# 【间充质干细胞专栏】

# 间充质干细胞成骨和成脂分化调控机制研究

苗 丽,张晨亮,李 欣,米 一,徐立强,刘拥军,刘广洋\* 北京贝来生物科技有限公司,北京100176

摘 要: 间充质干细胞(MSCs)是人体内参与免疫平衡、维持组织器官的稳态和功能以及组织损伤修复的一类重要成体干 细胞。MSCs具有自我更新能力和多向分化潜能,国际干细胞协会将MSCs向脂肪、成骨等细胞分化的能力作为其重要的检 测标准。作为骨细胞和脂肪细胞的共同来源,MSCs在成骨和成脂分化之间相互协调和相互竞争,并在多种调控因素作用 下保持着微妙的平衡。对MSCs成骨、成脂分化的信号通路、调控因素进行分析,并对其分化诱导方法以及鉴定方法进行 总结,以期为MSCs基础研究及临床应用提供参考依据。

关键词:间充质干细胞;成骨分化;成脂分化;调控机制;信号通路
中图分类号:R329 文献标志码:A 文章编号:1674-6376(2020)12-2363-09
DOI: 10.7501/j.issn.1674-6376.2020.12.001

# Regulation mechanism of osteogenic differentiation and adipogenic differentiation in mesenchymal stem cells

MIAO Li, ZHANG Chenliang, LI Xin, MI Yi, XU Liqiang, LIU Yongjun, LIU Guangyang Beijing Baylx Biotech Co., Ltd., Beijing 100176, China

Abstract: Mesenchymal stem cells (MSCs) are an important adult stem cells, which participate in immune balance, maintain the homeostasis and function of tissues and organs, and repair damaged tissues. Mesenchymal stem cells have the self-renewal and multi-differentiation potential, able to differentiating into multiple cell types, such as bone, fat and other cells. International Stem Cell Association regards the ability as an important standard of MSCs. As common progenitor cells of osteoblasts and adipocytes, MSCs delicately balanced their differentiation commitment. This review analyzes the signaling pathways and regulatory factors of MSCs osteogenic and adipogenic differentiation. The Induced differentiation methods and identification methods are also summarized, so as to provide reference for basic research and clinical application of MSCs.

Key words: mesenchymal stem cells; osteogenic differentiation; adipogenic differentiation; regulation mechanism; signaling pathway

1970年Friedenstei首次利用骨髓培养出能够诱导分化为成骨细胞的成纤维样多能细胞<sup>[1]</sup>,随后 Martin于1981年在鼠幼胚中分离出类似多能细胞 系<sup>[2]</sup>。自此陆续有学者从人骨髓、脂肪、脐带血、羊 水、胰腺、牙髓等组织分离出干细胞<sup>[3-6]</sup>。随着人多 能间充质干细胞(MSCs)在许多生物医学领域发挥 越来越重要的作用,国际细胞治疗学会对MSCs提 出了通用标准<sup>[7-8]</sup>:首先,MSCs必须具有黏塑性,即 MSCs能够在标准培养条件下,黏附生长在组织培养瓶上;其次,MSCs必须能够表达其特异性的表面标志物,包括阳性标志物CD105、CD73和CD90以及阴性标志物CD45、CD34、CD14、CD11b、CD79a和HLA-DR;再次,MSCs必须具有多能分化潜能,即MSC在体外具有向成骨、成脂以及成软骨分化的能力<sup>[8]</sup>。这一标准为MSCs的临床前以及临床研究提供鉴定依据。诱导成骨的因素常抑制成脂分化,

收稿日期: 2020-10-13

基金项目:北京市科技型中小企业促进专项(Z17010101061)

**第一作者:**苗丽,研究方向为干细胞新药开发。E-mail:15505902258@163.com \*通信作者:刘广洋 E-mail:liugy04@163.com

而诱导成脂的因素常抑制成骨分化,因成骨分化和 成脂分化相关因子之间的相互作用在MSCs细胞分 化命运决定中发挥着重要作用,本研究对MSCs成 骨、成脂分化的信号通路、调控因素进行分析,并对 其分化诱导方法以及鉴定方法等进行总结,以期为 MSCs基础研究及临床应用提供参考依据。

# 1 MSCs成骨、成脂分化信号通路

MSCs 作为成骨细胞和脂肪细胞共同的祖细胞,在多种信号调控下,其向成骨、成脂细胞的分化处于一种平衡状态。这些调控都是通过不同的信号通路来激活转录因子进而发挥作用(图1),其中BMP、Wnt 以及 Hippo 等信号通路在 MSCs 分化调控中发挥主要作用。

#### 1.1 BMP信号通路

骨形态发生蛋白(bone morphogenetic protein, BMP)是转化生长因子-β(TGF-β)超家族中的多功 能生长因子<sup>[9]</sup>。BMP信号通路主要是通过Smad 和 MAPK途径触发细胞反应<sup>[10]</sup>。BMP信号通路通过 与BMP-I和BMP-II受体结合进而激活BMP信号, 磷酸化的Smad 1/5/8与Smad 4形成复合物后进入 细胞核内并与转录因子结合,以细胞类型特异的方 式调节特异性基因的转录<sup>[11-12]</sup>。在BMP信号激活 下,由Smad 和 MAPK 途径调控Runx2/Cbfal 和 PPARγ基因的表达,而特异性转录因子表达水平的 改变则直接影响MSCs的成骨、成脂分化能力<sup>[13]</sup>。 因此BMP信号通路在MSCs成骨、成脂分化过程中 起到双重的调控作用。

#### 1.2 Wnt信号通路

Wnt是分泌性糖蛋白家族。Wnt信号通路主要 是通过典型的Wnt/β-catenin和非典型的WntcGMP/Ca<sup>2+</sup>信号通路来调节MSCs向成骨、成脂细胞 的分化<sup>[14]</sup>。Wnt与跨膜受体FZD和核心受体IRP5/6 结合通过抑制Axin/GSK3/APC复合物使得 β-catenin在细胞核内稳定积累<sup>[15]</sup>。β-catenin与淋巴 增强因子结合因子/T细胞因子结合能够抑制 PPARγ基因的表达来抗MSCs向成脂细胞分化;通 过上调Runx2/Cbfa1基因的表达来促进MSCs向成 骨细胞的分化<sup>[16]</sup>。因此Wnt信号通路在MSCs分化 过程中起到了促成骨细胞和抗脂肪细胞生成的重 要作用。

# 1.3 Hippo信号通路

Hippo信号由衔接蛋白和抑制激酶组成,并且 是果蝇和哺乳动物之间高度保守的信号通路<sup>[17-19]</sup>。 经典的Hippo信号通路是由MST1/2和LATS1/2激 酶与SAV1和MOB1磷酸化并抑制YAP和TAZ发挥 功能的<sup>[20]</sup>。当LATS1/2的PY基序与YAP和TAZ的 WW结构域相互作用时,使得YAP/TAZ磷酸化并定 位于细胞质内,同时β-TRCP依赖性蛋白酶降解; YAP/TAZ去磷酸化后转移至细胞核内,作为其他转 录因子的转录辅激活剂调控细胞的成骨、成脂分 化<sup>[20-22]</sup>。Hippo信号通路通过TAZ的WW结构域与 RUNX2的PY基序结合上调RUNX2、ALP以及 Osterix的表达,从而诱导MSCs向成骨细胞分化<sup>[23]</sup>。 相较于TAZ而言,YAP的作用更为复杂,不但可以





Fig. 1 Schematic diagram of osteogenic and adipogenic differentiation mechanism of mesenchymal stem cells

作为RUNX2的阻遏物,还能够在YAP过表达时促进 MSCs的成骨分化<sup>[24-25]</sup>。在成脂分化过程中, Hippo信号通路在TAZ的WW结构域与PPARγ的 PY基序结合后,通过抑制 PPARγ的转录活性从而 抑制成脂分化<sup>[26]</sup>。而YAP则通过诱导Wnt拮抗剂 来减少成骨信号,进而促进MSCs的成脂分化<sup>[27]</sup>。

## 1.4 其他相关信号通路

除上述 BMP、Wnt和 Hippo 信号通路外,还有一 些参与 MSCs 分化调控的信号通路。如 Notch 信号 通路可通过阻断 PPARγ和 C/EBPα的表达来抑制 MSCs 向成脂细胞的分化<sup>[28]</sup>。除此之外,Notch 信号 通路还可以通过抑制 Wnt/β-catenin 信号通路来降 低 MSCs 向成骨细胞的分化<sup>[29]</sup>。Hedgehogs 信号通 路通过抑制 PPARγ和 C/EBPα的表达及脂质积累来 阻止 MSCs 向成脂细胞分化<sup>[30]</sup>。同时 Hedgehogs 信 号通路通过与 BMP 信号通路相互作用来调控 Smad 进而促进 MSCs 向成骨细胞分化<sup>[31]</sup>。其他的信号分 子如 FGF、IGF等也参与 MSCs 的分化调控<sup>[32]</sup>。值得 注意的是这些信号通路在 MSCs 分化过程中并不是 单独地发挥作用,而是在特定条件下相互作用共同 调控 MSCs 的成骨、成脂分化过程。

# 2 MSCs成骨、成脂分化调控

转录因子是各种信号通路的直接或间接靶点, 而 RUNX2、PPARγ、YAP/TAZ 等多个转录因子在 MSCs向成骨细胞和脂肪细胞的分化过程中起着重 要的作用。此外,包括microRNA、物理刺激等因素 也对MSCs的成骨及成脂分化具有重要调控作用。

#### 2.1 RUNX2

Runx2作为最早的成骨标志物之一,在新骨形成过程中发挥着控制细胞增殖和分化的重要作用<sup>[33]</sup>。在成骨细胞分化过程中,目前研究的大多数信号通路都是以Runx2为靶点,通过上调Runx2促进MSCs向未成熟成骨细胞分化,同时抑制其向脂肪细胞的分化<sup>[34]</sup>。Runx2由PI和PII启动子启动表达<sup>[35]</sup>,并且弱表达于未分化的间充质细胞中,表达上调于前成骨细胞中,在未成熟成骨细胞中达到最高表达水平,而在成熟成骨细胞中表达下调<sup>[36]</sup>。Runx2与CBFB形成的异源二聚体能够增强结合DNA的能力和蛋白质的稳定性<sup>[37]</sup>。最近有研究表明,蛋白质翻译后修饰能够调节Runx2进而调控MSCs向成骨、成脂细胞的分化<sup>[38]</sup>。

# **2.2 ΡΡΑR**γ

PPARγ是促进MSCs成脂分化的关键转录因子,其不仅能够调控脂肪生成,同时具有抗骨母细

胞生成的作用<sup>[39]</sup>。通常所有的前脂肪信号通路都 与PPARγ相关,并且过表达PPARγ能够使成纤维母 细胞有效分化为成熟脂肪细胞,而敲除PPARγ的研 究表明PPARγ是体内外脂肪生成所必需的<sup>[40]</sup>。此 外,C/EBP能够促进前脂肪细胞的成脂分化<sup>[41]</sup>。磷 酸化的C/EBP诱导C/EBPβ激活PPARγ和C/EBPα 转录表达<sup>[41]</sup>。而PPARγ和C/EBPα在整个成脂分化 过程中都保持较高水平的表达,并在脂肪细胞的整 个生命过程中持续表达<sup>[9]</sup>。

#### **2.3 YAP/TAZ**

14-3-3结合蛋白TAZ是YAP的一个副同源物, 是具有PDZ结合基序的转录辅激活因子,能够抑制 PPARγ依赖性基因转录,并且辅激活Runx2依赖性 基因转录<sup>[42-45]</sup>。小鼠的TAZ SiRNA转染C2C12细 胞的研究表明TAZ调控Runx2刺激的骨钙素基因 的表达是成骨细胞分化的重要内源性调节因子;同 时也证明了TAZ是PPARγ诱导基因表达的转录阻 遏物,并且是MSCs成脂分化程序的内源性抑制 剂<sup>[26]</sup>。然而YAP/TAZ并不是Hippo信号通路调节 的唯一决定因素,在坚硬的基质上,当YAP/TAZ消 耗殆尽时MSCs成骨分化受到抑制,而在相同基质 上敲除YAP/TAZ时则促进MSCs的成脂分化<sup>[25]</sup>。 除此之外,YAP/TAZ还能够与其他的信号通路如 Wnt、TGF、TNF-α、Eph-Ephrin等相互作用来共同调 控MSCs的成骨、成脂分化过程<sup>[46-50]</sup>。

### 2.4 其他因素

除上述转录因子之外,成纤维细胞生长因子(FGFs)、miRNAs和物理因素也能够影响MSCs的成骨、成脂分化。FGFs是细胞增殖、分化的有效调节因子,而不同FGF成员对MSCs分化具有不同的调控作用。FGF7可通过激活ERK-Runx2信号通路刺激干细胞向成骨细胞分化<sup>[51]</sup>,而bFGF则可通过上调PPARγ的水平从而促进成脂分化<sup>[52]</sup>。

miRNA在MSCs分化方向中也发挥重要调控 作用,不同的miRNAs参与MSCs分化调节的作用 不同,例如miR204、miR211、miR637过表达能够在 促进成脂分化的同时抑制成骨细胞的分化<sup>[53-54]</sup>。 miR21不仅能够促进人脐血干细胞的成骨分化,而 且可以促进人脂肪来源的干细胞的成脂分化<sup>[55]</sup>。 miR138、miR335抑制MSCs的成骨、成脂分化<sup>[56-57]</sup>。 此外,机械信号在MSCs的谱系分化中也发挥重要 的作用。例如振荡流体流动(OFF)能够通过上调 Runx2、PPARγ等的表达来调控MSCs的成骨、成脂 分化<sup>[58]</sup>;动态压迫(DC)能够增加骨髓间充质干细胞(BMSCs)中成骨基因的表达进而促进成骨分化<sup>[59-60]</sup>;而拉伸应变则能够促进BMP2、成骨基因的表达以及钙沉积从而促使MSCs向成骨细胞分化<sup>[61-63]</sup>。因此,机械信号作为MSCs分化的关键调节因素,能够很好地阐明各种物理因素对MSCs成骨、成脂分化的调控,进而可以更好地服务于再生医学相关的研究领域。

# 3 MSCs成骨、成脂的分化诱导及验证

#### 3.1 MSCs成骨分化诱导方法

MSCs向成骨细胞分化过程中转录因子Runx2 的表达进一步促进ALP、Osterix、Collal、OPN、 BSP、OCN的表达。这些表达的连续上调将促进成 骨细胞成熟和矿化细胞外基质的沉积[64-66]。在体外 培养体系中常用的 MSCs 成骨分化诱导补充剂为 100 nmol/L 地塞米松(DEX)、50 mmol/L 抗坏血酸-2-磷酸(As-2-P)和10 mmol/L β-甘油磷酸(β-GP)<sup>[67]</sup>。 As-2-P不仅可以促进胶原细胞外基质的形成和成 骨细胞相关蛋白的合成,而且能够上调碱性磷酸酶 和骨钙素 mRNA 的表达从而促进成骨分化<sup>68</sup>。β-GP 是蛋白磷酸酶抑制剂,在基质矿化研究中充当磷酸 基团供体,有助于成骨细胞Ca<sup>2+</sup>的沉积,促进矿化结 节的形成<sup>[69-70]</sup>。DEX 是广泛应用的糖皮质激素,在 体外诱导成骨分化可提高碱性磷酸酶(ALP)活性、 骨钙素(OC)和骨唾液蛋白(BSP)的表达水平<sup>[71]</sup>。 研究表明,1 µmol/L的DEX不仅抑制MSCs的成骨 分化,促进成脂分化。而且能够降低细胞活性,提 高活性氧水平,促进细胞凋亡[72]。

近年来的研究表明除化学药物外,细胞因子、 中药及提取物和物理因素等均影响成骨细胞的分 化。例如2 µmol/L 锶能够促进成骨细胞分化和矿 化形成,并且抑制脂肪细胞的过度生成[73]。H<sub>2</sub>S通 过Wnt信号通路来保护成骨细胞免受H,O,或DEX 诱导的细胞损伤<sup>[74]</sup>。生长分化因子5(GDF-5)是骨 组织工程的一个显著因素,而DEX/GDF-5则能增强 ALP的活性和钙沉积<sup>[75]</sup>。类胰岛素一号生长因 子(IGF-1)不仅能够促进骨形态发生蛋白9(BMP9) 诱导的成骨分化,同时通过PI3K/AKT途径降低高 浓度 DEX 对 BMP9 诱导的成骨分化的抑制作用<sup>[76]</sup>。 紫草在体外能够诱导 BMSCs 分化为成骨细胞并具 有促进其成骨的作用[77]。低浓度黄芩苷通过调节 OPG 和 RANKL 蛋白的表达来参与骨重塑过程<sup>[78]</sup>。 LDI-glycerol-AA-GP-DEX 支架、HBMSCs laden-LPN-GelMA支架等均能够支持成骨分化,促进矿化 结节的形成<sup>[79-80]</sup>。对MSCs成骨分化影响因素的深入研究将会为防治糖皮质激素引起的骨质疏松症 提供新的方向。

# 3.2 MSCs成骨分化验证方法

MSCs成骨分化的鉴定方法主要包括染色法、 成骨特异性转录因子表达以及成骨蛋白质表达的 检测等。茜素红、Von Kossa是常见的成骨染色方 法<sup>[81]</sup>。茜素红染色法主要是基于茜素磺酸钠能与 Ca<sup>2+</sup>发生显色反应,产生深红色的带色化合物<sup>[82]</sup>。 而 Von Kossa 染色法主要是利用硝酸银与钙盐发生 反应在强光或紫外下生成金属银,使得钙化组织呈 黑色或褐色颗粒<sup>[83]</sup>。也可以应用实时荧光定量 PCR(qRT-PCR)技术检测 MSCs成骨分化特异性转 录因子 Runx2、ALP、OPN、OC的表达<sup>[84-85]</sup>。亦或是 通过 ELISA 检测成骨诱导培养基上清中 OC 的表达 量或 Western blotting 检测 ALP、骨钙蛋白(OCN)等 相关成骨分化标志物来鉴定 MSCs 向成骨细胞的分 化程度<sup>[86-88]</sup>。

#### 3.3 MSCs成脂分化诱导方法

脂肪细胞的分化是一个复杂过程,通过前脂肪 细胞过度到充脂细胞再到胰岛素响应脂肪细胞<sup>[89]</sup>。 脂肪细胞分化受 PPARγ、C/EBP 的调控<sup>[90]</sup>。在体外 培养体系中常用的 MSCs 成脂分化诱导补充剂为 1 μmol/L DEX、10 μg/mL 胰岛素、0.5 mmol/L 3-异丁 基-1-甲基黄嘌呤(IBMX)<sup>[91]</sup>。高浓度 DEX 能够促 进脂肪生成,同时抑制成骨分化<sup>[92-93]</sup>。IBMX 调节 C/EBPβ,单独或与 DEX 联合调节 PPARγ 活性<sup>[94-95]</sup>。 胰岛素 广泛 用于诱导前脂肪细胞的增殖和 分化<sup>[96-97]</sup>。

此外,研究表明罗格列酮能够促进前脂肪细胞 向成熟脂肪细胞的分化,促进脂肪细胞的增殖<sup>[98-99]</sup>。 含硼化合物 NaB 可抑制人 BMSCs 成脂分化和脂肪 沉积<sup>[100]</sup>。TGF-β能够抑制前脂肪细胞系中的脂肪 生成,当TGF-β过表达时降低了体内脂肪细胞的分 化<sup>[101]</sup>。趋化因子 CXCL3 通过诱导 C/EBPb 和 C/ EBPd 以自分泌或旁分泌的方式促进脂肪生成<sup>[102]</sup>。 由骨细胞产生的硬结蛋白可促进 3T3-L1 细胞的脂 肪分化<sup>[103]</sup>。核蛋白 JMJD 6 在脂肪分化过程中具有 转录后调控 C/EBPβ 和 C/EBPδ 来促进脂肪基因的 表达,并且具有直接转录激活 PPARγ和 CEBPα 的双 重作用<sup>[104]</sup>。高浓度葡萄糖可抑制β-catenin/TCF-4 途径,促进 MSCs 脂肪生成<sup>[105-106]</sup>。另外低频磁场导 致 ADSCs 细胞质中脂肪酸含量降低,参与诱导调节 脂肪分化程序的信号通路 MAPK-ERK1/2 的激活与 特异性基因 PPARγ和 Sox9表达的改变<sup>[107]</sup>。

#### 3.4 MSCs 成脂分化验证方法

MSCs成脂分化的鉴定方法主要包括油红O染 色法、成脂转录因子的表达以及相关成脂蛋白表达 的检测等<sup>[108-110]</sup>。油红O染色法是常见的成脂鉴定 方法<sup>[111-112]</sup>,主要是利用油溶性染料油红O对细胞内 的脂肪滴进行着色以鉴定脂肪细胞的分化<sup>[113]</sup>。应 用 qRT-PCR 技术检测成脂转录因子 PPARγ和 C/ EBPβ 的表达也可以鉴定 MSCs 的成脂分化情 况<sup>[114-115]</sup>,相应的检测成脂标志蛋白的表达也可以鉴 定成脂细胞的分化程度<sup>[116-117]</sup>。如应用 Western blotting技术检测脂肪分化标志物 PPARγ和 C/EBPβ 蛋白的表达<sup>[118-119]</sup>;或应用 ELISA 检测试剂盒检测 PPARγ、C/EBPβ和脂联素相关脂肪分化标志蛋白的 表达<sup>[120-121]</sup>;亦或是通过免疫组化方法鉴定 PPARγ和 C/EBPβ蛋白的表达等<sup>[122-123]</sup>。

#### 4 展望

MSCs存在于骨髓、脂肪组织、肌肉和肝脏等多种器官的基质中,具有多向分化潜能,能够在特定条件下分化为脂肪细胞、骨细胞和软骨细胞等,是一种多能干细胞。MSCs在损伤后的组织稳态和再生中都发挥着重要的作用,为临床治疗方面提供了更多的选择与方向。近年来,越来越多的研究发现,MSCs具备强大的免疫调节功能和多向分化潜能,因其自我更新和低免疫原性等优点,MSCs被认为是最具临床前景的干细胞。

大量的研究表明,在人类众多疾病的发生和发展中,都伴随着脂肪-成骨平衡的失调,如肥胖、骨硬化和骨质疏松症等疾病。而MSCs能够在多因素的相互作用下向不同细胞谱系分化,从而使机体内的脂肪-成骨分化处于一个动态平衡的稳态。MSCs的分化机制除了与细胞因子、miRNA和物理因素等相关外,所涉及的信号通路和关键转录因子也十分复杂。因此,深入探究MSCs成骨成脂的分化机制,不仅能够对脂肪-成骨平衡起到一定的调节作用,而且能够为干细胞临床应用提供重要的指导意义和新的治疗思路。

#### 参考文献

- Friedenstein A J, Chailakhjan R K, Lalukina K S. The development of fibroblast colonied in monolayer culttres of guinea-pig bone marrow and spleen cells [J]. Cell Tissue Kinet, 1970, 3: 393-403.
- [2] Martin G R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci U S A,

1981, 78(12): 7634-7638.

- [3] Pittenger M F, MacKay A M, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Sci, 1999, 284(5411): 143-147.
- [4] Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies [J]. Tissue Eng, 2001, 7(2): 211-228.
- [5] Meng X L, Ichim T E, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population [J]. J Transl Med, 2007, 5: 57.
- [6] Sharpe P T. Dental mesenchymal stem cells [J]. Development, 2016, 143(13): 2273-2280.
- [7] Hu L F, Yin C, Zhao F, et al. Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment [J]. Int J Mol Sci, 2018, 19(2): E360.
- [8] Dominici M, le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy, 2006, 8(4): 315-317.
- [9] Hogan B L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development [J]. Genes Dev, 1996, 10(13): 1580-1594.
- [10] von Bubnoff A, Cho K W Y. Intracellular BMP signaling regulation in vertebrates: pathway or network ? [J]. Dev Biol, 2001, 239(1): 1-14.
- [11] Li X L, Cao X. BMP signaling and skeletogenesis [J]. Ann N Y Acad Sci, 2006, 1068: 26-40.
- [12] Chen G Q, Deng C X, Li Y P. TGF-β and BMP signaling in osteoblast differentiation and bone formation [J]. Int J Biol Sci, 2012, 8(2): 272-288.
- [13] Deng Z L, Sharff K A, Tang N, et al. Regulation of osteogenic differentiation during skeletal development [J]. Front Biosci, 2008, 13: 2001-2021.
- [14] Takada I, Kouzmenko A P, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis [J]. Nat Rev Rheumatol, 2009, 5(8): 442-447.
- [15] Kim W, Kim M, Jho E H. Wnt/β-catenin signalling: from plasma membrane to nucleus [J]. Biochem J, 2013, 450 (1): 9-21.
- [16] Pandur P, Maurus D, Kühl M. Increasingly complex: new players enter the Wnt signaling network [J]. Bioessays, 2002, 24(10): 881-884.
- [17] Huang J B, Wu S A, Barrera J, et al. The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP [J]. Cell, 2005, 122(3): 421-434.
- [18] Tapon N, Harvey K F, Bell D W, et al. Salvador Promotes both cell cycle exit and apoptosis in Drosophila and is

mutated in human cancer cell lines [J]. Cell, 2002, 110 (4): 467-478.

- [19] Pan D. The hippo signaling pathway in development and cancer[J]. Dev Cell, 2010,19(4):491-505.
- [20] Hong W J, Guan K L. The YAP and TAZ transcription coactivators: key downstream effectors of the mammalian Hippo pathway [J]. Semin Cell Dev Biol, 2012, 23(7): 785-793.
- [21] Zhao B, Wei X M, Li W Q, et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control [J]. Genes Dev, 2007, 21(21): 2747-2761.
- [22] Dong J X, Feldmann G, Huang J B, et al. Elucidation of a universal size-control mechanism in Drosophila and mammals [J]. Cell, 2007, 130(6): 1120-1133.
- [23] Yang J Y, Cho S W, An J H, et al. Osteoblast-targeted overexpression of TAZ increases bone mass *in vivo* [J]. PLoS One, 2013, 8(2): e56585.
- [24] Zaidi S K, Sullivan A J, Medina R, et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription [J]. EMBO J, 2004, 23(4): 790-799.
- [25] Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction [J]. Nature, 2011, 474(7350): 179-183.
- [26] Hong J H, Hwang E S, McManus M T, et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation [J]. Science, 2005, 309(5737): 1074-1078.
- [27] Deel M D, Li J J, Crose L E, et al. A review: molecular aberrations within hippo signaling in bone and soft-tissue sarcomas [J]. Front Oncol, 2015, 5: 190.
- [28] Ross D A, Rao P K, Kadesch T. Dual roles for the Notch target gene Hes-1 in the differentiation of 3T3-L1 preadipocytes [J]. Mol Cell Biol, 2004, 24(8): 3505-3513.
- [29] Deng Z L, Sharff K A, Tang N, et al. Regulation of osteogenic differentiation during skeletal development [J]. Front Biosci, 2008, 13: 2001-2021.
- [30] Fontaine C, Cousin W, Plaisant M, et al. Hedgehog signaling alters adipocyte maturation of human mesenchymal stem cells [J]. Stem Cells, 2008, 26(4): 1037-1046.
- [31] Spinella-Jaegle S, Rawadi G, Kawai S, et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation [J]. J Cell Sci, 2001, 114(Pt 11): 2085-2094.
- [32] Kratchmarova I, Blagoev B, Haack-Sorensen M, et al. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation [J]. Science, 2005, 308(5727): 1472-1477.
- [33] Stein G S, Lian J B, van Wijnen A J, et al. Runx2 control of organization, assembly and activity of the regulatory

machinery for skeletal gene expression [J]. Oncogene, 2004, 23(24): 4315-4329.

- [34] Komori T. Regulation of osteoblast differentiation by transcription factors [J]. J Cell Biochem, 2006, 99(5): 1233-1239.
- [35] Yoshida C A, Furuichi T, Fujita T, et al. Core-binding factor beta interacts with Runx2 and is required for skeletal development [J]. Nat Genet, 2002, 32(4): 633-638.
- [36] Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2 [J]. Int J Mol Sci, 2019, 20(7): E1694.
- [37] Enomoto H, Enomoto-Iwamoto M, Iwamoto M, et al. Cbfa1 is a positive regulatory factor in chondrocyte maturation [J]. J Biol Chem, 2000, 275(12): 8695-8702.
- [38] Lee M, Arikawa K, Nagahama F. Micromolar levels of sodium fluoride promote osteoblast differentiation through Runx2 signaling [J]. Biol Trace Elem Res, 2017, 178(2): 283-291.
- [39] James A W. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation [J]. Scientifica (Cairo), 2013, 2013: 684736.
- [40] Tzameli I, Fang H, Ollero M, et al. Proliferator-activated Receptor- γ Ligand Regulated Production of a Peroxisome [J]. J Biolog Chem, 2004, 279(34): 36093-36102.
- [41] Lin F T, Lane M D. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program [J]. Proc Natl Acad Sci USA, 1994, 91(19): 8757-8761.
- [42] Sudol M, Bork P, Einbond A, et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain [J]. J Biol Chem, 1995, 270(24): 14733-14741.
- [43] Cui C B, Cooper L F, Yang X L, et al. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ [J]. Mol Cell Biol, 2003, 23(3): 1004-1013.
- [44] He Q, Huang H Y, Zhang Y Y, et al. TAZ is downregulated by dexamethasone during the differentiation of 3T3-L1 preadipocytes [J]. Biochem Biophys Res Commun, 2012, 419(3): 573-577.
- [45] Park B H, Kim D S, Won G W, et al. Mammalian ste20like kinase and SAV1 promote 3T3-L1 adipocyte differentiation by activation of PPARγ [J]. PLoS One, 2012, 7(1): e30983.
- [46] Watt K I, Judson R, Medlow P, et al. Yap is a novel regulator of C2C12 myogenesis [J]. Biochem Biophys Res Commun, 2010, 393(4): 619-624.
- [47] Baksh D, Boland G M, Tuan R S. Cross-talk between Wnt signaling pathways in human mesenchymal stem cells leads to functional antagonism during osteogenic differentiation [J]. J Cell Biochem, 2007, 101(5): 1109-

1124.

- [48] Zimmermann G, Henle P, Kusswetter M, et al. TGF-β1 as a marker of delayed fracture healing [J]. Bone, 2005, 36 (5): 779-785.
- [49] Cho H H, Shin K K, Kim Y J, et al. NF-kappaB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression [J]. J Cell Physiol, 2010, 223(1): 168-177.
- [50] Xing W R, Kim J, Wergedal J, et al. Ephrin B1 regulates bone marrow stromal cell differentiation and bone formation by influencing TAZ transactivation via complex formation with NHERF1 [J]. Mol Cell Biol, 2010, 30(3): 711-721.
- [51] Jeon Y M, Kook S H, Rho S J, et al. Fibroblast growth factor-7 facilitates osteogenic differentiation of embryonic stem cells through the activation of ERK/ Runx2 signaling [J]. Mol Cell Biochem, 2013, 382(1/2): 37-45.
- [52] Neubauer M, Fischbach C, Bauer-Kreisel P, et al. Basic fibroblast growth factor enhances PPARgamma ligandinduced adipogenesis of mesenchymal stem cells [J]. FEBS Lett, 2004, 577(1/2): 277-283.
- [53] Huang J, Zhao L, Xing L P, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation [J]. Stem Cells, 2010, 28 (2): 357-364.
- [54] Zhang J F, Fu W M, He M L, et al. MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix [J]. Mol Biol Cell, 2011, 22 (21): 3955-3961.
- [55] Kim Y J, Hwang S J, Bae Y C, et al. miR-21 regulates adipogenic differentiation through the modulation of TGF-β signaling in mesenchymal stem cells derived from human adipose tissue [J]. Stem Cells, 2009, doi:10.1002/ stem.235.
- [56] Eskildsen T, Taipaleenmäki H, Stenvang J, et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo [J]. Proc Natl Acad Sci USA, 2011, 108(15): 6139-6144.
- [57] Tomé M, López-Romero P, Albo C, et al. miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells [J]. Cell Death Differ, 2011, 18(6): 985-995.
- [58] Arnsdorf E J, Tummala P, Kwon R Y, et al. Mechanically induced osteogenic differentiation: the role of RhoA, ROCKII and cytoskeletal dynamics [J]. J Cell Sci, 2009, 122(Pt 4): 546-553.
- [59] Haugh M G, Meyer E G, Thorpe S D, et al. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression [J]. Tissue Eng Part A, 2011, 17(23/

24): 3085-3093.

- [60] Haugh M G, Meyer E G, Thorpe S D, et al. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression [J]. Tissue Eng Part A, 2011, 17(23/ 24): 3085-3093.
- [61] Sumanasinghe R D, Bernacki S H, Loboa E G. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression [J]. Tissue Eng, 2006, 12(12): 3459-3465.
- [62] Byrne E M, Farrell E, McMahon L A, et al. Gene expression by marrow stromal cells in a porous collagenglycosaminoglycan scaffold is affected by pore size and mechanical stimulation [J]. J Mater Sci Mater Med, 2008, 19(11): 3455-3463.
- [63] Hanson A D, Marvel S W, Bernacki S H, et al. Osteogenic effects of rest inserted and continuous cyclic tensile strain on hASC lines with disparate osteodifferentiation capabilities [J]. Ann Biomed Eng, 2009, 37(5): 955-965.
- [64] Franceschi R T, Xiao G Z. Regulation of the osteoblastspecific transcription factor, Runx2: responsiveness to multiple signal transduction pathways [J]. J Cell Biochem, 2003, 88(3): 446-454.
- [65] Green E, Todd B, Health D. Mechanism of glucocorticoid regulation of alkaline phosphatase gene expression in osteoblast-like cells [J]. Eur J Biochem, 1990, 188(1): 147-153.
- [66] Franceschi R T, Ge C X, Xiao G Z, et al. Transcriptional regulation of osteoblasts [J]. Cells Tissues Organs, 2009, 189(1/2/3/4): 144-152.
- [67] Song I H, Caplan A I, Dennis J E. In vitro dexamethasone pretreatment enhances bone formation of human mesenchymal stem cells in vivo [J]. J Orthop Res, 2009, 27(7): 916-921.
- [68] Franceschi R T, Iyer B S, Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells [J]. J Bone Miner Res, 1994, 9(6): 843-854.
- [69] Shioi A, Nishizawa Y, Jono S, et al. B-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells [J]. Arterioscler Thromb Vasc Biol, 1995, 15(11): 2003-2009.
- [70] Chung C H, Golub E E, Forbes E, et al. Mechanism of action of beta-glycerophosphate on bone cell mineralization [J]. Calcif Tissue Int, 1992, 51(4): 305-311.
- [71] Ma X L, Zhang X P, Jia Y F, et al. Dexamethasone induces osteogenesis via regulation of hedgehog signalling molecules in rat mesenchymal stem cells [J]. Int Orthop, 2013, 37(7): 1399-1404.

- [72] Ma L, Feng X B, Wang K, et al. Dexamethasone promotes mesenchymal stem cell apoptosis and inhibits osteogenesis by disrupting mitochondrial dynamics [J]. FEBS Open Bio, 2019, doi:10.1002/2211-5463.12771.
- [73] Aimaiti A, Wahafu T, Keremu A, et al. Strontium ameliorates glucocorticoid inhibition of osteogenesis via the ERK signaling pathway [J]. Biol Trace Elem Res, 2020, 197(2): 591-598.
- [74] Ma J, Shi C G, Liu Z Y, et al. Hydrogen sulfide is a novel regulator implicated in glucocorticoids-inhibited bone formation [J]. Aging (Albany NY), 2019, 11(18): 7537-7552.
- [75] Yang D H, Yoon S J, Lee D W. Preparation and evaluation of dexamethasone (DEX)/growth and differentiation factor-5 (GDF-5) surface-modified titanium using β-cyclodextrin-conjugated heparin (CDhep) for enhanced osteogenic activity *in vitro* and *in vivo* [J]. Int J Mol Sci, 2017, 18(8): E1695.
- [76] Jiang H T, Ran C C, Liao Y P, et al. IGF-1 reverses the osteogenic inhibitory effect of dexamethasone on BMP9induced osteogenic differentiation in mouse embryonic fibroblasts via PI3K/AKT/COX-2 pathway [J]. J Steroid Biochem Mol Biol, 2019, 191: 105363.
- [77] Dey D, Jingar P, Agrawal S, et al. Symphytum officinale augments osteogenesis in human bone marrow-derived mesenchymal stem cells *in vitro* as they differentiate into osteoblasts [J]. J Ethnopharmacol, 2020, 248: 112329.
- [78] Zhao Y, Wang H L, Li T T, et al. Baicalin ameliorates dexamethasone-induced osteoporosis by regulation of the RANK/RANKL/OPG signaling pathway [J]. Drug Des Devel Ther, 2020, 14: 195-206.
- [79] Cidonio G, Alcala-Orozco C R, Lim K S, et al. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks [J]. Biofabrication, 2019, 11(3): 035027.
- [80] Wang C, Cao X C, Zhang Y X. A novel bioactive osteogenesis scaffold delivers ascorbic acid, β glycerophosphate, and dexamethasone in vivo to promote bone regeneration [J]. Oncotarget, 2017, 8(19): 31612-31625.
- [81] Kim H J, Park J S, Yi S W, et al. Author Correction: Sequential transfection of RUNX2/SP7 and ATF4 coated onto dexamethasone-loaded nanospheres enhances osteogenesis [J]. Sci Rep, 2019, 9(1): 9508.
- [82] Deng X Y, Jing D D, Liang H, et al. H<sub>2</sub>O<sub>2</sub> damages the stemness of rat bone marrow-derived mesenchymal stem cells: developing a "stemness loss" model [J]. Med Sci Monit, 2019, 25: 5613-5620.
- [83] Rimando M G, Wu H H, Liu Y, et al. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCS) [J]. Sci Rep, 2016,

6: 37371.

- [84] Pan M X, Hong W, Yao Y, et al. Activated B lymphocyte inhibited the osteoblastogenesis of bone mesenchymal stem cells by notch signaling [J]. Stem Cells Int, 2019, 2019: 8150123.
- [85] Zhao M Y, Li P, Xu H J, et al. Dexamethasone-activated MSCS release MVs for stimulating osteogenic response [J]. Stem Cells Int, 2018, 2018: 7231739.
- [86] Yang L, Yang J, Pan T, et al. Liraglutide increases bone formation and inhibits bone resorption in rats with glucocorticoid-induced osteoporosis [J]. J Endocrinol Invest, 2019, 42(9): 1125-1131.
- [87] Pan J M, Wu L G, Cai J W, et al. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway *in vitro* and *in vivo* [J]. J Recept Signal Transduct Res, 2019, 39(1): 80-86.
- [88] Chen Z G, Xue J Q, Shen T, et al. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway [J]. Int J Mol Med, 2016, 37(2): 329-338.
- [89] Pu Y, Veiga-Lopez A. PPARγ agonist through the terminal differentiation phase is essential for adipogenic differentiation of fetal ovine preadipocytes [J]. Cell Mol Biol Lett, 2017, 22: 6.
- [90] Ferrand N, Béreziat V, Moldes M, et al. WISP1/CCN4 inhibits adipocyte differentiation through repression of PPARγ activity [J]. Sci Rep, 2017, 7: 1749.
- [91] Khanmohammadi M, Khanjani S, Edalatkhah H, et al. Modified protocol for improvement of differentiation potential of menstrual blood-derived stem cells into adipogenic lineage [J]. Cell Prolif, 2014, 47(6): 615-623.
- [92] Salasznyk R M, Klees R F, Westcott A M, et al. Focusing of gene expression as the basis of stem cell differentiation [J]. Stem Cells Dev, 2005, 14(6): 608-620.
- [93] Klees R F, Salasznyk R M, Vandenberg S, et al. Laminin-5 activates extracellular matrix production and osteogenic gene focusing in human mesenchymal stem cells [J]. Matrix Biol, 2007, 26(2): 106-114.
- [94] Hua Y J, Ke S S, Wang Y, et al. Prolonged treatment with 3-isobutyl-1-methylxanthine improves the efficiency of differentiating 3T3-L1 cells into adipocytes [J]. Anal Biochem, 2016, 507: 18-20.
- [95] Hamm J K, Park B H, Farmer S R. A role for C/EBPβ in regulating peroxisome proliferator-activated receptor γ activity during adipogenesis in 3T3-L1 preadipocytes [J]. J Biol Chem, 2001, 276(21): 18464-18471.
- [96] Klemm D J, Leitner J W, Watson P, et al. Insulin-induced Adipocyte Differentiation [J]. J Biolog Chem, 2001, 276 (30): 28430-28435.
- [97] Scott M A, Nguyen V T, Levi B, et al. Current methods of adipogenic differentiation of mesenchymal stem cells [J]. Stem Cells Dev, 2011, 20(10): 1793-1804.

- [98] Ordoñez M, Presa N, Dominguez-Herrera A, et al. Regulation of adipogenesis by ceramide 1-phosphate [J]. Exp Cell Res, 2018, 372(2): 150-157.
- [99] Xu B, O'Donnell M, O'Donnell J, et al. Adipogenic differentiation of thyroid cancer cells through the Pax8-PPARγ fusion protein is regulated by thyroid transcription factor 1 (TTF-1) [J]. J Biol Chem, 2016, 291 (37): 19274-19286.
- [100]Abdik E A, Abdik H, Taşlı P N, et al. Suppressive role of boron on adipogenic differentiation and fat deposition in human mesenchymal stem cells [J]. Biol Trace Elem Res, 2019, 188(2): 384-392.
- [101]Choy L, Derynck R. Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function [J]. J Biol Chem, 2003, 278(11): 9609-9619.
- [102]Kusuyama J, Komorizono A, Bandow K, et al. CXCL3 positively regulates adipogenic differentiation [J]. J Lipid Res, 2016, 57(10): 1806-1820.
- [103]Ukita M, Yamaguchi T, Ohata N, et al. Sclerostin enhances adipocyte differentiation in 3T3-L1 cells [J]. J Cell Biochem, 2016, 117(6): 1419-1428.
- [104]Hu Y J, Belaghzal H, Hsiao W Y, et al. Transcriptional and post-transcriptional control of adipocyte differentiation by Jumonji domain-containing protein 6 [J]. Nucleic Acids Res, 2015, 43(16): 7790-7804.
- [105]Zhang X M, Meng K, Pu Y J, et al. Hyperglycemia altered the fate of cardiac stem cells to adipogenesis through inhibiting the  $\beta$ -catenin/TCF-4 pathway [J]. Cell Physiol Biochem, 2018, 49(6): 2254-2263.
- [106]Deng C, Sun Y, Liu H, et al. Selective adipogenic differentiation of human periodontal ligament stem cells stimulated with high doses of glucose [J]. PLoS One, 2018, 13(7): e0199603.
- [107]Martínez M A, Trillo M Á, Cid M A, et al. Powerfrequency magnetic field inhibits adipogenic differentiation in human ADSC [J]. Cell Physiol Biochem, 2015, 37(6): 2297-2310.
- [108]Qu H, Donkin S S, Ajuwon K M. Heat stress enhances adipogenic differentiation of subcutaneous fat depotderived porcine stromovascular cells [J]. J Anim Sci, 2015, 93(8): 3832-3842.
- [109]Liu P Y, Hsieh P, Lin H, et al. Grail is involved in adipocyte differentiation and diet-induced obesity [J]. Cell Death Dis, 2018, 9(5): 525.
- [110]Han G E, Kang H T, Chung S, et al. Novel neohesperidin dihydrochalcone analogue inhibits adipogenic differentiation of human adipose-derived stem cells through theNrf2pathway[J].IntJMolSci,2018,19(8):E2215.
- [111] Takase R, Hino S, Nagaoka K, et al. Lysine-specific demethylase-2 is distinctively involved in brown and

beige adipogenic differentiation [J]. FASEB J, 2019, 33 (4): 5300-5311.

- [112]Zhu E D, Zhang J J, Li Y C, et al. Long noncoding RNA Plnc1 controls adipocyte differentiation by regulating peroxisome proliferator-activated receptor Γ [J]. FASEB J, 2019, 33(2): 2396-2408.
- [113]Xiong Y, Yue F, Jia Z H, et al. A novel brown adipocyteenriched long non-coding RNA that is required for brown adipocyte differentiation and sufficient to drive thermogenic gene program in white adipocytes [J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863 (4): 409-419.
- [114]Zhang W, Yao C, Wei Z Y, et al. miR-128 promoted adipogenic differentiation and inhibited osteogenic differentiation of human mesenchymal stem cells by suppression of VEGF pathway [J]. J Recept Signal Transduct Res, 2017, 37(3): 217-223.
- [115]Yuan S M, Guo Y, Wang Q, et al. Over-expression of PPAR-γ2 gene enhances the adipogenic differentiation of hemangioma-derived mesenchymal stem cells *in vitro* and *in vivo* [J]. Oncotarget, 2017, 8(70): 115817-115828.
- [116]Yang X, Li Y Y, Huang Q L, et al. The effect of hydroxyapatite nanoparticles on adipogenic differentiation of human mesenchymal stem cells [J]. J Biomed Mater Res A, 2018, 106(7): 1822-1831.
- [117] Yang H E, Kang M J, Hur G, et al. Sulforaphene suppresses adipocyte differentiation via induction of posttranslational degradation of CCAAT/enhancer binding protein beta (C/EBPβ) [J]. Nutrients, 2020, 12(3): E758.
- [118]Wang Y L, Yang L, Liu X F, et al. miR-431 inhibits adipogenic differentiation of human bone marrowderived mesenchymal stem cells via targeting insulin receptorsubstance2[J].StemCellResTher,2018,9(1):231.
- [119]Kosaka K, Kubota Y, Adachi N, et al. Human adipocytes from the subcutaneous superficial layer have greater adipogenic potential and lower PPAR-γ DNA methylation levels than deep layer adipocytes [J]. Am J Physiol Cell Physiol, 2016, 311(2): C322-C329.
- [120]Li Q Y, Chen L, Yan M M, et al. Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARγand IKK/NF- κB signaling [J]. Pharm Biol, 2015, 53(11): 1567-1575.
- [121]Świderska E, Podolska M, Strycharz J, et al. Hyperglycemia changes expression of key adipogenesis markers (C/EBPα and PPARγ )and morphology of differentiating human visceral adipocytes [J]. Nutrients, 2019, 11(8): E1835.
- [123]Fu Y, Li R, Zhong J, et al. Adipogenic differentiation potential of adipose-derived mesenchymal stem cells from ovariectomized mice[J]. Cell Prolif, 2014, 47(6): 604-614.