# 利格列汀壳聚糖-磷脂自组装纳米粒的制备及体内外评价

沈 英<sup>1</sup>,黄雅菲<sup>1</sup>,宋帆帆<sup>1</sup>,房树华<sup>1</sup>,韩 磊<sup>2</sup>,黄 刚<sup>3\*</sup>
1.南京市溧水区人民医院 药剂科,江苏南京 211200
2.江苏奥赛康药业有限公司,江苏南京 211112
3.南京市溧水区人民医院 呼吸科,江苏南京 211200

摘 要:目的制备利格列汀(LGP)壳聚糖-磷脂自组装纳米粒(LGP-CS/LC-NPs),并考察其在大鼠体内的药动学以及对糖尿病模型大鼠的血糖控制效果。方法采用溶剂滴入法制备LGP-CS/LC-NPs,通过单因素实验筛选LGP-CS/LC-NPs处方中LGP与磷脂(LC)的质量比,CS与LC的质量比,以及醋酸溶液pH值;考察LGP-CS/LC-NPs的粒径分布、Zeta电位、微观形态,以及体外药物溶出速率;采用Caco-2细胞单层模型评价LGP-CS/LC-NPs的细胞跨膜转运;考察LGP原料药混悬液和LGP-CS/LC-NPs经大鼠ig给药后的体内药动学以及对糖尿病大鼠的血糖控制效果。结果优化得到LGP-CS/LC-NPs的最优处方:LGP与LC的质量比为1:3,CS与LC的质量比为1:20,醋酸溶液pH值为4~5;制备的LGP-CS/LC-NPs的粒径为(195.5±7.8)nm,Zeta电位为(35.6±0.8)mV,在透射电镜下可观察到LGP-CS/LC-NPs为球形"核-壳"结构;LGP-CS/LC-NPs的体外溶出速率显著高于LGP混悬液;LGP-CS/LC-NPs能有效提高LGP的跨膜转运能力;与LGP混悬液相比,大鼠igLGP-CS/LC-NPs后可显著提高LGP生物利用度,且可较好地控制糖尿病模型大鼠的血糖水平。结论以CS和LC作为载体材料,将LGP制备成LGP-CS/LC-NPs,能够显著提高LGP口服生物利用度,达到良好的控糖效果。关键词:利格列汀;壳聚糖-磷脂自组装纳米粒;溶剂滴入法;跨膜转运;生物利用度;降糖作用中图分类号:R944.2 文献标志码:A 文章编号:1674-6376(2024)02-0345-08

# Preparation and evaluation of ligagliptin self-assembled chitosan-lecithin nanoparticles *in vitro* and *in vivo*

SHEN Ying<sup>1</sup>, HUANG Yafei<sup>1</sup>, SONG Fanfan<sup>1</sup>, FANG Shuhua<sup>1</sup>, HAN Lei<sup>2</sup>, HUANG Gang<sup>3</sup>

1. Department of Pharmacy, the People's Hospital of Lishui District of Nanjing, Nanjing 211200, China

2. Jiangsu Aosaikang Pharmaceutical Co., Ltd., Nanjing 211112, China

3. Department of Pneumology, the People's Hospital of Lishui District of Nanjing, Nanjing 211200, China

**Abstract: Objective** To prepare ligaliptin self-assembled chitosan-lecithin nanoparticles (LGP-CS/LC-NPs) and investigate its pharmacokinetics in rats and its effect on blood glucose control in diabetic model rats. **Methods** LGP-CS/LC-NPs was prepared by solvent injection method. The mass ratio of LGP to lecithin, the mass ratio of chitosan to lecithin, and the pH value of acetic acid solution in LGP-CS/LC-NPs formulation were screened by single factor experiment. The particle size distribution, Zeta potential, microstructure and dissolution of LGP-CS/LC-NPs *in vitro* were investigated. The transmembrane transport of LGP-CS/LC-NPs was evaluated using Caco-2 cell monolayer model. The pharmacokinetics and pharmacodynamics of LGP suspensions and LGP-CS/LC-NPs was as followed: the mass ratio of LGP to lecithin was 1 : 3, the mass ratio of chitosan to lecithin was 1 : 20, the pH of acetic acid solution was 4—5. The particle size of LGP-CS/LC-NPs was (195.5  $\pm$  7.8) nm, the Zeta potential was (35.6  $\pm$  0.8) mV. The spherical "core-shell" structure of LGP-CS/LC-NPs was observed under Transmission Electron Microscope. The dissolution rate of LGP-CS/LC-NPs *in vitro* was significantly higher than that of LGP suspensions. LGP-CS/LC-NPs could effectively improve the transmembrane

收稿日期: 2023-09-13

**基金项目:**江苏省药学会科研基金项目(A202033);南京市药学会科研基金项目(2021YX007);南京市药学会科研基金项目(2021YX007);南京市药学会科研基金项目(2021YX019)

第一作者:沈英(1978一),女,本科,研究方向为医院药学研究。E-mail:sy202302061055@163.com。

<sup>\*</sup>通信作者:黄 刚,本科,主要研究方向为呼吸系统疾病的诊治。E-mail: 625361604@qq.com

transport capacity of drugs. Compared with LGP suspensions, after ig LGP-CS/LC-NPs, the bioavailability could be significantly improved, and the blood glucose level of diabetic model rats could be better controlled. **Conclusion** Chitosan and lecithin were used as carrier materials to prepare LGP-CS/LC-NPs, which could significantly improve the oral bioavailability and achieve good sugar control effect.

Key words: ligagliptin; self-assembled chitosan-lecithin nanoparticles; solvent injection method; transmembrane transport; bioavailability; hypoglycemic effect

利格列汀(LGP)是一种强效的、特异选择性的 二肽基肽酶4(DPP-4)抑制剂,通过升高活性肠促胰 岛素激素的浓度,以葡萄糖依赖性的方式刺激胰岛 素释放,降低体循环中的胰高血糖素水平[1]。LGP 属于生物药剂学分类系统(BCS)II类药物,具有首 关效应,且为P-糖蛋白(P-gp)的底物,导致其生物利 用度较低(29.5%)<sup>[2]</sup>。壳聚糖(CS)是通过甲壳类动 物壳中天然存在的多糖几丁质去乙酰化而得,属于 一种衍生的带正电荷的碱性多糖,生物相容性和黏 附性良好,可生物降解,已被美国食品药品管理 局(FDA)批准用作药物载体材料,其制备的纳米载 体可通过打开肠道上皮细胞的紧密连接促进药物 渗透和吸收<sup>[3]</sup>。磷脂(LC)属于一种带负电荷的两 亲性物质,主要成分是磷脂酰胆碱,是生物膜的主 要成分,生物相容性良好<sup>[4]</sup>。壳聚糖-磷脂自组装纳 米粒(CS/LC-NPs)是通过CS和LC的正负电荷间的 静电作用,以及氢键、范德华力和疏水作用等非共 价相互作用形成的球形"核-壳"结构纳米粒子,其球 核内部是主要由LC组成的致密脂质核,为包载和 递送脂溶性药物提供了理想的场所,核外则是由CS 形成的带正电的水合外壳,有助于纳米粒发挥CS 独特的生物学功能<sup>[5]</sup>。为此,本研究以CS和LC作 为载体材料,通过采用溶剂滴入工艺将LGP制备成 LGP壳聚糖-磷脂自组装纳米粒(LGP-CS/LC-NPs), 并通过大鼠体内药动学以及药效学实验评价其吸 收效果。

#### 1 材料

#### 1.1 仪器

JEM-1011型透射电子显微镜(日本电子株式会社);Zetasizer Nano ZS 90型激光粒度仪(英国马尔文公司);EWS-100RD型恒温磁力搅拌智能水浴锅(上海众濒科技有限公司);GA-3型血糖仪(三诺生物传感股份有限公司);透析袋(截留相对分子质量:12 000~14 000,上海源叶生物科技有限公司)。

#### 1.2 试药

LGP原料药(广州佰瑞医药有限公司,批号: 210214,质量分数为99.5%);LGP对照品(中国食品

药品检定研究院,批号:430047-202201,质量分数为99.0%);CS(脱乙酰度为95%,相对分子质量为120000~150000,湖南新绿方药业有限公司);LC(大豆磷脂,江苏彭瑞生物医药科技有限公司);冰醋酸(成都华邑药用辅料制造有限责任公司);四氧嘧啶(上海阿拉丁生化科技股份有限公司);DMEM培养基(苏州海星生物科技有限公司)。

#### 1.3 实验动物

SPF级Wistar大鼠,体质量200~250g,雌雄各半,购于南京市江宁区青龙山动物繁殖场,实验动物生产许可证号:SCXK(苏)2017-0001。本实验严格按照动物实验伦理要求进行操作,且通过南京中医药大学实验动物伦理委员会审批,审批编号:012008024104。

#### 1.4 细胞来源

Caco-2细胞购自赛百慷(上海)生物技术股份 有限公司。

## 2 方法与结果

#### 2.1 LGP-CS/LC-NPs制备

采用溶剂滴入法<sup>[6]</sup>制备LGP-CS/LC-NPs,具体 工艺:称取处方量的LC加入到5mL乙醇中,搅拌溶 解,再称取一定量的LGP加入到LC乙醇溶液中,搅 拌溶解,备用;另称取处方量的CS加入到45mL醋 酸水溶液中,搅拌溶解;磁力搅拌速度调至 2500 r·min<sup>-1</sup>,将LC乙醇溶液缓慢滴加到CS醋酸 溶液中,持续搅拌20min,溶液经0.45μm微孔滤膜 滤过除去不溶性颗粒,既得到LGP-CS/LC-NPs。

#### 2.2 粒径及 Zeta 电位测定

取LGP-CS/LC-NPs溶液0.5 mL,用醋酸钠缓冲 液(pH 5.0)稀释10倍,采用Zetasizer NanoZS动态 光散射法测定粒径分布和多分散系数(PDI),采用 Zetasizer NanoZS90电泳动态光散射法测定Zeta电 位,测量前样品均在25℃下平衡2 min,每份样品均 测定3次,取平均值。

#### 2.3 包封率测定

精密移取 LGP-CS/LC-NPs 溶液 5.0 mL 加入到 离心管中,使用高速离心机在 25 000 r·min<sup>-1</sup>速度下 离心1h,移取分离上层透明离心液1.0 mL至10 mL 量瓶中,加甲醇定容,得到待测液(游离药物);另取 LGP-CS/LC-NPs溶液1.0 mL至25 mL量瓶中,加甲 醇并在水浴超声,甲醇定容,得到待测液(总药物)。 将2份溶液分别采用 HPLC 法检测 LGP 含量<sup>[7]</sup>,进 而计算游离 LGP 质量(m<sub>游高</sub>)和 LGP 总质量(m<sub>意</sub>), 按照下列公式计算 LGP-CS/LC-NPs 的包封率。

包封率= $(m_{\&} - m_{\ddot{w}B})/m_{\&}$ 

#### 2.4 处方筛选

**2.4.1** LGP与LC质量比考察 固定处方中CS与LC质量比为1:15, 醋酸溶液pH值为5.0, 考察LGP与LC的质量比在1:1~1:6变化对LGP-CS/LC-NPs的粒径分布、Zeta电位和包封率的影响,结果见表1。

实验结果显示,LGP与LC不同质量比对LGP-CS/LC-NPs的粒径分布和包封率产生较大影响, LGP与LC的质量比从1:1增加至1:3时,纳米颗粒 的粒径和PDI趋于减小趋势,而包封率趋于增加趋势;当LGP与LC的质量比从1:4增加至1:6时,纳 米颗粒的粒径和PDI出现增加趋势,包封率基本不 变,说明LC用量较小则不利于药物的包封率,LC用 量较大时又会导致颗粒聚集,粒径增大;而不同 LGP与LC质量比对Zeta电位影响较小。经综合考 虑,确定LGP-CS/LC-NPs处方中LGP与LC的质量 比为1:3。

**2.4.2** CS与LC质量比考察 固定处方中LGP与LC的质量比为1:3,醋酸溶液pH值为5.0,考察CS与LC的质量比在1:5~1:30变化对LGP-CS/LC-NPs的粒径分布、Zeta电位和包封率的影响,结果见表2。

实验结果显示,CS与LC不同质量比对LGP-CS/LC-NPs的粒径分布和包封率产生较大影响,随 着处方中LC用量不断增加,纳米颗粒的粒径和PDI 趋于减小趋势,而包封率随着LC用量的增加表现 出先增加后减小趋势,而不同的CS与LC不同质量 比对Zeta电位基本不产生影响。综合考虑粒径与 包封率,确定LGP-CS/LC-NPs处方中CS与LC的质 量比为1:20。

2.4.3 醋酸溶液 pH 值考察 固定处方中 LGP 与 LC 的质量比为1:3,CS 与 LC 的质量比为1:20,考 察不同 pH 值醋酸溶液对 LGP-CS/LC-NPs 的粒径分 布、Zeta 电位和包封率的影响,结果见表3。

实验结果显示,醋酸溶液pH值变化对LGP-CS/ LC-NPs的粒径分布和包封率的影响较小,但对纳米 粒的Zeta电位影响较大,即随着醋酸溶液pH值的 升高,LGP-CS/LC-NPs的Zeta电位越小,这是由于

|         | 表1 LGP与LC质量比对LGP-CS/LC-NPs粒径、Zeta电位和包封率的影响 $(x \pm s, n=3)$                                                 |
|---------|-------------------------------------------------------------------------------------------------------------|
| Table 1 | Effect of LGP and LC mass ratio on particle size, Zeta potential and encapsulation efficiency of LGP-CS/LC- |

| NPs $(x \pm s, n = 3)$ |           |                     |            |                  |  |  |  |  |
|------------------------|-----------|---------------------|------------|------------------|--|--|--|--|
| LGP与LC质量比              | 粒径分布/nm   | PDI                 | Zeta 电位/mV | 包封率/%            |  |  |  |  |
| 1:1                    | 365.4±6.5 | 0.378±0.009         | 27.8±0.2   | 76.6±0.9         |  |  |  |  |
| 1:2                    | 289.5±7.7 | $0.316{\pm}0.011$   | 29.2±0.2   | 87.2±0.7         |  |  |  |  |
| 1:3                    | 218.1±4.1 | $0.274{\pm}0.005$   | 28.5±0.3   | $94.8 {\pm} 0.8$ |  |  |  |  |
| 1:4                    | 269.9±6.9 | $0.346 {\pm} 0.008$ | 28.8±0.1   | 95.2±0.9         |  |  |  |  |
| 1:5                    | 342.7±7.3 | $0.421 \pm 0.013$   | 27.7±0.2   | 95.7±1.1         |  |  |  |  |
| 1:6                    | 438.6±8.5 | $0.446{\pm}0.012$   | 28.1±0.3   | 96.2±1.3         |  |  |  |  |

表2 CS与LC质量比对LGP-CS/LC-NPs粒径、Zeta电位和包封效率的影响  $(x \pm s, n=3)$ 

| Table 2 | Effect of chitosan and | lecithin mass ratio or | a particle size | , Zeta potential and | d encapsulation | efficiency of LGF | P-CS/ |
|---------|------------------------|------------------------|-----------------|----------------------|-----------------|-------------------|-------|
|---------|------------------------|------------------------|-----------------|----------------------|-----------------|-------------------|-------|

| LC-NPs $(x \pm s, n=3)$ |                 |                     |          |                |  |  |  |
|-------------------------|-----------------|---------------------|----------|----------------|--|--|--|
| CS与LC质量比                | 粒径分布/nm         | Zeta 电位/mV          | 包封率/%    |                |  |  |  |
| 1:5                     | 473.8±7.3       | 0.358±0.015         | 29.1±0.2 | 80.1±0.6       |  |  |  |
| 1:10                    | 386.4±6.6       | $0.368 {\pm} 0.012$ | 27.8±0.3 | $88.6 \pm 0.5$ |  |  |  |
| 1:15                    | 224.6±5.2       | $0.226{\pm}0.007$   | 28.6±0.1 | 94.9±1.1       |  |  |  |
| 1:20                    | $187.5 \pm 5.8$ | $0.246{\pm}0.012$   | 27.3±0.3 | 96.4±0.6       |  |  |  |
| 1:25                    | 165.7±6.3       | 0.215±0.009         | 28.0±0.4 | 90.2±0.8       |  |  |  |
| 1:30                    | 162.9±4.1       | $0.226{\pm}0.008$   | 27.7±0.3 | 85.7±0.9       |  |  |  |

| -   |           | $I \subset NP_{\mathfrak{s}}(\overline{x+\mathfrak{s}}, n-3)$ |              | ·        |
|-----|-----------|---------------------------------------------------------------|--------------|----------|
|     | 粒径分布/nm   | PDI                                                           | Zeta 电位/mV   | 包封室/%    |
| 4.0 | 178.5±5.6 | 0.235±0.009                                                   | 37.6±0.4     | 95.7±0.7 |
| 5.0 | 181.3±6.4 | $0.236{\pm}0.007$                                             | 28.5±0.2     | 96.1±0.8 |
| 6.0 | 187.9±4.7 | $0.241 \pm 0.004$                                             | $14.5\pm0.3$ | 95.9±0.4 |

表3 醋酸溶液 pH 值对 LGP-CS/LC-NPs 粒径、Zeta 电位和包封率的影响  $(x \pm s, n=3)$ 

Table 3 Effects of pH value of acetic acid solution on particle size, Zeta potential and encapsulation efficiency of LGP-CS/

在高pH值下CS所电离出的NH<sup>+</sup>正电荷密度降低所 致。考虑到纳米粒表面的Zeta电位绝对值越大越 有利于其稳定<sup>[8]</sup>,因此确定醋酸溶液pH值为4~5 制备LGP-CS/LC-NPs。

通过上述单因素实验筛选结果,优化得到LGP-CS/LC-NPs的最优处方:LGP与LC的质量比为1: 3,CS与LC质量比为1:20,醋酸溶液pH值为4~5。

#### 2.5 LGP-CS/LC-NPs表征

**2.5.1** 粒径及Zeta 电位测定 按照"2.2"项下方法 测定LGP-CS/LC-NPs 的粒径及Zeta 电位,结果见图 1,结果显示,LGP-CS/LC-NPs 的平均粒径 为(195.5±7.8)nm,PDI为0.257±0.006,Zeta 电位

为(35.6±0.8)mV。

2.5.2 微观形态观察 移取LGP-CS/LC-NPs 滴加 到Formvar涂层的铜网格上,再滴加少量蒸馏水稀 释,轻轻摇动,使其均匀铺展,用滤纸吸取水分,向 样品中滴加2%磷钨酸钠溶液染色,通风处阴干,在 透射电镜下观察。电镜照片(图2)显示,LGP-CS/ LC-NPs为球形"核-壳"结构,其内部为致密"核",主 要由LC组成,其外部"壳"则为CS包裹<sup>[9]</sup>。

2.5.3 体外药物释放研究 通过透析法考察LGP-CS/LC-NPs的体外药物释放情况。取LGP原料药和LGP-CS/LC-NPs分别加入到透析袋(截留相对分子质量为12000~14000)中,密封好透析袋两端,



图 1 LGP-CS/LC-NPs的粒径分布和 Zeta 电位 Fig. 1 Particle size distribution and Zeta potential of LGP-CS/LC-NPs



图 2 LGP-CS/LC NPs 透射电镜图 Fig. 2 Transmission electron microscopy of LGP-CS/LC-NPs

放入到1L烧杯中,烧杯中加入500 mL的释放介质(介质pH为7.4磷酸盐缓冲液,含0.5%聚山梨酯80),放置于(37.0±0.5)℃水浴中保温,并以100 rmin<sup>-1</sup>速度维持恒定磁力搅拌,分别在预定时间点(1、2、4、6、8、12、18、24 h)移取5 mL介质溶液(并补加同温同体积空白介质),经0.22 μm 微孔滤膜滤过,HPLC法检测LGP含量<sup>[7]</sup>,计算药物累积释放率,绘制体外释药曲线,结果见图3。

体外释放曲线结果显示,LGP原料药在24h内 仅释放了30%左右,而LGP-CS/LC-NPs表现为缓慢 而持续的药物释放模式,在释药初期表现为突释行 为,这是来自于游离和吸附在CS表面的药物释放 导致;在释药后期表现为缓释行为,这是来自于包





#### LGP-CS/LC-NPs $(x \pm s, n=6)$

裹在纳米粒"核"内部的药物通过扩散或者载体材 料降解后药物释放所致<sup>[10]</sup>。

#### 2.6 LGP-CS/LC-NPs稳定性考察

将LGP-CS/LC-NPs分装到西林瓶中,分别放置 在(5±3)℃和(25±3)℃条件下,在不同时间点观察外 观,检测粒径分布、PDI、Zeta电位和包封率,结果见表4。

稳定性结果显示,LGP-CS/LC-NPs在(5±3)℃ 放置8周,其外观、粒径分布、PDI、Zeta电位和包封 率均未发生显著变化;而LGP-CS/LC-NPs在(25± 3)℃条件下放置8周,样品中出现少量絮状物,其粒 径明显增大,说明LGP-CS/LC-NPs温度较高条件下 放置易会发生凝聚,因此本研究制备的LGP-CS/ LC-NPs需在(5±3)℃条件下储存。

# 表4 LGP-CS/LC-NPs稳定性考察结果 ( $\bar{x}\pm s, n=3$ ) Table 4 Results of stability of LGP-CS/LC-NPs ( $\bar{x}\pm s, n=3$ )

| 时间/国  | (5±3)°C   |                     |            | (25±3)°C |            |                   |            |          |
|-------|-----------|---------------------|------------|----------|------------|-------------------|------------|----------|
| □□□/□ | 粒径/nm     | PDI                 | Zeta 电位/mV | 包封率/%    | 粒径/nm      | PDI               | Zeta 电位/mV | 包封率/%    |
| 0     | 189.7±4.9 | $0.246{\pm}0.005$   | 34.6±0.5   | 95.8±0.3 | 189.7±4.9  | 0.246±0.005       | 34.6±0.5   | 95.8±0.3 |
| 2     | 194.8±6.7 | $0.251 {\pm} 0.006$ | 35.2±0.3   | 95.3±0.4 | 226.3±4.6  | $0.256 \pm 0.008$ | 34.8±0.2   | 95.1±0.3 |
| 4     | 188.4±4.8 | $0.249{\pm}0.004$   | 34.9±0.4   | 96.1±0.5 | 318.7±10.2 | $0.337 \pm 0.010$ | 35.1±0.6   | 94.1±0.3 |
| 8     | 201.5±5.6 | $0.256{\pm}0.007$   | 34.8±0.5   | 95.1±0.2 | 468.9±16.8 | $0.489 \pm 0.018$ | 33.8±0.3   | 90.6±0.3 |

#### 2.7 LGP-CS/LC-NPs在Caco-2细胞的跨膜转运

取传代 Caco-2 细胞加入到 DMEM 培养基(含 150 mg·mL<sup>-1</sup>胎牛血清、10 mg·mL<sup>-1</sup>非必需氨基酸、 100 U·mL<sup>-1</sup>青霉素和 100 μg·mL<sup>-1</sup>链霉素)中在 37 °C、5% CO<sub>2</sub>培养箱中孵化,待细胞生长达80%~ 90% 融合时,用胰蛋白酶-EDTA 溶液进行消化,以 每孔 7.5×10<sup>4</sup> 个细胞密度接种到 Transwell 细胞培 养小室(直径 12 mm、孔径 0.4 μm、表面积 0.33 cm<sup>2</sup>) 表面,并放置在 24 孔板中,于 37 °C、5% CO<sub>2</sub>条 件下孵化 21 d,每 3 天更换 1 次细胞培养基。测 量单层细胞跨膜电阻值(TEER)评估 Caco-2 细 胞单层的完整性, TEER 值》600 Ω·cm<sup>-2</sup>后用于 细胞转运研究。

LGP 原料药和 LGP-CS/LC-NPs 均使用 HBSS 溶液(pH 7.4)稀释至药物质量浓度为20 μg·mL<sup>-1</sup>。 使用 37 ℃ HBSS 溶液洗涤细胞,并在 37 ℃、5% CO<sub>2</sub> 培养箱中平衡 30 min。测定药物从 Caco-2 细胞膜 顶端(AP)至基底外侧(BL)转运量操作如下:在 AP 端中加入 250 μL 药物溶液,在 BL 端中加入 800 μL HBSS 溶液;同样,测定药物从 Caco-2 细胞膜 BL 至 AP转运量操作如下:在 BL 端中加入 250 μL 药物溶 液,在AP端中加入800 μL HBSS 溶液。在预先设定 的时间间隔(30、60、90、120 min)从BL端或AP端中 取100 μL 溶液(并立即加入同体积的HBSS 空白溶 液),通过 HPLC 检测 LGP 含量<sup>[7]</sup>,每组实验重复3 次,取平均值。根据下列公式计算表观渗透率(P<sub>app</sub>) 和外排比(ER),结果见表5。

#### $P_{app} = dQ/dt \times 1/A \times 1/C_0$

$$ER = P_{app(BL \rightarrow AP)} / P_{app(AP \rightarrow BL)}$$

dQ/dt为LGP的渗透速率,A为Transwell 膜表面积, $C_0$ 为LGP 药液初始质量浓度

跨膜转运结果显示,LGP原料药从Caco-2细胞 膜AP端至BL端的P<sub>app</sub>值为(0.83±0.11)×10<sup>-6</sup>cm·s<sup>-1</sup>,

### 表5 LGP原料药和LGP-CS/LC-NPs在Caco-2细胞中的

#### $P_{app}$ 值和ER(x±s,n=3)

 Table 5
 Apparent permeability coefficients and ER of

LGP and LGP-CS/LC-NPs in Caco-2 cell  $(x\pm s, n=3)$ 

| 花州加           | $P_{\rm app}/(	imes 10$ | ED              |      |
|---------------|-------------------------|-----------------|------|
| 约初            | AP→BL                   | BL→AP           | EK   |
| LGP原料药        | 0.83±0.11               | $1.76 \pm 0.18$ | 2.12 |
| LGP-CS/LC-NPs | 2.24±0.22               | 2.08±0.17       | 0.93 |

从 BL 端至 AP 端的  $P_{app}$ 值为(1.76±0.18)×10<sup>-6</sup> cm·s<sup>-1</sup>, ER 值为 2.12,这归因于 LGP 是 P-gp 的底物,药物与 P-gp 转运体结合后被泵回肠道内,阻碍药物吸收, 这是导致 LGP 渗透性差的原因<sup>[11]</sup>;而 LGP-CS/LC-NPs 从 Caco-2 细胞膜 AP 端至 BL 端的  $P_{app}$  值 为(2.24±0.22)×10<sup>-6</sup> cm·s<sup>-1</sup>,从 BL 端至 AP 端的  $P_{app}$ 值为(2.08±0.17)×10<sup>-6</sup> cm·s<sup>-1</sup>, ER 值为 0.93,这主 要归因于 LGP-CS/LC-NPs 外表面由 CS 包裹,能够 黏附在细胞表面,通过短暂地打开细胞之间的紧密 连接,从而增加了药物的渗透性<sup>[12]</sup>。

#### 2.8 LGP-CS/LC-NPs 药动学研究

采用Wistar大鼠,体质量为200~250g,饲养环 境温度为20~25℃,相对湿度为45%~55%,饲喂 标准饲料,自由饮水,实验前12h禁食不禁水。将 大鼠随机分为LGP原料药组和LGP-CS/LC-NPs组, 每组6只,两组大鼠分别ig给予LGP混悬液和LGP-CS/LC-NPs 0.5 mL,给药剂量均为5.0 mg·kg<sup>-1[13]</sup>。 分别于给药前和给药后2、4、8、12、24、36、48 h<sup>[2]</sup>采 用毛细管从大鼠(用乙醚麻醉后)眶后神经丛取血 0.4~0.6 mL至肝素化离心管中,10 000 r·min<sup>-1</sup>离心 10 min,取上层血浆在-20 ℃保存,用于进一步分 析。取出冷冻血浆在室温下缓慢解冻,精密移取血 浆100 μL 至尖底离心管中,加入醋酸乙酯400 μL, 涡旋混合 10 min, 10 000 r·min<sup>-1</sup>离心 10 min, 移取醋 酸乙酯层至另一尖底离心管中,氮气挥干有机溶 剂。测定前加入乙腈100 µL 溶解离心管中的残留 物,并10 000 r·min<sup>-1</sup>离心10 min,取上清液采用 HPLC法检测LGP含量<sup>[7]</sup>,计算血药浓度。药动学 参数使用WinNonlin药动学软件计算,血药浓度-时 间曲线见图4,药动学参数结果见表6,数据均以 $\bar{x}$  ± s形式表示,采用 SPSS 22.0 软件中 t 检验对数据进 行统计分析,P<0.05为差异有统计学意义。药动 学结果显示,与大鼠 ig LGP 混悬剂相比,大鼠 ig LGP-CS/LC-NPs 后,其LGP半衰期(t<sub>1/2</sub>)和达峰时 间 $(t_{max})$ 显著延长(P<0.05),达峰浓度( $C_{max}$ )显著增 加(P<0.05),相对生物利用度为221%。

#### 2.9 药效学研究

采用Wistar大鼠,体质量为200~250g,饲养环 境温度为20~25℃,相对湿度为45%~55%,饲喂标 准饲料,自由饮水。用0.9%氯化钠溶液配制四氧嘧 啶溶液,并按剂量为150 mg·kg<sup>-1</sup>经ip给予大鼠,诱 导2型糖尿病大鼠模型<sup>[14]</sup>。在注射四氧嘧啶72h后 监测空腹血糖水平,空腹血糖水平大于11.1 mmol·L<sup>-1</sup> 的大鼠为糖尿病模型大鼠。将模型大鼠随机分为





Fig. 4 Plasma concentration-time curve of LGP suspensions and LGP-CS/LC-NPs in rats  $(x \pm s, n=6)$ 

表6 LGP 原料药和 LGP-CS/LC-NPs 药动学参数( $x \pm s$ , n=6)

Table 6Pharmacokinetic parameters of LGP suspensionsand LGP-CS/LC-NPs  $(x \pm s, n=6)$ 

| 会粉                  | 单位                             | ICD 百割菇  | LGP-CS/              |
|---------------------|--------------------------------|----------|----------------------|
| 参奴                  |                                | LUP 际科约  | LC-NPs               |
| $t_{1/2}$           | h                              | 24.2±2.1 | 31.5±3.4*            |
| $t_{\rm max}$       | h                              | 4.1±0.5  | $11.5{\pm}0.7^{*}$   |
| $C_{\max}$          | $\mu g \cdot m L^{-1}$         | 5.7±1.1  | 12.6±1.9*            |
| $AUC_{0\sim\infty}$ | $h \cdot \mu g \cdot m L^{-1}$ | 98.5±6.4 | $217.3{\pm}12.6^{*}$ |
| 相对生物利用度             | %                              |          | 221.0                |

与LGP原料药比较:\*P<0.05。

 $^*P < 0.05 vs$  LGP drug substance.

模型组、LGP原料药组和LGP-CS/LC-NPs组,同时 取正常大鼠作为对照组。对照组和模型组大鼠 ig 等量 0.9%氯化钠溶液,LGP原料药组和LGP-CS/ LC-NPs组大鼠分别 ig 给予LGP 混悬液和LGP-CS/ LC-NPs 0.5 mL, 给药剂量均为 5.0 mg·kg<sup>-1[13]</sup>,分别于给药前和给药后 2、4、8、12、 24、36、48 h采用毛细管从大鼠(用乙醚麻醉后)眶后 神经丛取血 0.1 mL,使用血糖仪测定血糖水平,结 果见图 5。

结果显示,与对照组比较,模型组大鼠各时间 点血糖水平均显著升高(P<0.05);与模型组比较, LGP 原料药组和LGP-CS/LC-NPs组给药后各时间 点大鼠血糖水平均明显降低(P<0.05),证实了LGP 的降血糖活性<sup>[15-16]</sup>。给药后同一时间点,LGP-CS/ LC-NPs组大鼠血糖水平显著低于LGP原料药组(P< 0.05),说明LGP-CS/LC-NPs较LGP原料药具有更 强的降糖作用。推测原因为LGP-CS/LC-NPs增加 了药物的渗透性,提高了药物生物利用度;另外, LGP 原料药组给予LGP 混悬液后血糖水平降至最



与对照组比较:\*P < 0.05;与模型组比较:\*P < 0.05。 \*P < 0.05 vs control group; \*P < 0.05 vs model group.

# 图 5 糖尿病模型大鼠给予 LGP 原料药和 LGP-CS/LC-NPs 后血糖水平-时间曲线 (x±s, n=6) Fig. 5 Blood glucose level-time curve of rats administrated

# with LGP and LGP-CS/LC NPs $(x\pm s, n=6)$

低时间是在给药后的4h处,该时间点与LGP 混悬 液在药动学研究中观察到的t<sub>max</sub>值基本一致;LGP-CS/LC-NPs组给予LGP-CS/LC-NPs后血糖水平降 至最低时间是在给药后的12h处,该时间点同样与 药动学研究中观察到的LGP-CS/LC-NPs的t<sub>max</sub>一 致,这也表明LGP-CS/LC-NPs可长时间维持有效血 糖水平,减少给药次数,达到了缓释效果,具有长效 控糖效果。

#### 3 讨论

CS-LC自组装纳米粒的制备技术包括:喷雾干燥法、乳化交联法、离子凝聚注入法和溶剂滴入法 等,其中溶剂滴入法由于操作简便,不需要特殊设 备,且易于规模化生产,已成为CS-LC自组装纳米 粒的常用制备方法被广泛应用<sup>[17]</sup>。溶剂滴入法的 生产工艺如下:先将药物溶解在LC的乙醇溶液中, 再将该溶液直接滴注入处于高速搅拌状态下的CS 乙酸水溶液中,即可成功制备CS-LC自组装纳米 粒,且不涉及任何中间产物,通过处方优化可获得 较高的药物包封率。

采用溶剂滴入法制备成CS-LC自组装纳米粒, 其制备原理是基于带正电荷的CS与带负电荷的LC 之间的静电相互作用<sup>[18]</sup>,其中LC分子形成内核,CS 分子形成亲水外壳来保护内部结构,药物可通过物 理包埋或与LC的静电相互作用包载于纳米粒的脂 质核心中。由于CS-LC自组装纳米粒外表面被带 有正电荷的CS所包裹,能够与带负电荷的肠道表 面细胞通过静电相互作用,增强了黏附性,有利于 打开细胞之间的紧密连接,促进药物渗透吸收<sup>[19]</sup>。 近年来,国内外对CS-LC自组装纳米粒进行了大量 的实验研究,并拓展了其应用领域<sup>[20]</sup>。 本研究首先通过单因素实验筛选确定了LGP-CS/LC-NPs处方中药物与LC的质量配比,CS与LC 的质量配比,以及醋酸溶液pH值,并通过体内外实 验评价了LGP-CS/LC-NPs的质量,研究结果显示, LGP-CS/LC-NPs呈球形"核-壳"结构,粒径在200 nm左 右分布,在介质pH为7.4磷酸盐缓冲液中表现为缓 慢而持续的药物释放模式;Caco-2细胞跨膜转运研 究表明,LGP-CS/LC-NPs能够促进药物吸收,减少 药物外排;大鼠口服LGP-CS/LC-NPs后,其相对口 服生物利用度显著提高,并可长时间维持有效的控 制血糖水平作用,达到了长效的控糖效果。

利益冲突 所有作者均声明不存在利益冲突

#### 参考文献

- Agrawal R, Jain P, Dikshit S N. Linagliptin: A novel methylxanthin based approved dipeptidyl peptidase-4 inhibitor [J]. Curr Drug Targets, 2012, 13(7): 970-983.
- [2] Shah P, Chavda K, Vyas B, et al. Formulation development of linagliptin solid lipid nanoparticles for oral bioavailability enhancement: Role of P-gp inhibition [J]. Drug Deliv Transl Res, 2021, 11(3): 1166-1185.
- [3] Liu L J, Ma Q M, Wang S N, et al. Efficient epidermal delivery of antibiotics by self-assembled lecithin/chitosan nanoparticles for enhanced therapy on epidermal bacterial infections [J]. Int J Biol Macromol, 2022, 218: 568-579.
- [4] Dawoud M H S, Mannaa I S, Abdel-Daim A, et al. Integrating artificial intelligence with quality by design in the formulation of lecithin/chitosan nanoparticles of a poorly water-soluble drug [J]. AAPS Pharm Sci Tech, 2023, 24(6): 169.
- [5] 马庆明, 金玉琼, 曹洁, 等. 壳聚糖-磷脂自组装纳米粒 载药系统的研究进展 [J]. 中国医药工业杂志, 2021, 52
  (5): 619-627.
  Ma Q M, Jin Y Q, Cao J, et al. Recent progress of self-

assembly-based chitosan/phospholipid nanoparticles for advanced drug delivery [J]. Chin J Pharm, 2021, 52(5): 619-627.

- [6] Tan Q, Liu W D, Guo C Y, et al. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery [J]. Int J Nanomed, 2011, 6: 1621-1630.
- [7] Hanafy A, Mahgoub H. A validated HPLC method for the determination of linagliptin in rat plasma. application to a pharmacokinetic study [J]. J Chromatogr Sci, 2016, 54 (9): 1573-1577.
- [8] Bhattacharjee S. DLS and zeta potential What they are

and what they are not? [J]. J Control Release, 2016, 235: 337-351.

- [9] Saha P, Singh P, Kathuria H, et al. Self-assembled lecithin-chitosan nanoparticles improved rotigotine noseto-brain delivery and brain targeting efficiency [J]. Pharmaceutics, 2023, 15(3): 851.
- [10] Fereig S A, El-Zaafarany G M, Arafa M G, et al. Selfassembled tacrolimus-loaded lecithin-chitosan hybrid nanoparticles for *in vivo* management of psoriasis [J]. Int J Pharm, 2021, 608: 121114.
- [11] Fuchs H, Runge F, Held H D. Excretion of the dipeptidyl peptidase-4 inhibitor linagliptin in rats is primarily by biliary excretion and P-gp-mediated efflux [J]. Eur J Pharm Sci, 2012, 45(5): 533-538.
- [12] Hafner A, Lovrić J, Voinovich D, et al. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers [J]. Int J Pharm, 2009, 381(2): 205-213.
- [13] Shaik M, Vanapatla S R. Enhanced oral bioavailability of linagliptin by the influence of Gallic acid and ellagic acid in male Wistar albino rats: Involvement of p-glycoprotein inhibition [J]. Drug Metab Pers Ther, 2019, doi: 10.1515/ dmpt-2018-0020.
- [14] 陈恩玉,宋婧.四氧嘧啶诱导大鼠糖尿病模型的建立
  [J].糖尿病新世界, 2018, 21(18): 18-20.
  Chen E Y, Song J. Establishment of diabetic model induced by alloxan in rats [J]. Diabetes New World, 2018, 21(18): 18-20.
- [15] 王丽媚, 张凤莲. 消渴清颗粒联合利格列汀治疗血糖控

制不佳的2型糖尿病的临床研究 [J]. 药物评价研究, 2020, 43(5): 875-879.

Wang L M, Zhang F L. Clinical study of Xiaokeqing Granule combined with gliclazide in the treatment of type 2 diabetes mellitus with poor blood sugar control [J]. Drug Eval Res, 2020, 43(5): 875-879.

- [16] 陈诚, 邓斌. 恩格列净联合利格列汀治疗2型糖尿病的临床研究 [J]. 药物评价研究, 2020, 43(5): 880-884.
  Chen C, Deng B. Clinical study on the treatment of type 2 diabetes mellitus with englejing combined with gliclazide [J]. Drug Eval Res, 2020, 43(5): 880-884.
- [17] Naskar S, Koutsu K, Sharma S. Chitosan-based nanoparticles as drug delivery systems: A review on two decades of research [J]. J Drug Target, 2019, 27(4): 379-393.
- [18] 董武军,王玮珏,周君卓,等.磷脂-壳聚糖自组装纳米 粒的研究进展 [J]. 中国药房, 2019, 30(8): 1143-1147.
  Dong W J, Wang W J, Zhou J Z, et al. Research progress of phospholipid-chitosan self-assembled nanoparticles [J]. China Pharm, 2019, 30(8): 1143-1147.
- [19] Dou T Y, Wang J, Han C K, et al. Cellular uptake and transport characteristics of chitosan modified nanoparticles in Caco-2 cell monolayers [J]. Int J Biol Macromol, 2019, 138: 791-799.
- [20] Liu L Y, Zhou C P, Xia X J, et al. Self-assembled lecithin/ chitosan nanoparticles for oral insulin delivery: Preparation and functional evaluation [J]. Int J Nanomed, 2016, 11: 761-769.

[责任编辑 刘东博]