{app(AP \to BL)}$ 值为(11.16± 0.58)×10⁻⁶ cm·s⁻¹, $P_{app(BL \to AP)}$ 值为(4.51±0.46)× 10⁻⁶ cm·s⁻¹,与 Tol 溶液相比, $P_{app(AP \to BL)}$ 表现出明显增 加趋势, $P_{app(BL \to AP)}$ 表现出明显降低趋势,说明 Tol包 裹在 NLCs 中促进了药物吸收,抑制了 P-gp 的外排 作用,这主要归因于2个方面^[18]:① Tol-NLCs 的粒 径较小,可直接经细胞旁转运进入体循环;②包裹 在NLCs内部的药物在进入细胞内后不会被 P-gp 识别,降低了 P-gp 对药物的外排作用。

2.8 Tol-NLCs 药动学研究

取12只SD大鼠,雌雄各半,7周龄,体质量 190~220g,实验前12h禁食不禁水,实验期间禁食 禁水。将大鼠随机分为A、B组,用数字编号。A组ig给 予Tol混悬液(用0.5% 羧甲基纤维素钠作为分散介质),B 组ig给予Tol-NLCs,Tol剂量均为30mgkg⁻¹,分别在给 药后0.5、1、2、4、6、8、12h从大鼠眼眶后静脉丛取血 约0.5 mL至肝素钠涂层的离心管中,血样在5000 rmin⁻¹ 下离心5min,分离上层血浆样品至-20℃保存。将 血浆放置在室温中解冻,用移液枪精密移取血浆 200 μL 至离心管中,加入水杨酸苄酯 10 μL(质量浓 度为100 μg·mL⁻¹)作为内标,涡旋混合5 min,再加 入醋酸乙酯2mL和氢氧化钠溶液40μL(浓度 为1 mol·L⁻¹),涡旋混合5 min,以5 000 r·min⁻¹离心 10 min,分离有机层至尖底离心管中,在40 ℃氮气 流下干燥,残留物用100 µL流动相溶解,取上清液 30 µL进样高效液相色谱系统检测药物含量[12],色 谱条件:选择安捷伦 Eclipse XDB-C₁₈柱(150 mm× 4.6 mm, 5 μm)色谱柱,流动相为乙腈-水-乙酸(55: 45:1),体积流量为1.0 mL·min⁻¹,检测波长为265 nm,柱 温为40℃。药动学参数使用 WinNonlin 药动学软 件进行计算,结果见表10。

表 10 Tol和 Tol-NLCs 大鼠体内药动学参数(x±s, n=6) Table 10 Pharmacokinetic parameters of Tol and Tol-

NLCs in rats $(\bar{x}\pm s, n=6)$		
参数	Tol混悬液	Tol-NLCs
$C_{\max}/(\mathrm{ng}\cdot\mathrm{mL}^{-1})$	176.2±45.6	$436.7 {\pm} 57.9^{*}$
$t_{\rm max}/{ m h}$	4.6±0.6	$2.3{\pm}0.3^{*}$
$t_{1/2}/{ m h}$	6.3±0.9	7.3±1.2
$AUC_{0\sim\infty}/(h\cdot ng\cdot mL^{-1})$	986.5±124.6	2 452.9±498.7*

与Tol混悬液比较:*P<0.05。

 $^*P < 0.05$ vs Tol suspension.

大鼠 ig Tol 混悬液和 Tol-NLCs 后的血浆浓度-时间曲线如图7所示,在各时间点,Tol-NLCs 组大鼠血浆中 Tol浓度均显著高于 Tol 混悬液组;表10给出了各自的药动学参数,由结果可知,Tol-NLCs 组的药时曲线下面积(AUC_{0~∞})是 Tol 混悬液组的2.5倍,表明 Tol-NLCs 可提高 Tol 的口服生物利用度。

3 讨论

目前,Tol已被开发成新型给药系统,如杨晨^[4] 将Tol制备成纳米晶口崩片,其药物溶出速度与市

图 7 Tol和Tol-NLCs平均血药浓度-时间曲线(x±s, n=6) Fig. 7 Mean plasma concentration-time profiles of Tol suspensions and Tol-NLCs (x±s, n=6)

售制剂相比得到了明显提高,但纳米晶的物理稳定 性较差,且制备工艺复杂,需要特殊设备,不利于放 大生产;黄健^[5]通过喷雾干燥工艺将Tol制备成固体 分散体,其药物溶出速度也同样得到明显改善,但 是固体分散体存在老化现象,长期存放药物会由无 定型转化为晶体,药物溶出速率会降低;Lee等^[3]将 Tol制备成自乳化释药系统后,改善了药物的溶出速 率,同时其口服生物利用度相对于原料药提高了23 倍,极大地提高了药物吸收速度与程度,然而药物 吸收快速达峰以及达峰浓度过高也促进了药物的 副作用产生。Fujiki等^[6]将Tol开发成前药后显著提 高了药物的溶解度,然而,Tol制备成前药,其药理作 用是否会发生改变,还有待深入研究。基于目前现 有研究结果,本研究将Tol制备成纳米结构脂质载 体,以提高Tol的口服生物利用度。

固体脂质、液体脂质和表面活性剂的种类、用 量以及制备工艺是影响纳米结构脂质载体质量的 关键因素,因此本研究首先筛选了Tol在不同固体 脂质、液体脂质和表面活性剂的溶解度,并根据相 容性结果确定了固体脂质与液体脂质的比例,并通 过Box-Behnken 实验设计优化 Tol-NLCs 处方。由 3D效应面可知,粒径分布与总脂质浓度呈正相关, 即粒径随着总脂质浓度的增加而增大,这可能是由 于随着总脂质浓度增加,体系黏度增加、界面张力 增大所致[19];粒径分布与表面活性剂浓度和超声时 间呈负相关,即粒径随着表面活性剂浓度增加或超 声时间的延长而减小,这可能是由于表面活性剂浓 度增加时,界面张力降低,更容易降低粒子粒径,同 时抑制粒子间融合[20];延长超声时间可提供更多的 能量减小粒子的粒径。包封率与总脂质浓度和表 面活性剂浓度呈正相关,这可能是由于药物在脂质 基质中的溶解能力增强,包封率随着总脂质浓度的 增加而增加;而随着表面活性剂浓度的增加,降低 了整个体系的界面张力,药物更易进入脂质内 核^[21]。包封率与超声时间呈负相关,这可能是由于 延长超声时间促使药物析出。最终优化得到Tol-NLCs的处方为:总脂质质量浓度为40.0 mg·mL⁻¹、 表面活性剂质量浓度为25.0 mg·mL⁻¹,超声时间为 6 min。通过微观形态、DSC分析、体外药物释放等 方法初步评价了Tol-NLCs的制剂性质,结果显示, Tol-NLCs呈类球状,均匀分散,粒径大多数在100 nm左 右;Tol是以无定型态存在于NLCs之中,可增加药 物的溶解性;在pH 6.8 介质溶液中呈双相释放模 式,这有利于药物进入体内后快速提高血药浓度, 后期维持稳定的血药浓度,起到缓释效果,提高药 物生物利用度。

药动学结果显示,大鼠 ig Tol-NLCs 后,其 AUC_{0~∞}明显提高,是 Tol 混悬液的 2.5 倍(*P*< 0.05),推测这可能归因于以下几方面:①Tol-NLCs 中的表面活性剂可使细胞膜变形,并打开 肠上皮细胞的紧密连接,增加了肠膜渗透 性^[22];②Tol-NLCs 的粒径较小,增强与胃肠道 壁的黏附性或进入肠绒毛间隙,延长与胃肠道 的作用时间,有利于药物吸收^[23];③药物包裹 在 NLCs 中,进入胃肠道后可以避免被酶水解代 谢,提高了药物利用率^[24]。

纳米结构脂质载体通过将脂溶性药物以分子 形式溶解在脂质中,已成为提高难溶性药物的溶解 度及口服生物利用度的一种有效手段^[25-26]。但是该 给药系统也面临着一些挑战,如无法提高亲水性药 物的包封率和载药量;在储存过程中药物容易渗 漏,析出沉淀;药物释放存在突释现象等。相信随 着研究的深入以及技术的进一步发展,上述问题将 会迎刃而解,在不久的将来,纳米结构脂质载体将 会得到更加广泛的应用。

利益冲突 所有作者均声明不存在利益冲突 参考文献

- [1] 胡洋洋,张兴,王亚东,等.精氨酸加压素 V2 受体拮抗 剂托伐普坦治疗肝硬化腹水的研究进展 [J]. 中华内科 杂志, 2023, 62(7): 881-884.
 Hu Y Y, Zhang X, Wang Y D, et al. Research progress of arginine vasopressin V2 receptor antagonist tolvaptan in
- the treatment of cirrhotic ascites [J]. Chin J Intern Med, 2023, 62(7): 881-884.
 [2] Miyazaki T, Fujiki H, Yamamura Y, et al. Tolvaptan, an
- [2] Miyazaki I, Fujiki H, Yamamura Y, et al. Iolvaptan, an orally active vasopressin V(2) -receptor antagonist -

pharmacology and clinical trials [J]. Cardiovasc Drug Rev, 2007, 25(1): 1-13.

- [3] Lee J H, Lee G W. Formulation approaches for improving the dissolution behavior and bioavailability of tolvaptan using SMEDDS [J]. Pharmaceutics, 2022, 14(2): 415.
- [4] 杨晨.托伐普坦纳米晶口崩片的制备与质量评价 [J]. 西北药学杂志, 2023, 38(3): 116-120.
 Yang C. Preparation and quality evaluation of Tolvaptan Nanocrystalline Orally Disintegrating Tablets [J]. Northwest Pharm J, 2023, 38(3): 116-120.
- [5] 黄健.喷雾干燥制备托伐普坦固体分散体及其评价 [J]. 广东化工, 2019, 46(15): 75-76.
 Huang J. Preparation and evaluation of tolvaptan solid dispersions by spray drying process [J]. Guangdong Chem Ind, 2019, 46(15): 75-76.
- [6] Fujiki H, Matsunaga M, Furukawa M, et al. *In vitro* and *in vivo* pharmacological profile of OPC-61815, a watersoluble phosphate ester pro-drug of tolvaptan [J]. J Pharmacol Sci, 2022, 150(3): 163-172.
- [7] Ghosh S, Tiwari T, Nagaich U, et al. A detailed insight into nanostructured lipid carriers: A versatile drug delivery system [J]. Recent Pat Nanotechnol, 2023, 17 (4): 284-306.
- [8] Gaba B, Fazil M, Ali A, et al. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration [J]. Drug Deliv, 2015, 22(6): 691-700.
- [9] Khan S, Shaharyar M, Fazil M, et al. Tacrolimus-loaded nanostructured lipid carriers for oral delivery -Optimization of production and characterization [J]. Eur J Pharm Biopharm, 2016, 108: 277-288.
- [10] Unnisa A, Chettupalli A K, Alazragi R S, et al. Nanostructured lipid carriers to enhance the bioavailability and solubility of ranolazine: Statistical optimization and pharmacological evaluations [J]. Pharmaceuticals, 2023, 16(8): 1151.
- [11] Sartaj A, Annu, Biswas L, et al. Ribociclib nanostructured lipid carrier aimed for breast cancer: Formulation optimization, attenuating *in vitro* specification, and *in vivo* scrutinization [J]. Biomed Res Int, 2022, 2022: 6009309.
- [12] Furukawa M, Yamasaki Y, Hirao Y, et al. Enantioselective analysis of tolvaptan in rat and dog sera by highperformance liquid chromatography and application to pharmacokinetic study [J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2014, 965: 112-118.
- [13] Mohanty D, Alsaidan O A, Zafar A, et al. Development of atomoxetine-loaded NLC *in situ* gel for nose-to-brain delivery: Optimization, *in vitro*, and preclinical evaluation [J]. Pharmaceutics, 2023, 15(7): 1985.

- [14] Kaithwas V, Dora C P, Kushwah V, et al. Nanostructured lipid carriers of olmesartan medoxomil with enhanced oral bioavailability [J]. Colloids Surf B Biointerfaces, 2017, 154: 10-20.
- [15] 李旸, 陈晨, 方志文. 吡罗昔康纳米结构脂质载体的制备及体 外透皮特性研究 [J]. 中国药师, 2017, 20(3): 416-420.
 Li Y, Chen C, Fang Z W. Preparation and transdermal absorption *in vitro* of piroxicam nanostructured lipid carrier [J]. China Pharm, 2017, 20(3): 416-420.
- [16] 陈观凤,杨馥桢,郑中杰,等.黄藤素脂质体的制备及其体外透皮研究 [J].中药新药与临床药理,2022,33(1):
 115-119.
 - Chen G F, Yang F Z, Zheng Z J, et al. Preparation and *in vitro* transdermal properties of palmatine liposomes [J].
 Tradit Chin Drug Res Clin Pharmacol, 2022, 33(1): 115-119.
- [17] 廖萍,张景辰,李帅,等.关于Caco-2细胞单层渗透性测 定评价标准的共识性建议[J].中国医药工业杂志,
 2020,51(4):517-519.
 Liao P, Zhang J C, Li S, et al. Consensus

recommendations on the standardization for permeability evaluation in caco-2 cell monolayer [J]. Chin J Pharm, 2020, 51(4): 517-519.

- [18] Hu M, Zhang J J, Ding R, et al. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system [J]. Drug Dev Ind Pharm, 2017, 43(4): 687-697.
- [19] Cunha S, Costa C P, Loureiro J A, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: Formulation variables and instrumental parameters [J]. Pharmaceutics, 2020, 12 (7): 599.
- [20] Lakhani P, Patil A, Wu K W, et al. Optimization, stabilization, and characterization of amphotericin B loaded nanostructured lipid carriers for ocular drug delivery [J]. Int J Pharm, 2019, 572: 118771.
- [21] Wang H J, Hong W, Li X Y, et al. Optimization of nanostructured lipid carriers of fenofibrate using a boxbehnken design for oral bioavailability enhancement [J]. Curr Drug Deliv, 2022, 19(7): 773-787.
- [22] Pham T M A, Lee D H, Na Y G, et al. Enhancement of S (+)-zaltoprofen oral bioavailability using nanostructured lipid carrier system [J]. Arch Pharmacal Res, 2022, 45 (11): 822-835.
- [23] Murthy A, Ravi P R, Kathuria H, et al. Oral bioavailability enhancement of raloxifene with nanostructured lipid carriers [J]. Nanomaterials, 2020, 10 (6): 1085.

- [24] Agarwal S, HariKumar S L, Negi P, et al. Quetiapine fumarate loaded nanostructured lipid carrier for enhancing oral bioavailability: Design, development and pharmacokinetic assessment [J]. Curr Drug Deliv, 2021, 18(2): 184-198.
- [25] 高羚毓,贾瑞欣,毕野,等.丹参酮II_A聚合物脂质纳米粒
 制备及脑部药物递送研究 [J].药物评价研究, 2022, 45
 (5): 909-917.

Gao L Y, Jia R X, Bi Y, et al. Study on preparation of

- tanshinone II_A polymer lipid nanoparticles and brain delivery [J]. Drug Eval Res, 2022, 45(5): 909-917.
- [26] 仲曼, 胡慧慧, 缪明星, 等. 纳米药物制剂体内分析方法 及药动学研究进展和问题策略分析 [J]. 药物评价研究, 2022, 45(7): 1413-1425.

Zhong M, Hu H H, Miao M X, et al. Research progress and problem strategy analysis of *in vivo* analysis methods and pharmacokinetics of nanopharmaceutical preparations [J]. Drug Eval Res, 2022, 45(7): 1413-1425.

[责任编辑 刘东博]

