UPLC-MS/MS 法测定奥美沙坦酯中7个亚硝胺类基因毒性杂质

袁 松 1#, 冯玉飞 1#, 于颖洁 1, 黄海伟 1*, 丁 建 2*

- 1. 中国食品药品检定研究院, 化学药品质量研究与评价重点实验室, 北京 102629
- 2. 常州市食品药品监督检验中心, 江苏 常州 213022

摘 要:目的 建立超高效液相色谱-串联质谱法(UPLC-MS/MS)测定奥美沙坦酯中7个基因毒性杂质:N-亚硝基二甲胺、N-亚硝基-4-甲基-4-氨基丁酸、N-亚硝基二乙胺、N-亚硝基乙基异丙基胺、N-亚硝基二异丙胺、N-亚硝基二丙胺、N-亚硝基二万胺。方法 采用 Agilent poroshell PFP(100 mm×2.1 mm,2.7 μ m)色谱柱;流动相为0.1%甲酸水溶液(A)-甲醇(B)梯度洗脱;体积流量 0.4 mL/min,柱温 40 °C;采用 APCI 离子源正离子扫描,多反应监测(MRM)模式下,对7个基因毒性杂质同时进行定量检测。结果 各杂质质量浓度在 $1 \sim 100 \, \text{ng/mL}$ 内具有良好线性关系,r > 0.995;低、中、高 $3 \uparrow 0.00 \, \text{cm}$ 加样回收率(n = 3)为83%~117%,RSD值为0.8%~4.1%,平均加样回收率为87%~106%;检测限范围为0.02~0.19 $\frac{1}{2}$ 限为 $0.06 \sim 0.65 \, \text{ng/mL}$ 。4 批奥美沙坦酯样品中均未检出杂质。结论 该方法灵敏度高,专属性强,可用于测定奥美沙坦酯原料药中7个亚硝胺类杂质,为奥美沙坦酯的质量控制提供参考。

关键词: 超高效液相色谱-串联质谱; 奥美沙坦酯; 亚硝胺类杂质; 基因毒性杂质; 定量分析

中图分类号: R927.1 文献标志码: A 文章编号: 1674-6376(2021)02-0356-06

DOI: 10.7501/j.issn.1674-6376.2021.02.014

Determination of seven N-nitrosamines genotoxic impurities in olmesartan medoxomil by UPLC-MS/MS

YUAN Song¹, FENG Yufei¹, YU Yingjie¹, HUANG Haiwei¹, DING Jian²

- 1. NMPA Key Labboratory for Quality Research and Evaluation of Chemical Drugs, National Institute for Food and Drug Control, Beijing 102629, China
- 2. Changzhou Center for Food and Drug Control, Jiangsu 213022, China

Abstract: Objective To establish a UPLC-MS/MS analytical method for the determination of seven N-nitrosamines genotoxic *N*-nitroso-*N*-methyl-4-aminobutyric impurities(*N*-nitroso-dimethylamine, acid, *N*-nitroso-diethylamine, isoprosylamine, N-nitroso-diisopropylamine, N-nitroso-dipropylamine and N-nitroso-dibutylamine) in olmesartan medoxomil. Methods The separation was performed on an Agilent poroshell PFP (100 mm × 2.1 mm, 2.7 μm) column with the mobile phase consisting of 0.1% formic acid aqueous solution (mobile phase A) and methanol (mobile phase B) by gradient elution at a flow rate of 0.4 mL/min and the column temperature was 40 °C. Multiple reaction monitoring (MRM) was performed on a triple quadripole mass spectrometer equipped with a APCI source in positive mode to quantitative detection of seven genotoxic impurities. Results The calibration curve was linear for seven compounds in the range of 1 - 100 ng/mL, r > 0.995. The recoveries (n = 3) of low, middle, high adding concentrations were 83% — 117%, RSD were 0.8% — 4.1%, average spike recoveries range were 87% — 106%. The limit of detection was 0.02-0.19 ng/mL, and the limit of quantification was 0.06-0.65 ng/mL. No impurities were detected in four batches samples. Conclusion The method is sensitive, accurate, which is applicable for quantifications of seven N-Nitrosamines genotoxic impurities in olmesartan medoxomil. The method can provided a reference for the control of nitrosaminies impurities in olmesartan medoxomil.

Key words: UPLC-MS/MS; olmesartan medoxomil; nitrosamines impurities; genotoxic impurities; quantitative analysis

收稿日期: 2020-07-06

基金项目: 国家重大研发项目(2016YFE0205400)

冯玉飞,主要从事药品质量分析研究。Tel:13910847887 E-mail:Fengyf@nifdc.org.cn

[#]共同第一作者: 袁 松,硕士,主要研究方向为药品质量分析。Tel:(010)53851267 E-mail:yuansong@nifdc.org.cn

^{*}通信作者: 黄海伟,研究员,主要从事药品质量分析研究。Tel:13601256446 E-mail:huanghw@nifdc.org.cn

丁 建,研究员,主要从事药品质量分析研究。Tel:(0519)86679061 E-mail:13861272168@139.com

奥美沙坦酯(olmesartan medoxomil)经胃肠道 吸收水解为奥美沙坦,后者通过选择性阻断血管紧 张素II(AngII)与血管平滑肌 AngII受体的结合而阻 断AngII收缩血管作用,从而产生降血压作用[1]。奥 美沙坦酯由日本 Sankyo 和美国 Forest Laboratories 共同研发,2002年5月经美国食品药品监督管理 局(FDA)批准以商品名Benicar™在美国上市,中国 于2005年批准进口。奥美沙坦酯对不同程度的高 血压患者都有很好的疗效,在减少干咳等不良反应 方面具有显著优势[2],在降低舒张压等疗效方面明 显优于同类产品,被视为一线降压药的最佳选择[3]。

N-亚硝胺类化合物的结构式为 $R_1(R_2)=N-N=O$,其 中R₁和R₂为烷基或芳烃。N-亚硝胺类化合物已被 证实具有致癌作用,且脂肪链越短的N-亚硝胺类化 合物的致癌风险越大[4]。2017年世界卫生组织发布 的致癌清单中,有近16个短脂肪链的N-亚硝胺类化 合物被列为2类致癌物质,其中N-亚硝二甲胺和N-亚硝基二乙胺均为2A类致癌物质。奥美沙坦酯化 学结构中存在1个四氮唑功能基团,原料药的合成 路线中如使用叠氮化物或亚硝酸盐等作为淬灭剂、 合成路线中使用了甲酰胺类溶剂,均有可能引入N-亚硝胺类基因毒性杂质,并带入最终产品[5]。奥美 沙坦酯为长期用药,需要对其潜在基因毒性杂质进 行研究和控制,基因毒性杂质在极低浓度时即可能 导致基因突变,导致肿瘤的发生,因此,在药物中的 限度非常低,从而对检测方法灵敏度和专属性具有 非常高的要求。

2018年7月至今,多个国家的药品监管机构发 布了血管紧张素受体拮抗剂(ARB)类药物中N-亚 硝胺类杂质通用检查方法[6-13],但这些方法以及文献 报道[14]最多同时只能检测1~3个N-亚硝胺类杂质, 无法满足奥美沙坦酯中多种 N-亚硝胺类杂质同时 检查的需求。因此,本研究拟采用超高效液相色谱-串联质谱(UPLC-MS/MS)建立奥美沙坦酯中N-亚 硝基二甲胺(NDMA)、N-亚硝基二乙胺(NDEA)、N-亚硝基二正丙胺(NDPA)、N-亚硝基二丁 胺(NDBA)、N-亚硝基乙基异丙基胺(NEiPA)、N-亚 硝基二异丙胺(NDiPA)和N-亚硝基-4-甲基-4-氨基 丁酸(NMBA)共7个N-亚硝胺类杂质的测定方法, 为奥美沙坦酯中基因毒性杂质的检查和质量控制 提供依据。

1 材料

1.1 仪器

Agilent1290 Infinity II -6470QQQ 液质联用

仪(美国 Agilent 公司),配有大气压化学离子 源(APCI)以及MassHunter数据处理系统;XPE26电 子天平(0.001 mg,瑞士 Mettler Toledo 公司); XP205DR 电子天平(0.01 mg,瑞士 Mettler Toledo 公 司);Milli-Q超纯水仪(美国Millipore公司)。

1.2 试药

NDMA 对照品(批号 510166-201902,质量分数 97.8%,中国食品药品检定研究院),NDEA对照 品(批号510168-201902,质量分数99.7%,中国食品 药品检定研究院), NMBA对照品(批号15-KPA-33, 质量分数 100%, Trc 公司), NEiPA 对照品(批号 34358XM, 质量浓度 100 μg/mL, Bepure 公司), NDiPA 对照品(批号LN40778,质量分数98%,J&K 公司), NDPA 对照品(批号2-JES-152-1,质量分数 100%, Trc 公司), NDBA 对照品(批号G135577,质 量分数 99.4%, Dr. Ehrenstorfor GmbH 公司); 甲 醇(质谱级、Fisher Scientific公司);甲酸(质谱级、 Merck 公司); 奥美沙坦酯原料药(批号 AM018-0504、AM0180505、AM0180506、AM0180507,北京 福元医药股份有限公司提供)。

2 方法与结果

2.1 色谱条件

UPLC色谱:采用 Agilent poroshell PFP(100 mm× 2.1 mm, 2.7 μm)色谱柱, 泵混合器与进样器之间接 Agilent Poroshell 120 EC- C_{18} (50 mm \times 4.6 mm, 2.7 μ m) 色谱柱;以0.1%甲酸水溶液为流动相A,甲醇为流 动相B,梯度洗脱:0.0~1.5 min,10%B;1.5~3.0 min, 10%~30%B; 3.0~5.0 min, 30%~50%B; 5.0~7.0 min, $50\% \sim 55\%B$; $7.0 \sim 9.0 \text{ min}$, $55\% \sim 95\%B$; $9.0 \sim$ 10.0 min, 95%B; $10.0\sim10.1$ min, $95\%\sim10\%B$; 10.1~12.0 min,10%B。体积流量0.4 mL/min,柱温 40 ℃, 进样体积 2 μL。

质谱:采用大气压化学离子源(APCI),优化后 的参数如下:干燥气温度250℃,干燥气体积流 量 4 L/min,雾化气压力 241.325 kPa,鞘气温度 350 ℃, 电离电压 1 500 V, 电晕针电流 6 µA。多反 应监测(MRM)模式,监测时间0~7.85 min。其他 实验参数见表1。

2.2 对照品与供试品溶液的配制

2.2.1 混合对照品溶液的配制 (1)精密称取 NDMA 对照品 9.741 mg、NDEA 对照品 10.95 mg、 NDiPA 对照品 10.391 mg、NDPA 对照品 10.049 mg、 NDBA对照品10.133 mg和NMBA对照品0.996 mg,分 别置100 mL量瓶中,用甲醇溶解并稀释至刻度,摇

表 1 7个杂质的 MRM 条件

Table 1 MRM acquisition parameters for seven impurities

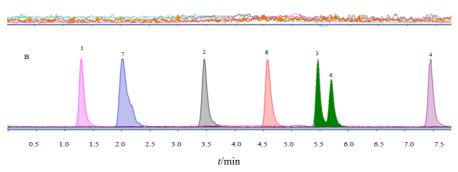
杂质	母离子/	子离子/	碎裂电	碰撞电
	(m/z)	(m/z)	压/V	压/V
NDMA	75.1	58.0	90	10
		43.1*	90	16
		117.1*	75	2
NMBA	147.1	87.1	75	10
		44.2	75	14
NEiPA	117.1	75.0^{*}	70	6
		47.1	70	14
NDEA	103.1	75.1*	70	7
		47.1	70	13
NDiPA	131.1	89.1*	70	4
		47.1	70	12
NDPA	131.2	89.1	80	6
		43.1*	80	12
NDBA	159.2	57.1*	80	12
		41.1	80	21

^{*-}定量离子

匀,作为以上各杂质的对照品储备液;精密量取 NEiPA对照品溶液1.0 mL,置10 mL量瓶中,用甲醇稀释至刻度,摇匀,作为NEiPA的对照品储备液。分别精密量取 NDMA、NDEA、NDiPA、NDPA和 NDBA对照品储备液0.5 mL、NMBA和NEiPA对照品储备液5.0 mL,置同一50 mL量瓶中,用甲醇稀释至刻度,摇匀,作为杂质对照品的混合储备液。(2)精密量取杂质对照品的混合储备液1.0、2.0、1.0、2.0 mL,分别置100、100、20、20 mL量瓶中,用甲醇稀释至刻度,摇匀,制成每1 mL中分别约含10、20、50、100 ng的混合

对照品溶液;精密量取100 ng/mL的混合对照品溶液1.0、2.0、5.0 mL,分别置100 mL量瓶中,用甲醇稀释至刻度,摇匀,制成每1 mL中分别约含1、2、5 ng的混合对照品溶液。以1、2、5、10、20、50、100 ng/mL的溶液作为混合线性对照品溶液。

2.2.2 供试品溶液的配制 取奥美沙坦酯原料药约 100 mg,精密称定,置5 mL量瓶中,加甲醇适量,超声使溶解,放至室温后,用甲醇稀释至刻度,摇匀,即得。


2.3 7个亚硝胺类杂质的定性鉴别

2.3.1 专属性实验 取甲醇、20 ng/mL混合杂质对照品溶液 2 μL注入色谱仪,在"2.1"项下色谱条件下分别进样,记录色谱图(图 1)。在所建立的色谱和质谱条件下,7个亚硝胺类杂质的保留时间分别为1.30、2.04、3.48、4.59、5.45、5.69、7.33 min,7个杂质峰完全分离。由于NMBA存在顺反异构体,其色谱峰存在肩峰,定量分析时合并峰面积进行计算。空白溶剂对检测无干扰。

2.3.2 线性关系考察 分别取"2.2.1"项下各个质量浓度的混合线性对照品溶液 2 μL注入色谱仪进行测定,以质量浓度为横坐标(X),峰面积为纵坐标(Y)进行线性回归,见表 2。结果显示各杂质在其线性范围内与其峰响应值呈良好的线性关系。

2.3.3 检测下限与定量下限 取"2.2.1"项下制备的杂质对照品混合储备液,用甲醇逐级稀释,直至各杂质峰的信噪比(S/N)约为10时的质量浓度作为定量限(LOQ),S/N约为3时的浓度作为检测限(LOD),各杂质的LOD和LOQ结果见表2。

2.3.4 进样精密度和重复性 取"2.2.1"项下制备的1 ng/mL的混合线性对照品溶液,按照"2.1"项下

1-NDMA, 2-NDEA, 3-NDPA, 4-NDBA, 5-NEiPA, 6-NDiPA, 7-NMBA

图 1 甲醇(A)和混合对照品溶液(B)提取离子流色谱图

Fig. 1 Extracted ion chromatograms of methanol (A) and mixed reference solution (B)

^{*-} quantitative ion

表 2 7个杂质回归方程和相关系数、LOD和LOQ

Table 2 Regression equatuins and correlation coefficients, determination limit and detection limit of seven impurities

杂质名称	回归方程	r	$LOD/(ng \cdot mL^{-1})$	$LOQ/(ng \cdot mL^{-1})$
NDMA	Y=3507.1 X+629.4	0.999 8	0.19	0.65
NMBA	Y=1767.8 X+49.1	0.999 9	0.15	0.51
NDEA	<i>Y</i> =1 026.0 <i>X</i> -788.2	0.999 5	0.08	0.27
NEiPA	<i>Y</i> =4 388.3 <i>X</i> -3704.7	0.999 9	0.09	0.30
NDiPA	<i>Y</i> =3 741.2 <i>X</i> —3988.8	0.999 6	0.02	0.06
NDPA	<i>Y</i> =3 847.8 <i>X</i> - 3390.9	0.999 7	0.04	0.12
NDBA	<i>Y</i> =3 370.9 <i>X</i> —2242.6	0.999 8	0.14	0.42

色谱条件连续进样6次,计算得各杂质峰面积的相对标准偏差(RSD)值分别为2.84%、2.03%、3.83%、1.33%、3.50%、2.69%、3.03%,结果表明进样精密度良好。

取同一批次的奥美沙坦酯原料药(批号AM0180504),按"2.2.2"项下方法平行制备6份供试品溶液,按照"2.1"项下色谱条件进样检测,各杂质均未检出。称取同一批次的奥美沙坦酯原料药(批号AM0180504)约200mg,置2mL量瓶中,用"2.2.1"项下制备的10ng/mL混合线性对照品溶液溶解并稀释至刻度,摇匀,平行制备6份,按照"2.1"项下色谱条件进样检测,计算得各杂质峰面积的RSD值分别为1.62%、3.33%、1.00%、0.80%、1.11%、1.46%、2.16%。表明方法具有良好的重复性。

2.3.5 加样回收率试验 精密称取同一批次的奥美沙坦酯原料药(批号 AM0180504)9份,每份约100 mg,置5 mL量瓶中,精密加入"2.2.1"项下制备的1、10、100 ng/mL的混合线性对照品溶液溶解并稀释至刻度,低、中、高3个质量浓度点的供试品各3份,按照"2.1"项下色谱条件进样检测,见表3。结果表明方法的回收率良好。

2.4 样品测定

取4批奥美沙坦酯原料药约100 mg,精密称定,置5 mL量瓶中,加甲醇适量,超声使溶解,放至室温后,用甲醇稀释至刻度,摇匀,作为供试品溶液,每批平行配制2份供试品溶液,按照"2.1"项下色谱条件进样检测,按标准曲线法以峰面积计算,4批奥美沙坦酯原料药各杂质均未检出。

3 讨论

奥美沙坦酯在水中几乎不溶,在甲醇中微溶,故本研究选择以甲醇为溶剂,超声10 min 使溶解后,定量稀释制备质量浓度约为20 mg/mL 的供试品溶液。由于供试品中没有检测出杂质,并且根据研究发现这些杂质为供试品生产过程中使用到的试剂引入,样品本身并不会产生这些杂质,最终设定为所有供试品溶液都是临用新制,因此不需要对供试品的稳定性进行考察。

7个N-亚硝胺类杂质极性差异较大,在反相色谱中,NDMA 最先出峰,且会有很强的溶剂效应,NDBA 最后出峰。在检测条件摸索阶段,首先对色谱柱进行了考察,采用 Agilent InfinityLab Poroshell 120 SB-AQ (3.0 mm×150 mm, 2.7 μm) 和 Agilent ZORBAX Eclipse Plus C₁₈(3.0 mm×150 mm, 1.8 μm)

表 3 奥美沙坦酯加样回收率(n=3)

Table 3 Spike recoveries of olmesartan medoxomil (*n*=3)

化合物 -	低泽	低浓度		中浓度		高浓度	
	回收率/%	RSD/%	回收率/%	RSD/%	回收率/%	RSD/%	- 平均回收率/%
NDMA	90	1.7	85	3.2	87	2.7	87
NMBA	91	2.5	111	3.9	117	0.8	106
NDEA	88	1.6	105	3.2	95	1.4	96
NEiPA	115	1.0	97	2.1	94	3.3	102
NDiPA	91	2.6	102	2.1	94	4.1	96
NDPA	83	2.8	101	1.0	92	3.4	92
NDBA	91	2.4	99	2.0	95	2.4	95

时,NDMA均可获得更好的峰型,但奥美沙坦酯无法和NDBA完全分离,严重干扰NDBA的检测,最终选择 Agilent poroshell PFP(100 mm×2.1 mm,2.7 μ m)色谱柱,调整色谱条件,使奥美沙坦酯在NDBA之后出峰,且出峰时间间隔大于1 min,消除奥美沙坦酯对NDBA检测的干扰,同时质谱采集时间设定为0~7.85 min,7.85 min后进入废液,以避免高浓度的奥美沙坦酯对质谱的污染。另外还对进样体积进行了考察,当进样体积大于3 μ L时,由于溶剂效应,NDMA峰型明显变差,为保证检测灵敏度,进样体积最终设定为2 μ L。

本研究试验初期,甲醇空白溶液在NDBA出峰处存在干扰峰,经过排查发现该干扰峰为流动相中的水引入,考察了不同来源的超纯水,均存在此干扰物质,差异仅在于量的不同。为去除该干扰物质,检测时在混合器与进样器之间加接 Agilent Poroshell 120 EC- C_{18} (50 mm×4.6 mm,2.7 μ m)色谱柱,通过2次分离,延长干扰峰保留时间,从而去除其对 NDBA 的干扰。

在试验过程中,NDiPA的回收率始终较低(20%~50%),结合液相色谱发现在NDiPA出峰处存在较大干扰峰,抑制了NDiPA的电离,并且该干扰峰随着放置时间迅速增加,每1小时该干扰峰的峰面积增加约50%。有文献报道奥美沙坦酯溶于甲醇后会降解,产生干扰[15-16]。为此对色谱条件进行优化,使NDiPA峰与干扰峰达到基线分离,同时,为了保证测定结果的准确性,所有供试品相关溶液均为临用新制。

由于以甲醇作为溶剂,产生了一定程度的溶剂效应,从而降低了检测方法的灵敏度,为满足奥美沙坦酯中基因毒性杂质控制限度的要求,提高供试品溶液的浓度至20 mg/mL,高浓度的奥美沙坦酯进入色谱系统可能损坏色谱柱或污染离子源,为此,可能需要对溶剂或前处理方式进行进一步优化。

总之,本研究利用APCI源,首次建立了奥美沙 坦酯原料药中7种亚硝胺类杂质的超高效液相色 谱-串联质谱检测方法。该方法灵敏度高、专属性 强,可为奥美沙坦酯原料药的质量控制提供参考。

利益冲突 所有作者均声明不存在利益冲突

参考文献

[1] 韩 健,刘 静. 奥美沙坦酯 [J]. 中国新药杂志, 2007, 16 (21): 1815-1816.

Han J, Liu J. Olmesartan medoxomil [J]. Chin J New

- Drugs, 2007, 16(21):1815-1816.
- [2] 封宇飞, 雷 静, 吕俊玲, 等. 新一代血管紧张素受体阻断剂 奥美沙坦酯 [J]. 中国新药杂志, 2003, 12(7): 520-523.
 - Peng Y F, Lei J, Lv J L, et al. A new angiotensin II receptor blocker, olmesartan medoxomil [J]. Chin J New Drugs, 2003, 12(7): 520-523.
- [3] Greathouse M. A review of olmesartan medoxomil monotherapy: antihypertensive efficacy similar to that of other angiotension II receptor blocker/hydrochlorothiazide combinations [J]. Congest Heart Fail, 2002, 8(6): 313-320.
- [4] Andrzejewski P, Kasprzyk-Hordern B, Nawrocki J. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants [J]. Desalination, 2005, 176(1/3): 37-45.
- [5] Parr M K, Joseph J F. NDMA Impurity in valsartan and other pharmaceutical products: analytical methods for the determination of *N*-nitrosamines [J]. J Pharm Biomed Anal, 2019, 164: 536-549.
- [6] FDA. Combined N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) impurity assay by GC/ MS-headspace [EB/OL]. (2019-01-28) [2020-07-06]. https://www.fda.gov/media/117843/download.
- [7] FDA. Combined direct injection N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) impurity assay by GC/MS [EB/OL]. (2018-12-11) [2020-07-06]. https://www.fda.gov/media/117807/download.
- [8] FDA. Combined direct injection N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosoethylisopropylamine (NEiPA), N-nitrosodiisopropylamine (NDiPA), and N-nitrosodibutylamine (NDBA) impurity assay by GC-MS/MS [EB/OL]. (2019-04-19) [2020-07-06]. https://www.fda.gov/media/123409/download.
- [9] FDA. Combined headspace N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosoethylisopropylamine (NEiPA), and N-nitrosodiisopropylamine (NDiPA) impurity assay by GC-MS/MS [EB/OL]. (2019-04-29) [2020-07-06]. https://www.fda.gov/media/124025/ download.
- [10] FDA. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) method for the determination of six nitrosamine impurities in ARB drugs [EB/OL]. (2019-05-21) [2020-07-06]. https://www.fda.gov/media/ 125478/download.

- [11] OMCL. Nitrosamines by GC-MS/MS [EB/OL]. (2019-10-17) [2020-07-06]. https://www.edqm.eu/sites/default/files/medias/fichiers/OMCL/omcl_31_pv_171_nitrosamine_by_gc_ms_ms.pdf.
- [12] OMCL. Limit-test of NDMA and NDEA in sartans by GC-MS (Liquid-direct-injection) [EB/OL]. (2019-07-23) [2020-07-06]. https://www.edqm.eu/sites/default/files/31_pv_163_nitrosamine_in_sartans_en_draft_swissmedic v2.pdf.
- [13] CUVA. Method for the determination of NDMA and NDEA by LC-MS/MS in sartans (drug substance and film coated tablets) [EB/OL]. (2019-04-25)[2019-04-25]. https://www.edqm.eu/sites/default/files/method_for_the_determination of ndma and ndea by lc-msms in sar

- tans 29-04-2019.pdf.
- [14] Sörgel F, Kinzig M, Abdel-Tawab M, et al. The contamination of valsartan and other sartans, part 1: New findings [J]. J Pharm Biomed Anal, 2019, 172: 395-405.
- [15] 翁水旺. 反向高效液相色谱法测定奥美沙坦酯的有关物质 [J]. 药物分析杂志, 2006, 26(5): 686-688. Weng S W. PR-HPLC determination of related substances in olmesartan medoxomil [J]. Chin J Pharm Anal, 2006, 26(5):686-688.
- [16] 潘红娟, 吴泰志, 俞 雄, 等. 奥美沙坦酯及其相关物质的分离与测定 [J]. 药物分析杂志, 2008, 28(11): 1883-1887. Pan H J, Wu T Z, Yu X, et al. HPLC determination of olmesartan medoxomil and its related substances [J]. Chin J Pharm Anal, 2008, 28(11): 1883-1887.

[责任编辑 李红珠]