甘草次酸修饰的姜黄素阳离子脂质体肝靶向性和抗肝癌作用研究

刘炎清1,李瀚旻2,常明向1*,陈 诺1

1. 湖北中医药大学 中药资源与中药化学重点实验室, 湖北 武汉 430065

2. 湖北中医药大学附属湖北省中医院,湖北 武汉 430061

摘 要:目的 研究甘草次酸修饰的姜黄素阳离子脂质体(GAMCLCL)肝靶向性以及抗肝癌作用。方法 制备甘草次 酸(GA)配体——GA和十八胺盐(SGO),用红外光谱和质谱检测;并进一步利用SGO制备GAMCLCL,透射电镜观察 脂质体形态,Nano ZS90纳米粒度仪测定脂质体粒径与电位;采用活体成像系统观察GAMCLCL小鼠体内荧光分布。Wistar 大鼠随机分为对照组、模型组、阿霉素(阳性药,2mg·kg⁻¹)组、姜黄素(20mg·kg⁻¹)组和GAMCLCL低、高剂量(2、4mg·kg⁻¹) 组,除对照组外,采用 Walker-256 细胞种植法制备肝原位移植瘤模型,每天1次,尾iv 给药,连续7d;另设 GAMCLCL(4 mg·kg⁻¹)给药14 d组;称肿瘤质量,计算肝脏系数、脾脏系数;全自动生化分析仪测定血液红细胞(RBC)、白细 胞(WBC)、血小板(PLT)、丙氨酸氨基转移酶(ALT)和肌酐(CRE)水平,试剂盒法检测乳酸脱氢酶(LDH)水平;ELISA法检测 血清肿瘤坏死因子- α (TNF- α)和白细胞介素-6(IL-6)水平;Western blotting法检测肿瘤组织血管内皮生长因子(VEGF)、 cleaved Caspase-3、Bcl-2、p53、p-PI3K、p-Akt蛋白表达水平。结果 红外光谱和质谱的结果可以验证GA 与十八胺的反应生成 了 SGO; GAMCLCL 外观呈球形, 其粒径为(194±0.25)nm, 聚合物分散性指数(PDI)为 0.21±0.02, 电位为(31.9±0.31)mV; GAMCLCL在2个月内呈黄色透明溶液,无沉淀析出;GAMCLCL与血清混合未出现任何聚集和沉淀现象;活体成像实验显 示,给药后各时间点荧光主要集中在肝脏,10、30、60 min时肝脏荧光较强,120 min时肝脏荧光明显减弱,240 min时肝脏荧光 基本消失。与模型组比较,各给药组大鼠肿瘤质量均明显减轻(P<0.05、0.01);各给药组肝脏系数显著降低(P<0.05、0.01), 游离姜黄素组、GAMCLCL4mg·kg⁻¹(7、14d)组脾脏系数显著下降(P<0.01);阿霉素及GAMCLCL4mg·kg⁻¹(7、14d)组 的RBC和PLT计数均显著升高(P<0.01),WBC计数均显著降低(P<0.05、0.01);各给药组大鼠ALT、CRE均显著降低(P< 0.05、0.01),除游离姜黄素组外,各给药组LDH显著降低(P<0.05、0.01);各给药组LL-6、TNF-α均显著降低(P<0.01、 0.05);各给药组 VEGF、Bcl-2、Akt、p-PI3K 的蛋白表达均显著下调(P<0.05、0.01), cleaved Caspase-3 和 P53 蛋白表达均显著上 调(P<0.05、0.01);GAMCLCL(4 mg·kg⁻¹)给药7d与14d的抗肿瘤效果相似,明显强于游离姜黄素。结论 GAMCLCL能显著 增强姜黄素的肝靶向性和抗肝癌作用,有利于提高荷瘤大鼠的无进展生存期。

关键词: 姜黄素; 甘草次酸; 阳离子脂质体; Walker 256 肝原位移植瘤; 抗肿瘤作用 中图分类号: R285.5 文献标志码: A 文章编号: 1674-6376 (2024) 04-0754-11 DOI: 10.7501/j.issn.1674-6376.2024.04.009

Study on anti-hepatocellular carcinoma efficacy of glycyrrhetinic acid-modified curcumin-loaded cationic liposomes

LIU Yanqing¹, LI Hanmin², CHANG Mingxiang¹, CHEN Nuo¹

1. Hubei University of Chinese Medicine, Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, Wuhan 430065, China

2. Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated with Hubei University of Traditional Chinese Medicine, Wuhan 430061, China

Abstract: Objective To investigate the liver targeting of glycyrrhizic acid-modified curcumin-loaded cationic liposomes (GAMCLC) and its anticancer effects. **Methods** Prepared glycyrrhetinic acid (GA) ligands-GA and octadecylamine salt (SGO) and detected them using infrared spectroscopy and mass spectrometry, and further used SGO to prepare GAMCLC, and observed the morphology of liposomes under transmission electron microscopy, and measured the particle size and potential of liposomes using

收稿日期: 2024-01-16

基金项目:国家自然科学基金资助项目(81973669;81274147);广西中医药跨学科创新团队项目(GZKJ2306)

第一作者:刘炎清,硕士研究生。E-mail: 1363712256@qq.com

^{*}通信作者:常明向,博士,主任药师。E-mail: changmingx@163.com

Nano ZS90 nanoparticle size analyzer. Using a live imaging system to observe the fluorescence distribution in GAMCLC mice. Wistar rats were randomly divided into a control group, a model group, a doxorubicin (positive drug, 2 mg·kg⁻¹) group, a curcumin (20 mg·kg⁻¹) group, and a GAMCLCL low and high dose (2, 4 mg·kg⁻¹) group. Except for the control group, a Walker-256 cell seeding method was used to prepare a liver orthotopic transplantation tumor model. The rats were administered once a day for 7 consecutive days, and set up a 14 day group of GAMCLCL (4 mg·kg⁻¹) for administration. Weighed the tumor mass, calculated the liver coefficient and spleen coefficient. The levels of red blood cells (RBC), white blood cells (WBC), platelets (PLT), alanine aminotransferase (ALT), and creatinine (CRE) were measured using a fully automated biochemical analyzer, and lactate dehydrogenase (LDH) levels were detected using a reagent kit method. ELISA method was used for detecting serum tumor necrosis factor- α (TNF- α) and the level of interleukin-6 (IL-6). Western blotting was used to detect the expression levels of vascular endothelial growth factor (VEGF), cleaved Caspase-3, Bcl-2, p53, p-PI3K, and p-AKT proteins in tumor tissues. Results The results of infrared spectroscopy and mass spectrometry could verify that the reaction between GA and octadecylamine generated SGO. GAMCLCL had a spherical appearance with a particle size of (194±0.25) nm, a polymer dispersibility index (PDI) of 0.21±0.02, and a potential of (31.9±0.31) mV. GAMCLCL appeared as a yellow transparent solution within two months, with no precipitation. GAMCLCL did not exhibit any aggregation or precipitation when mixed with serum. Live imaging experiments showed that fluorescence was mainly concentrated in the liver at various time points after administration. The liver fluorescence was strong at 10, 30, and 60 min, significantly weakened at 120 min, and basically disappeared at 240 min. Compared with model group, the tumor mass of rats in each treatment group was significantly reduced (P < 0.05, 0.01). The liver coefficient significantly decreased in each treatment group (P < 0.05, 0.01), while the spleen coefficient significantly decreased in the free curcumin group and GAMCLCL 4 mg·kg⁻¹ (7, 14 d) group (P < 0.01). The RBC and PLT counts were significantly increased (P < 0.01) and WBC counts were significantly decreased (P < 0.05, 0.01) in the groups of doxorubicin and GAMCLCL 4 mg·kg⁻¹ (7, 14 d). ALT and CRE of rats in each treatment group were significantly reduced (P < 0.05, 0.01). Except for the free curcumin group, LDH in each treatment group was significantly reduced (P < 0.05, 0.01). IL-6 and TNF- α in each administration group significantly decreased (P < 0.01, 0.05). The protein expression of VEGF, Bcl-2, AKT, and p-PI3K in each treatment group was significantly downregulated (P < 0.05, 0.01), while the protein expression of cleaved Caspase-3 and p53 was significantly upregulated ($P \le 0.05, 0.01$). The anti-tumor effects of GAMCLCL (4 mg·kg⁻¹) administered for 7 d and 14 d were similar, significantly stronger than free curcumin. Conclusion GAMCLCL significantly enhanced the liver-targeting and anti-hepatocellular carcinoma effects of curcumin, and was beneficial to the progression-free survival of tumor-bearing rats.

Key words: curcumin; glycyrrhizic acid; cationic liposomes; liver orthotopic walker 256 tumor-bearing rat; ant-liver tumor effects

肝癌是世界上第六大常见肿瘤和第四大致死 性癌症,每年约78.2万人死于肝癌^[1-3]。肝癌早期诊 断困难,一旦发现多属中、晚期,80%左右的患者只 能采用非手术疗法。近年来肿瘤免疫治疗取得较 大进展,但只适用于少数患者,且费用昂贵。因此, 非手术疗法中,化疗仍是临床最普遍采用的方法。

化疗的基本理念是采用"毒性"或"损伤性"抗 癌药物(5-氟尿嘧啶、阿霉素等)引起肝癌细胞或组 织坏死,从而治疗肝癌。在化疗过程中,由于化疗 药物缺乏肿瘤部位靶向性,分布全身,常给患者带 来严重不良反应^[45]。因此,迫切需要开发出毒性低 和靶向性好的给药系统。

姜黄素是从药食同源中药姜黄中分离出来的 一种天然活性成分,其具有抗癌、抗炎、增强放疗和 化疗敏感性等多种药理作用^[6-7]。研究表明,其对肝 癌、结肠癌、胃癌、乳腺癌等具有抗肿瘤活性^[8-11],而 且临床研究也证明它是安全的^[12-15]。但由于姜黄素 水溶性低、稳定性差和生物利用度低,其临床应用 受到很大限制^[16-17],也因此有人质疑其临床效 果^[18-19]。但前期研究表明,姜黄素脂质体可以提高 其水溶性和稳定性^[20-21]。

研究表明,肝细胞膜上存在大量甘草次酸(GA) 特异性受体,可制备GA配体修饰的肝靶向脂质体, 以提高脂质体肝靶向效率和抗肿瘤作用^[22-24]。为 此,本课题组制备了GA修饰的姜黄素阳离子脂质 体(glycyrrhetinic acid-modified curcumin-loaded cationic liposomes,GAMCLCL),前期研究了其对 Walker256细胞的影响和对H22荷瘤小鼠的抗肿瘤 作用^[25-26]。然而,H22荷瘤小鼠的肿瘤位于前腋窝 区域,该在体研究无法真正揭示GAMCLCL的肝靶 向性和抗肝癌作用。因此,本研究制备了原位肝移植瘤 模型,并探讨了GAMCLCL的肝靶向性和抗肿瘤作用。

1 材料

1.1 试剂

姜黄素原料药(杭州天草科技有限公司,批号 20130625,质量分数>98%);甘草次酸(GA,武汉远

大制药集团有限公司,批号T27J7X18416,质量分 数>98%);阿霉素(深圳美乐制药有限公司,批号 1504E2);卵磷脂(上海艾维泰科技制药有限公司, 批号 AL13008); 十八 胺 (美国 Sigma 公司, 批号 #BCBH3265V,质量分数>98%);1,1'-二十八烷基-3, 3,3'-,3'四甲基吲哚三碳菁碘化物(DiR,美国 Invitrogen 公司); IRPMI-1640 培养基与双抗(美国 Hyclone公司);四季青无支原体胎牛血清(浙江天 杭生物科技股份有限公司,货号11012-8611);胰 酶 (美国 Gibco 公司, 批号 25200-056); Immuno-Bridg+试剂盒(美国GBI公司);乳酸脱氢酶(LDH) 试剂盒(南京建成生物工程研究所,货号A020-2-2);无水乙醇(国药集团化学试剂有限公司);磷酸 酶抑制剂、RIPA裂解液(大连美仑生物技术有限公 司,货号MB12707、MA0151);胞浆胞核蛋白提取试 剂 盒 (南京凯基生物公司,货号 KGP150);兔 GAPDH多克隆抗体(杭州贤至生物有限公司,货号 AB-P-R001);小鼠P53多克隆抗体(美国CST公司, 货号#2524);HRP标记羊抗小鼠二抗、HRP标记山 羊抗兔二抗(武汉博士德生物工程有限公司,货号 BA1051, BA1054).

1.2 主要仪器

DK-98-II电热恒温水浴锅(北京心雨仪器仪表 有限公司);Nicolet 5700 红外光谱仪(美国热电公 司);LCQ advantage 液相色谱仪-质谱联用仪(美国 菲尼根公司);HF90 细胞培养箱(力康生物医疗科技 控股有限公司);5424 离心机(艾本德中国有限公 司);F50 酶标仪(上海帝肯贸易有限公司);7020 型 全自动生化分析仪(日本日立公司);IVIS Lumina II 小动物活体成像系统(美国 Caliper 公司)。

1.3 细胞与动物

Walker-256 细胞系(CL-0377)购自 Procell 公司。雄性昆明小鼠(20±2.0)g和雄性 Wistar 大鼠(200±20)g购自湖北省疾病控制中心医学动物试验中心,实验动物生产许可证号 SCXK(鄂)2017-0018。所有实验均经湖北中医药大学动物护理和使用委员会批准(编号2019017),并按照《实验动物使用伦理原则和指南》(中华人民共和国)进行。

2 方法

2.1 GA配体的合成

参考文献报道^[27]方法改进后制备GA配体。将 GA和十八胺(质量比1.2:1)溶解于适量无水乙醇 中,置于50℃的水浴锅中保温1h后蒸发乙醇。在 4℃冰箱储存1h后,用乙醚和石油醚反复重结晶4 次,得到GA配体——GA和十八胺盐(SGO),制得 样品KBr压片,红外光谱仪工作参数设定为:谱区 范围400~4000 cm⁻¹;扫描次数32次;分辨率为 8 cm⁻¹。质谱条件^[28]为电喷雾离子源(ESI),负离子 模式扫描,全扫描模式。

2.2 GAMCLCL的制备

根据前期研究方法^[29]制备GAMCLCL。将 SGO 25 mg、卵磷脂 200 mg 溶于无水乙醇中,保 温 5 min,加入姜黄素 8 mg,保温 5 min,然后开启搅 拌机,转速 250 r·min⁻¹,用 5 mL注射器以1 mL·min⁻¹ 匀速缓慢地将乙醇液滴入到 20 mL、50 ℃重蒸 水中,搅拌 15 min 后再继续水浴放置 20 min。取 出,室温放置 24 h,200 nm 微孔滤膜滤过,即得 400 μg·mL⁻¹的GAMCLCL,所得脂质体4℃冰箱放 置。用同样的方法制备不含姜黄素的阳离子脂质 体,作为空白对照脂质体。以十八胺代替 SGO,用 同样的方法制备不含GA配体的阳离子脂质体,作 为空白对照阳离子脂质体。

2.3 GAMCLCL形态学考察及粒径、电位测定

采用磷钨酸负染透射电镜观察脂质体形态。 取适量GAMCLCL样品滴于300目铜网表面,3 min 后用滤纸吸去多余液体,再在铜网表面滴入1滴3% 磷钨酸溶液染色3 min,滤纸吸去多余液体,自然晾 干后用透射电镜观察。取适量脂质体用重蒸水稀 释30倍,在Nano ZS90纳米粒度仪上测定脂质体粒 径、聚合物分散性指数(PDI)与电位。

2.4 GAMCLCL脂质体在血清中的稳定性考察

用透明一次性试管观察 GAMCLCL 溶液与大鼠血清(1:1)混合0、2、4、8、24h 后的外观形态。每10天重复1次,连续观察60d。不含GA 配体的空白对照阳离子脂质体作为对照。

2.5 小鼠活体成像分析

活体成像用脂质体的制备方法与GAMCLCL 相同,只是用2 mg的DiR染料代替姜黄素。将10只 昆明小鼠分为2组:①游离DiR组:注射10 µg·kg⁻¹ DiR稀乙醇溶液(乙醇体积分数<1%);②DiR脂质 体组:注射载DiR脂质体10 µg·kg⁻¹(以DiR计)。在 小鼠麻醉后的10、30、60、120、240 min,采用小动物 活体成像系统观察小鼠的荧光成像。

2.6 肝原位移植瘤模型制备及给药方法

参照文献报道方法制备肝原位移植瘤模型^[30]。 将Walker-256细胞种植(2×10⁶)于大鼠右前肢腋部 皮下,正常条件下喂养7d后,分离新鲜肿瘤,取 0.2 mm³植入实验大鼠左肝叶。 36只实验大鼠分为6组,造模饲喂8d后,每天 1次尾iv药物,连续7d(第⑥组给药14d)。分组及 给药方案:①模型组:注射等量0.9%氯化钠溶液;② 阿霉素组:阳性药,2mg·kg⁻¹;③姜黄素组:注射 姜黄素稀释乙醇溶液20mg·kg⁻¹;④GAMCLCL 高剂量组:4mg·kg⁻¹(以姜黄素计);⑤GAMCLCL 低剂量组:2mgkg⁻¹;⑥GAMCLCL给药14d组:注射 GAMCLCL4mg·kg⁻¹,连续14d;⑦对照组:另取6 只正常大鼠注射等量0.9%氯化钠溶液。给药过程 中记录各组大鼠的行为。①~⑦组大鼠(除⑥组 外)均于第8天称质量。腹主动脉采集大鼠血液后 处死大鼠,分别取肿瘤、肝脏和脾脏,称质量。⑥组 大鼠在第15天同样处理。计算肿瘤抑制率、肝脏系 数、脾脏系数。

肿瘤抑制率=(模型组平均肿瘤质量-给药组平均肿瘤 质量)/模型组平均肿瘤质量

2.7 血液生化检查

采用全自动生化分析仪测定红细胞(RBC)、白细胞(WBC)、血小板(PLT)、丙氨酸氨基转移酶(ALT)和肌酐(CRE)。乳酸脱氢酶(LDH)采用LDH试剂盒检测。

2.8 ELISA 法检测血清肿瘤坏死因子-α(TNF-α) 和白细胞介素-6(1L-6)

血样室温保存2h后,以3000rmin⁻¹离心10min分 离上清,上清暂时保存在-80℃。采用ELISA法严 格按照试剂盒说明书操作检测TNF-α和IL-6水平。

2.9 Western blotting 法检测血管内皮生长因子(VEGF)、cleaved Caspase-3、Bcl-2、p53、p-PI3K、p-Akt

采用 Western blotting 法,按照说明书检测各组 大鼠肿瘤组织中 VEGF、cleaved Caspase 3、Bcl-2、 p53、p-PI3K、p-Akt 的表达。利用 BandScan 软件计 算灰度值。

2.10 统计分析

实验结果用统计软件包 Graph Pad Prism 9进行 处理,数据均以 $x \pm s$ 表示。采用 t 检验比较组间差 异分析。

3 结果

3.1 SGO的光谱特性

红外光谱如图1所示,SGO与GA或十八乙胺 之间存在不同的峰。GA 羧基的1706.5 cm⁻¹($v_{c=0}$) 消失,其紫移与C-11 羰基峰($v_{c=0}$ 1664.5 cm⁻¹)重叠, 形成了SGO中1659.7 cm⁻¹的-coo-($v_{c=0}$)峰。SGO 中的1555.2 cm⁻¹来自于十八胺中伯胺的N-H弯曲 振动吸收峰1570.8 cm⁻¹的紫移。720.4 cm⁻¹为长链 烷基带峰,同时存在于十八胺和SGO中。SGO的相 对分子质量为740.21,在质谱中可以看到 *m/z*740 特征 峰(图2)。

配体的化学合成通常比较复杂,流程长,常产 生多种副产物,致使纯化过程困难。本研究GA配 体的合成中,反应条件温和(反应温度≪50℃,溶剂 为无水乙醇)。因此,发生缩合反应的可能性极小, 而成盐的可能性最大。由于没有副产物生成,因 此,红外光谱和质谱的结果可以验证GA与十八胺 的反应生成了SGO。

Fig. 1 Infrared spectrum of SGO, GA and octadecylamine detected by infrared spectrometry

3.2 GAMCLCL的特征

如图3所示,GAMCLCL外观呈球形,其粒径为(194±0.25)nm,PDI为 0.21±0.02,电位为(31.9±0.31)mV。姜黄素不溶于水,如果没有被脂质体包裹,就会沉淀析出。在本实验条件下,GAMCLCL在2个月内呈黄色透明溶液,无沉淀析出,说明脂质体较为稳定。

3.3 GAMCLCL与血清混合的稳定性考察

如图4所示,不含GA配体的空白对照阳离子脂 质体与大鼠血清混合后立即出现浑浊,24h后在试 管底部出现沉淀。在2个月内,GAMCLCL与血清 混合未出现任何聚集和沉淀现象。

GAMCLCL 透射电镜照片

GAMCLCL 2 个月后的外观

图 3 GAMCLCL的形态 Fig. 3 Morphology of GAMCLCL

3.4 体内荧光分布

DiR是活体成像中常用的荧光染料。由于DiR 和姜黄素具有相似的溶解特性,选择DiR作为实验 荧光染料^[31]。

活体图像如图5所示,可见各时间点荧光主要 集中在肝脏。10、30、60 min时肝脏荧光较强(口腔 部位荧光为小鼠舔注射部位所致);120 min时,肝脏 荧光明显减弱;240 min时,肝脏荧光基本消失。此 外,将注射了载 DiR 脂质体的小鼠与正常小鼠同时 成像,可以直接对照比较观察肝脏部位荧光情况。

 空白对照阳离子脂质体
 血清
 GAMCLCL+血清
 空白对照阳离子脂质体
 血清
 GAMCLCL+血清

 +血清
 +血清

 瞬间混合
 混合24h后

图 4 GAMCLCL 与血清混合结果 Fig. 4 Results of mixing GAMCLCL with serum

Fig. 5 Living image pictures

然而,游离 DiR 组在小鼠体内的荧光生物分布 行为极不规律,每只小鼠的荧光结果不能重复。因 此,没有得到游离 DiR 组的荧光分布结果。

由于不含GA的空白对照阳离子脂质体与血清 混合后立即浑浊,不含GA的阳离子脂质体没有作 为对照组进行注射给药观察荧光分布。

3.5 抗肿瘤作用

不同组肿瘤形态及大小如图6所示,与模型组

比较,各给药组大鼠肿瘤质量均明显减轻(P < 0.05、 0.01)。GAMCLCL组肿瘤质量与注射剂量呈负相关。注射4 mg·kg⁻¹GAMCLCL7d组的肿瘤质量与 14 d组的相似。

游离姜黄素在 20 mg·kg⁻¹时的肿瘤抑制率为 25.49%,与低剂量 GAMCLCL 组(2 mg·kg⁻¹时为 27.45%)相近。结果表明GAMCLCL 的抗肿瘤作用 明显强于游离姜黄素。

与对照组比较,模型组肝脏系数、脾脏系数均 增大(P<0.01),说明种植瘤刺激了肝脏和脾脏的生 长,激活了免疫系统;与模型组比较,各给药组肝脏 系数显著降低(P<0.05、0.01),游离姜黄素组、 GAMCLCL4mg·kg⁻¹组脾脏系数显著下降(P<0.01)。 4mg·kg⁻¹GAMCLCL注射7d组与注射14d组结果 相似。

3.6 血液生化分析

血液生化分析结果见图7,与对照组比较,模型 组的RBC和PLT计数均显著降低(P<0.05、0.01); 与模型组比较,阿霉素及2个高剂量GAMCLCL 组(7d和14d)的RBC和PLT计数均显著升高(P<

Fig. 6 Tumor weight, liver index and spleen index in various groups ($x\pm s$, n=6)

0.01)。高剂量 GAMCLCL 7 d 和 14 d 组的 RBC 和 PLT 计数相似,两组间差异无统计学意义。

与 对 照 组 比 较, 模 型 组 WBC 计 数 显 著 升 高(P<0.01); 与模型组比较, 阿霉素及 2 个高剂量 GAMCLCL 组(7 d 和 14 d) 小鼠 WBC 计数均显著降 低(P<0.05、0.01)。高剂量 GAMCLCL 7 d 和 14 d 后 WBC 计数差异无统计学意义。

ALT、CRE、LDH分别与肝、肾、心功能有关。 与对照组比较,模型组ALT、CRE、LDH均显著升高(P<0.01),说明心、肝、肾功能受损。与模型组比较,各给药组大鼠ALT、CRE均显著降低(P<0.05、0.01),除游离姜黄素组外,各给药组LDH显著降低(P<0.05、0.01)。2个高剂量GAMCLCL组(7d和14d)的ALT、CRE、LDH比较,差异无统计学意义。结果表明,GAMCLCL可改善肿瘤接种引起的大鼠心、肝、肾功能损伤。

3.7 IL-6、TNF-α检测结果

IL-6、TNF-α检测结果如图8所示,与对照组比 较,模型组IL-6、TNF-α均显著升高(P<0.05、0.01); 与模型组比较,各给药组IL-6、TNF-α均显著降 低(P<0.01、0.05);2个高剂量GAMCLCL组(7、14 d) IL-6、TNF-α值相近,与阿霉素组比较无统计学 差异。

3.8 VEGF、Bcl-2、Akt、PI3K、cleaved Caspase-3、P53 的蛋白表达结果

Western blotting 结果如图 9、10 所示, 与模型组 比较, 各给药组 VEGF、Bcl-2、p-Akt、p-PI3K 的蛋白 表达均显著下调(P<0.05、0.01), GAMCLCL 组 VEGF、Akt、p-PI3K 的表达与剂量呈负相关。 cleaved Caspase-3和P53的表达在各给药组均显著 上调(P<0.05、0.01), GANCLCL 组 cleaved Caspase-3和P53表达与GAMCLCL剂量呈正相关。 高剂量 GAMCLCL 组 7、14 d 的各种蛋白表达基 本一致。

上述体内实验结果表明,用GAMCLCL处理7d与 14d的效果相似。GAMCLCL组的肿瘤质量没有随 着给药时间的延长而进一步减少,肿瘤质量和大小 基本不变,各项指标稳定,说明GAMCLCL的抗肿 瘤特点是先缩小肿瘤体积,然后维持肿瘤形态稳 定,防止肿瘤进一步恶化。一般情况下,如果不对 肿瘤进行治疗,肿瘤会继续生长变大或导致动物死 亡,因此没有设立14d模型组。

##

##

与对照组比较:**P<0.01;与模型组比较:*P<0.05 ##P<0.01。 $^{**}P < 0.01$ vs control group; $^{\#}P < 0.05 ~^{\#\#}P < 0.01$ vs model group

图 7 血液生化指标(x±s,n=6)

Fig. 7 Blood biochemical indicators ($x\pm s$, n=6)

**P < 0.01 vs control group; ${}^{\#}P < 0.05 {}^{\#\#}P < 0.01 vs$ model group.

图 8 各组 IL-6、TNF-a 水平(x±s, n=6)

Fig. 8 IL-6 and TNF- α level in each group ($x\pm s$, n=6)

15-

10

图 9 各组肿瘤组织 VEGF、cleaved Caspase-3、Bcl-2、P53、p-Akt和 p-PI3K 的统计图 Fig. 9 Statistical chart of VEGF, cleaved Caspase-3, Bcl-2, P53, p-Akt and p-PI3K in tumor tissues of each group

4 讨论

肝靶向给药系统(HTDDS)能有效地将药物输送到肝脏,提高治疗效果,减少不良反应,已成为治疗肝癌的重要给药方法。受体介导的HTDDS是主要的HTDDS之一,其靶向效率往往受配体、受体表达程度、配体与受体结合亲和力等因素的影响。其

中,配体是影响靶向效率的关键因素之一^[32]。肝细胞表面存在大量GA受体,因此GA常被选择作为肝脏靶向配体并用于制备HTDDS。

由于阳离子脂质体(正电荷)与血清(负电荷) 混合后会立即沉淀,因此阳离子脂质体通常用于体 外细胞转染,而不能通过静脉注射给药。本研究观 察了GAMCLCL与血清混合状况,结果显示没有沉淀出现,表明可以静脉给药。大鼠 iv GAMCLCL 14 d表明,大鼠生长状况正常,说明GAMCLCL可以静脉注射。分析原因可能是GA与十八胺结合形成盐,正电荷被掩盖,当GAMCLCL与血清混合时, 正电荷会阻碍带正电的GAMCLCL与带负电的血 清结合形成沉淀。GAMCLCL的这一特性将有利 于阳离子脂质体的iv和体内转染。

小鼠活体成像实验可以直接观察药物或载体 系统在动物活体内不同时间点的体内分布^[33]。为 了观察GAMCLCL的肝靶向性,采用小鼠活体成像 仪观察给药后小鼠体内荧光分布,某器官中荧光分 布越强,代表该器官中脂质体分布越多,脂质体靶 向性越强。活体成像中小鼠体内的动态分布表明, 经GA修饰的脂质体主要分布在肝脏,其他器官很 少分布,这表明其在体内具有良好的肝靶向性。

在肝内种植 Walker-256 细胞可以模拟人肝癌的 肿瘤和浸润性生长模式^[34-36],因此本研究采用 Walker-256 肝原位移植瘤来研究 GAMCLCL 的抗肿瘤 瘤作用。抗肿瘤结果表明,GAMCLCL 的抗肿瘤作 用远强于游离姜黄素。游离姜黄素组(20 mg·kg⁻¹) 的抑瘤率为25.49%,低剂量 GAMCLCL组(2 mg·kg⁻¹) 的抑瘤率为27.45%。在本课题之前的研究^[25]中,游 离姜黄素(20 mg·kg⁻¹)组在 H22 荷瘤小鼠中的抑瘤 率为 20.42%,低剂量 GAMCLCL(5 mg·kg⁻¹)组为 22.66%。尽管动物模型不同,但以游离姜黄素组作 为参考,GAMCLCL 在原位肝肿瘤中的抗肿瘤作用 应该比在 H22 荷瘤小鼠中更强。

ALT、CRE 和 LDH 等指标分别与肝、肾和心的 功能有关,如果异常,则分别反映肝、肾、心的功能 损伤。血液生化检测显示,Walker-256 肿瘤大鼠的 心、肝、肾功能受损,而GAMCLCL可改善荷瘤大鼠 的器官功能损伤。

癌症的发生往往与慢性炎症有关^[34],研究表明,IL-6直接参与了肝癌的发生^[33-34]。TNF-α的过度表达与肝癌的发生、发展、侵袭和转移密切相关^[35]。注射GAMCLCL能明显降低IL-6、TNF-α的水平,说明GAMCLCL具有抗炎作用,有利于肿瘤的治疗。

肿瘤的发生和发展受多种通路影响,肿瘤治疗 需要应用具有多靶点作用的药物^[37],结果表明,姜 黄素和GAMCLCL均能下调VEGF、Bcl-2、p-AKT、 p-PI3K的表达,上调cleaved Caspase-3、P53的表达。 与游离姜黄素比较,GAMCLCL的调节作用明显 更强。

本课题组最初计划研究3种剂量的GAMCLCL 抗肿瘤作用。由于大鼠注射量的限制,高剂量组只 能选择注射4 mg·kg⁻¹的GAMCLCL。为了观察更 高剂量的作用,尝试延长2倍给药时间,因此设置了 4 mg·kg⁻¹GAMCLCL的14d给药组。结果显示, GAMCLCL治疗7d的效果与14d的效果非常相 似,肿瘤质量和大小基本不变,各项参数稳定,这表 明GAMCLCL首先可以抑制肿瘤的生长,然后维持 肿瘤的稳定并阻止肿瘤的进一步恶化。

目前,癌症患者的无进展生存已成为临床治疗 癌症的新理念^[38-39]。然而,如何找到既能稳定肿瘤, 又能减少不良反应的药物是关键问题。显然, GAMCLCL的抗肿瘤特性符合临床上无进展生存 的要求。

虽然只延长了GAMCLCL7d的用药时间,但 根据人类和大鼠的年龄换算(http://www.taletn.com/ rats/age/age),大鼠的7d相当于人类的6~7个月。 事实上,作为治疗HCC的一线靶向疗法,索拉非尼 的中位生存时间为3~5个月^[40]。此外,根据实验结 果,给药时间可以进一步延长,这将进一步延长大 鼠的无进展生存期。从理论上讲,与索拉非尼比 较,它能进一步延长患者的生存期,在这方面还需 要进一步研究。

GAMCLCL是一种肝脏靶向性阳离子脂质体, 增强了肝原位荷瘤大鼠的靶向性和抗肿瘤作用。 GAMCLCL也是一种可注射的阳离子脂质体,克服 了阳离子脂质体在体内的应用局限。姜黄素和 GAMCLCL通过调节多种信号通路达到抗肿瘤效 果,且GAMCLCL的调节效果远优于游离姜黄素。 特别是注射7d与注射14d的GAMCLCL的抗肿瘤 效果非常相似,其抗肿瘤特性符合癌症无进展生 存的理念,有利于延长荷瘤大鼠的带瘤生 存期。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3): 209-249.
- [2] Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012 [J]. Int J Cancer, 2015, 136(5): E359-E386.

- [3] Li Z Y, Hao E W, Cao R, et al. Analysis on internal mechanism of zedoary turmeric in treatment of liver cancer based on pharmacodynamic substances and pharmacodynamic groups [J]. China Herb Med, 2022, 14 (4): 479-493.
- [4] Hanaoka H, Nakajima T, Sato K, et al. Photoimmunotherapy of hepatocellular carcinomatargeting Glypican-3 combined with nanosized albuminbound paclitaxel [J]. Nanomedicine, 2015, 10(7): 1139-1147.
- [5] Xu T, Zhang J, Chen W, et al. ARK5 promotes doxorubicin resistance in hepatocellular carcinoma via epithelial-mesenchymal transition [J]. Cancer Lett, 2016, 377(2): 140-148.
- [6] Kunnumakkara A B, Bordoloi D, Padmavathi G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases [J]. Br J Pharmacol, 2017, 174 (11): 1325-1348.
- [7] 杨慧,童雨,廖正根.姜黄素治疗溃疡性结肠炎及其微纳米粒传递系统研究进展[J].中草药,2023,54(11): 3696-3705.

Yang H, Tong Y, Liao Z G. Research progress on curcumin in treatment of ulcerative colitis and its micronanoparticle delivery system [J]. Chin Tradit Herb Drugs, 2023, 54(11): 3696-3705.

- [8] Pan Z R, Zhuang J M, Ji C H, et al. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression [J]. Oncol Lett, 2018, 15(4): 4821-4826.
- [9] Kronski E, Fiori M E, Barbieri O, et al. miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and-2 [J]. Mol Oncol, 2014, 8(3): 581-595.
- [10] Wang L H, Chen X W, Du Z Y, et al. Curcumin suppresses gastric tumor cell growth via ROS-mediated DNA polymerase γ depletion disrupting cellular bioenergetics [J]. J Exp Clin Cancer Res, 2017, 36(1): 47.
- [11] Toden S, Okugawa Y, Buhrmann C, et al. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer [J]. Cancer Prev Res, 2015, 8(5): 431-443.
- [12] Irving G R B, Howells L M, Sale S, et al. Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration: A clinical pilot study including assessment of patient acceptability [J]. Cancer Prev Res, 2013, 6(2): 119-128.
- [13] 侍慧慧,周美玲,柳晔,等.载姜黄素 pH敏感聚合物胶 束的制备、表征及体内外抗非小细胞肺癌研究 [J]. 中

草药, 2023, 54(19): 6264-6275.

Shi H H, Zhou M L, Liu Y, et al. Preparation, characterization and anti-non-small cell lung cancer efficacy of curcumin-loaded pH sensitive polymer micelles [J]. Chin Tradit Herb Drugs, 2023, 54(19): 6264-6275.

- [14] Cheng A L, Hsu C H, Lin J K, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions [J]. Anticancer Res, 2001, 21(4B): 2895-2900.
- [15] Food and Drug Administration (FDA). Food for Human Consumption, Part 182-Substances generally recognized as safe [S]. 2011.
- [16] Yallapu M M, Nagesh P K, Jaggi M, et al. Therapeutic applications of curcumin nanoformulations [J]. AAPS J, 2015, 17(6): 1341-1356.
- [17] Salem M, Rohani S, Gillies E R. Curcumin, a promising anti-cancer therapeutic: A review of its chemical properties, bioactivity and approaches to cancer cell delivery [J]. RSC Adv, 2014, 4(21): 10815-10829.
- [18] Nelson K M, Dahlin J L, Bisson J, et al. The essential medicinal chemistry of curcumin [J]. J Med Chem, 2017, 60(5): 1620-1637.
- [19] Baker M. Deceptive curcumin offers cautionary tale for chemists [J]. Nature, 2017, 541(7636): 144-145.
- [20] 李瀚旻, 晏雪生, 明安萍, 等. 脂质体-姜黄素水溶制剂 抗肝癌效应的稳定性研究 [J]. 中草药, 2006, 37(4): 561-565.
 Li H M, Yan X S, Ming A P, et al. Stability of anti-liver cancer efficacy by liposomecurcumin in water solution
- [21] Mahmoudi R, Hassandokht F, Ardakani M T, et al. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells [J]. J Biomater Appl, 2021, 35(8): 1005-1018.

[J]. Chin Tradit Herb Drugs, 2006, 37(4): 561-565.

- [22] Tian Q, Wang X H, Wang W, et al. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid [J]. Nanomedicine, 2012, 8(6): 870-879.
- [23] Cheng M R, Gao X Y, Wang Y, et al. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics *in vitro* and *in vivo* [J]. Mar Drugs, 2013, 11(9): 3517-3536.
- [24] Jiang H, Li Z P, Tian G X, et al. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: Preparation, characterization, and antitumor effects [J]. Int J Nanomed, 2019, 14: 1789-1804.
- [25] 曹柳,赵军宁,王晓宇,等.不同加工方法对不同产地姜

黄、郁金药材中姜黄素类成分含量的影响 [J]. 中国实验方剂学杂志, 2016, 22(4): 50-56.

Cao L, Zhao J N, Wang X Y, et al. Effect of different processing methods on curcuminoids content in *Curcumae Longae Rhizoma* and *Curcumae Radix* from different areas [J]. Chin J Exp Tradit Med Form, 2016, 22(4): 50-56.

- [26] Chang M X, Wu M M, Li H M. Antitumor activities of novel glycyrrhetinic acid-modified curcumin-loaded cationic liposomes *in vitro* and in H22 tumor-bearing mice [J]. Drug Deliv, 2018, 25(1): 1984-1995.
- [27] 吴梅梅,李瀚旻,常明向.甘草次酸修饰姜黄素阳离子 脂质体对肿瘤 Walker256 细胞的影响 [J].中国医院药 学杂志, 2019, 39(11): 1129-1134, 1170.

Wu M M, Li H M, Chang M X. Influence of glycyrrhetinic acid modified curcumin-loaded cationic liposomes on Walker 256 cells [J]. Chin J Hosp Pharm, 2019, 39(11): 1129-1134, 1170.

- [28] Rodriguez-Cruz S E. Rapid analysis of controlled substances using desorption electrospray ionization mass spectrometry [J]. Rap Commun Mass Spect, 2010, 20(1): 53-60.
- [29] 许卉, 刘生生, 姜永涛, 等. 甘草次酸精氨酸盐的波谱学表征
 [J]. 化学研究与应用, 2006, 18(10): 1214-1216.
 Xu H, Liu S S, Jiang Y T, et al. Studies on spectral characterization of Arginine Glycyrrhetinate [J]. Chem Res Appl, 2006, 18(10): 1214-1216.
- [30] Li T Q, Liu J C, Wang Y L, et al. Liver fibrosis promotes immunity escape but limits the size of liver tumor in a rat orthotopic transplantation model [J]. Sci Rep, 2021, 11 (1): 22846.
- [31] 陈毅, 邬俊, 王贵, 等. R8修饰盐酸柔红霉素/和厚朴酚 脂质体的制备及抗肿瘤活性评价 [J]. 现代中药研究与 实践, 2022, 36(4): 54-59.
 Chen Y, Wu J, Wang G, et al. Preparation and anti-tumor

activity evaluation of R8 modified daunorubicin hydrochloride and honokiol liposomes [J]. Chin Med J

Res Prac, 2022, 36(4): 54-59.

- [32] Allen T M. Ligand-targeted therapeutics in anticancer therapy [J]. Nat Rev Cancer, 2002, 2(10): 750-763.
- [33] Contag P R. Whole-animal cellular and molecular imaging to accelerate drug development [J]. Drug Discov Today, 2002, 7(10): 555-562.
- [34] Yang R, Rescorla F J, Reilly C R, et al. A reproducible rat liver cancer model for experimental therapy: Introducing a technique of intrahepatic tumor implantation [J]. J Surg Res, 1992, 52(3): 193-198.
- [35] Li X, Zheng C S, Feng G S, et al. An implantable rat liver tumor model for experimental transarterial chemoembolization therapy and its imaging features [J]. World J Gastroenterol, 2002, 8(6): 1035-1039.
- [36] Li X, Feng G S, Zheng C S, et al. Influence of transarterial chemoembolization on angiogenesis and expression of vascular endothelial growth factor and basic fibroblast growth factor in rat with Walker-256 transplanted hepatoma: An experimental study [J]. World J Gastroenterol, 2003, 9(11): 2445-2449.
- [37] Yallapu M M, Khan S, Maher D M, et al. Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer [J]. Biomaterials, 2014, 35(30): 8635-8648.
- [38] 江洋,刘传波,王芬,等.浅谈恶性肿瘤患者的绿色治疗 模式 [J]. 中医杂志, 2019, 60(15): 1342-1344.
 Jiang Y, Liu C B, Wang F, et al. Discussion on the green treatment mode of patients with malignant tumor [J]. J Tradit Chin Med, 2019, 60(15): 1342-1344.
- [39] Rathkopf D E, Beer T M, Loriot Y, et al. Radiographic progression-free survival as a clinically meaningful end point in metastatic castration-resistant prostate cancer: The PREVAIL randomized clinical trial [J]. JAMA Oncol, 2018, 4(5): 694-701.
- [40] Zhu Y J, Zheng B, Wang H Y, et al. New knowledge of the mechanisms of sorafenib resistance in liver cancer [J]. Acta Pharmacol Sin, 2017, 38(5): 614-622.

[责任编辑 兰新新]