聚多巴胺表面功能化叶酸靶向紫杉醇纳米粒的制备及抗肿瘤研究

张梦营,王一安,敖 惠,王向涛,韩美华* 中国医学科学院北京协和医学院药用植物研究所,北京100193

摘 要:目的 利用多巴胺碱性条件下自组装成聚合法制备叶酸(FA)靶向的紫杉醇(PTX)纳米粒(NPs),并对其进行 表征,探究体外抗宫颈癌效果。方法 采用反溶剂沉淀法联合高压均质制备PTX-PEG2000 PCL2000 NPs,将盐酸多巴胺置于碱 性条件下,其在NPs的表面氧化自聚合形成聚多巴胺(PDA)薄层,随后将FA对其表面修饰,得到PTX-PDA-FA NPs。利 用动态光散射法、透射电镜法考察NPs的粒径及形态,高效液相法测定PTX含量,考察NPs的稳定性、溶血性、体外释放 等表征、用MTT法评价NPs对HeLa细胞的细胞毒作用。结果成功制得PTX-PDA-FANPs,粒径(182.9±3.921)nm,分散 指数 (PDI) 值为 0.113±0.026, Zeta 电位为-29.2 mV,透射电镜下呈棒状。NPs 在 5% 葡萄糖、血浆中基本稳定;无溶血现 象;在体外持续缓慢释放。MTT结果显示,与无FA靶向的NPs比较,PTX-PDA-FA NPs对HeLa细胞表现出更高的抑制率。 结论 利用PDA法表面功能化是一种更加安全快捷的制备靶向NPs的方法,能够更好的实现增效减毒,是非常有潜力的纳米给药系统。 关键词:聚多巴胺;表面修饰;叶酸靶向;纳米粒;抗肿瘤;紫杉醇 中图分类号: R965 文献标志码: A 文章编号: 1674-6376 (2020) 01-0052-05

DOI: 10.7501/j.issn.1674-6376.2020.01.008

Preparation of surface functionalized polydopamine folate targeting paclitaxel nanoparticles nanoparticles and antitumor research

ZHANG Mengying, WANG Yi'an, AO Hui, WANG Xiangtao, HAN Meihua

Peking Union Medical College & Chinese Academy of Medical Sciences Institute of Medicinal Plant Development, Beijing 100193, China

Abstract: objective Folate-targeted paclitaxel (PTX) nanoparticles were prepared by self-assembly polymerization under dopaminealkaline conditions and characterized to investigate the anti-cervical cancer effect in vitro. Methods PTX-PEG₂₀₀₀PCL₂₀₀₀ nanoparticles were prepared by anti-solvent precipitation combined with high-pressure homogenization. By dopaminepolymerization method, dopamine-hydrochloride was placed under alkaline conditions to oxidize and self-polymerize on the surface of the nanoparticles to form PDA thin layer, and then the surface was modified with folic acid (FA) to obtain PTX-PDA-FA NPs. Nanoparticles size and morphology was measured by dynamic light scattering (DLS) and transmission electron microscopy (SEM). Drug content was determined by high performance liquid chromatography (HPLC). The stability of the nanoparticles, hemolytic, in vitro release were characterized and cytotoxic effect against HeLa was examined by MTT assay. Results PTX-PDA-FA NPs were successfully prepared, with particle size of 182.9±3.921 nm, dispersion index (PDI) value of 0.113±0.026 and Zeta potential of -29.2 mV. It was stable in 5% glucose and plasma. There was no hemolysis and showed sustained slow release in vitro. MTT results showed that PTX-PDA-FA nanoparticles showed a higher inhibition rate on HeLa cells compared with folate-free nanoparticles. Conclusion Surface functionalization by polydopamine method is a safer and faster way to prepare targeted nanoparticles, which can better enhance the efficacy and reduce toxicity, and is a promising nano-drug delivery system.

Key words: polydopamine; surface modification; folate-targeted; nanoparticles; anti-tumor

国家癌症中心最新恶性肿瘤流行情况数据显 示,我国恶性肿瘤近十多年来,发病、死亡数持续增 使用化疗药物是治疗癌症的基本手段。紫杉

加^[1]。全国女性宫颈癌死亡率整体呈上升趋势^[2],

收稿日期: 2019-09-09

第一作者:张梦营,硕士研究生,研究方向为药物新剂型。E-mail: zmy17310412786@163.com

基金项目:国家自然科学基金委-广东省联合基金(U1401223)

^{*}通信作者:韩美华 E-mail: hanmeihua727@163.com

醇(Paclitaxel, PTX)是从红豆杉属植物中提取得到的一种天然抗癌药,对多种实体瘤具有显著治疗效果^[34]。但其在水中溶解度极低,且存在严重的副作用,如神经、肾毒性,过敏反应等^[56]。

聚多巴胺(polydopamine,PDA)法指在碱性条件下使多巴胺氧化自聚合形成PDA包覆于紫杉醇纳米粒(NPs)表面,利用其表面官能团与叶酸(FA)的化学反应以及强黏附性制备PTX-PDA-FA靶向NPs^[7-8]。这种表面修饰的方法简单易行,且生物相容性、安全性良好^[9-10],本研究初步探讨靶向制剂对宫颈癌细胞的治疗效果。

1 材料

1.1 仪器

KM-200DE中文液晶超声波清洗器(昆山美美 超声仪器有限公司);Hitech实验室超纯水机(上海 和泰仪器有限公司);Zetasizer Nano ZS 粒度仪(英 国 Malv-ern Instruments 有限公司);Meppler Toledo MS105DU分析天平(德国梅特勒-托利多仪器有限 公司);U3000高效液相色谱仪(美国戴安有限公 司);Hel-VAP旋转蒸发仪(Heidolph公司);RJ-TGL-16C型高速台式离心机(无锡市瑞江分析仪器有限 公司);Tecan M1000多功能连续波长酶标仪(瑞士 帝肯有限公司);JEM 1400透射电子显微镜(日本电 子株式会社)。

1.2 药物与主要试剂

PTX(北京偶合有限公司,批号CP202-160802, 质量分数>99.0%);PEG₂₀₀₀PCL₂₀₀₀(济南岱罡生物工 程有限公司);FA(批号20120417,国药控股化学试 剂);DMEM培养基、磷酸缓冲液(PBS)、胎牛血清、 青链霉素,均购自美国Hyclone有限公司;96孔无菌 培养板(美国Corning有限公司);其余试剂均为分 析纯。

1.3 动物与细胞

HeLa(宫颈癌)细胞系,由北京协和医学院基础

PTX-PDA-FA 纳米粒

所细胞中心提供。

```
2 方法与结果
```

2.1 NPs的制备及表征

2.1.1 PTX-PDA-FA NPs的制备 将10 mg PTX与 10 mg PEG₂₀₀₀PCL₂₀₀₀载体分别溶于丙酮中,超声滴 注于10 mL去离子水中,40 ℃旋蒸除去有机溶剂丙 酮,高压均质10次,将合成的NPs加入含有0.75 mg/mL 盐酸多巴胺的Tris缓冲盐溶液(10 mmol/L,pH 8.4) 中,650 r/min 搅拌3 h,得 PTX-PDA NPs。加 FA(2 mg/mL)于NPs体系,620 r/min 搅拌0.5 h,得 到载FA 的聚多巴胺修饰的 PTX-PDA-FA NPs。

2.1.2 PTX-PDA-FA NPs 的粒径及电位的测定 以动态光散射法(differential scanning calorime-try, DSC)测定 PTX-PDA-FA NPs 粒径及电位,测定结果 以平均粒径及 Zeta 电位(mV)记录。

PTX-PDA-FA NPs 粒径为(182.9±3.921)nm,分 散指数(PDI)值为0.113±0.026,Zeta电位为-29.2 mV, 结果见表1。

表1 粒径、PDI和表面电位(n=3) Table 1 Size, PDI and surface potential (n=3)

	粒径/nm	PDI	电位
PTX NPs	152.8±4.479	$0.115 {\pm} 0.056$	-7.46
PDA-PTX NPs	173.9±3.722	$0.087 {\pm} 0.069$	-23.4
FA-PDA-PTX NPs	182.9±3.921	$0.113 {\pm} 0.026$	-29.2

2.1.3 透射电镜(transmission electron microscope, TEM)考察 将 PTX NPs、PTX-PDA NPs、PTX-PDA-FA NPs用水溶解稀释至溶液澄清透明,滴在 镀碳支持膜铜网上,静置5 min后滤纸吸干,待自然 干燥后,滴醋酸双氧铀染液,染色90 s,晾干,TEM 下观察亚纳米晶粒子的形态和大小。

如图1所示,PTX-PDA-FA NPs、PTX-PDA NPs 和PTX NPs均呈棒状均匀分布。包覆多巴胺前后, 形态和粒径没有明显变化,说明多巴胺对 NPs形态

PTX-PDA NPs 纳米粒

• 54 •

及粒径没有影响。

2.2 不同介质稳定性考察

将 PTX、PTX-PDA、PTX-PDA-FA NPs 与 10% 的葡萄糖、1.8% 生理盐水等体积混合。同样地,将 上述 NPs 与血浆 1:4 混合,37.0 ℃恒温孵育,分别在 0、1、3、5、7 h 取样,测粒径大小,以不同时间点的粒 径大小对时间作图,观察有无混浊或沉淀,评价 NPs 在不同生理介质的稳定性。

PTX-PDA-FA NPs在5%葡萄糖溶液和血浆中 孵育7h粒径没有显著变化,无浑浊或聚沉现象,稳 定性良好,结果见图2,适用于静脉注射给药。

2.3 溶血性考察

分别取不同质量浓度(1.000 0、0.500 0、0.250 0、0.125 0、0.062 5 mg/mL)PTX-PDA-FA NPs 的 5% 葡萄糖等渗液 200 μL 与 20 μL 4% 红细胞悬浮液混 合后 37 ℃孵育 4 h,5 000 r/min 离心 10 min,取上清 用酶标仪在 540 nm 处测紫外吸收(*A*)值。以 200 μL 生理盐水与 20 μL 红细胞悬液的混合液为阴性对照 组,以 200 μL 去离子水和 20 μL 红细胞悬浮液的混 合液为阳性对照组,计算溶血率。

溶血率= $(A_{\text{实验}} - A_{\text{Bletyle}} - A_{\text{2plyle}})/(A_{\text{Bletyle}} - A_{\text{Bletyle}})$

PTX-PDA-FANPs在药物浓度为1mg/mL时,溶 血率低于5%,可以进行静脉注射给药,结果见表2。

2.4 高效液相(HPLC)法检测药物的含量

2.4.1 药物检测的色谱条件^[11,12] 流动相为乙腈-水(60:40);色谱柱:Waters反相C₁₈柱(250 mm×4.6 mm,5 μm);检测波长227 nm;柱温30 ℃;体积流量 1.0 mL/min;进样量20 μL。

2.4.2 药物标准曲线 精密称量5 mg PTX粉末,配

表 2 PTX-PDA-FA NPs 的溶皿率(n=3)			
Table 2	Hemolysis of PTX-PDA-FA NPs $(n = 3)$		
浓	:度(mg·mL ⁻¹)	溶血率/%	
	0.062 5	-5.68	
	0.125 0	-4.95	
	0.250 0	-4.31	

-3.44

-1.71

0.500 0

1.000 0

制 1 mg/mL 的 PTX 甲醇溶液,再分别用甲醇依次稀释成质量浓度为100.0、80.0、60.0、40.0、20.0、10.0、5.0、1.0和0.1 μg/mL 的溶液。取 20 μL 进样于 HPLC 谱仪中,记录 PTX 峰面积,制作标准曲线,标准曲线 方程为: Y = 0.679 1X-0.767 9 (R² = 0.999 6)。

2.5 体外释放考察

取质量浓度1 mg/mL的PTX NPs、PTX-PDA NPs和PTX-PDA-FA NPs于8000~14000 Da的透 析袋中。将样品分别放入40 mL pH值为7.4的含 0.2% 吐温80 的磷酸缓冲液(PBS)释放介质中,于 37 °C进行释放研究,每个样品平行3份。分别在1、 4、14、24 h取1 mL释放外液,同时补充1 mL等温释 放介质,48、72、96、120、144和168 h更换释放外液。 取样品的释放外液用甲醇溶解,涡旋震荡破碎,离 心取上清液。采用 HPLC 法测定药物质量浓度,计 算累积释放率^[13]。

NPs的体外释放行为如图3所示,本实验考察了PTX NPs,PTX-PDA NPs和PTX-PDA-FA NPs在 生理介质中为期1周的累积释放情况,PTX NPs在

FA NPs为 受到载体的影响 NPs均呈 养液中药物含量

168 h 时的释放量是 68.13%, PTX-PDA-FA NPs 为 60.93%, 而 PTX-PDA NPs 释放了 65.93%。 NPs 均呈 现出均匀缓慢释放特征^[14], 释放动力学模型为零级 释放(Zero-order with Tlag), *t*_{1/2}为药物释放一半用 时, 拟合方程如下:

PTX NPs: $y = 0.381 \ 3x + 3.099 \ 6$, $R^2 = 0.995 \ 5$, $t_{1/2} = 124.32 \ h$

PTX-PDA NPs: $y = 0.344 \ 9x + 4.010 \ 4$, $R^2 = 0.994 \ 8$, $t_{1/2} = 134.40 \ h$

PTX-PDA-FA NPs: $y = 0.346 \ 4x + 3.654 \ 4$, $R^2 = 0.999 \ 9$, $t_{1/2} = 137.76 \ h$

2.6 体外细胞毒性实验

培养 HeLa 细胞到对数生长期时,以8 000/孔的 数量接种于96 孔板,并于37 °C、5% CO₂培养24 h, 将紫杉醇注射液、PTX、PTX-PDA、PTX-PDA-FA NPs 用培养基稀释至药物浓度为 0.001、0.010、 0.100、1.000、2.000、5.000、50.000 µg/mL 后加入到 96 孔板中,每个浓度6个复孔,以不含胎牛血清的培 养基为空白。分别培养48 h后,每孔加入5 mg/mL 的 MTT 溶液20 µL,孵育4 h。吸弃各孔上层液体, 每孔加入 DMSO 150 µL, 微孔板振荡器振荡 10 min, 使结晶物溶解。酶联免疫荧光仪检测 570 nm 下的吸光度(A)值, 计算细胞抑制率和最大半数抑 制浓度(IC_{s0})值。

如图4所示, PTX NPs 和市售 PTX 注射液对

HeLa细胞的杀伤效果呈现剂量相关性,空白NPs组 对细胞的抑制率较低,几乎没有毒性。与市售PTX 注射液比较,NPs的细胞抑制率较低,这可能是由于 PTX注射液直接作用于细胞,杀伤力大,而NPs由于 受到载体的影响释放缓慢,在同一作用时间点,培养液中药物含量低于 PTX 注射液组。PTX-PDA-FA NPs 的 IC₅₀值明显低于 PTX NPs 和 PTX-PDA NPs组,结果见表3,表明FA 靶向的 NPs 对癌细胞的杀伤作用更强,这是由于 HeLa 细胞表面大量的 FA 受体使得载有 FA 的 NPs 能更准确高效的杀伤癌细胞^[15]。同时,也验证了利用 PDA 法能够有效的将生物分子(如 FA)进行二次连接应用在药物递送系统^[16]。

表 3 药物对 HeLa 细胞孵育 48 h的 IC₅₀值(n = 6) Table 3 IC₅₀ value of drug against HeLa cell incubated 48 h

	(n=6)	
组别	IC ₅₀ /	IC50范围/
	$(\mu g \cdot m L^{-1})$	$(\mu g \cdot m L^{-1})$
PTX注射液	0.377	0.230~0.617
PTX NPs	2.858	$1.682 \sim 4.854$
PTX-PDA NPs	2.643	1.513~4.617
PTX-PDA-FA NPs	1.645	1.09 4~2.47 4

3 讨论

紫杉醇是一种有效的抗肿瘤化疗药^[34],本研究 将其制备成NPs并考察了其抗宫颈癌效果。采用反 溶剂沉淀法联合高压均质制备PTX NPs,碱性条件 下盐酸多巴胺自聚合形成聚多巴胺薄层,FA进行表 面修饰。制备的PTX-PDA-FA NPs,粒径较小,形态 为棒状。在葡萄糖等渗液和血浆中稳定性良好,高 剂量药物考察时仍无溶血现象,体外释放行为持续 缓慢。与无FA 连接的 NPs 组比较,PTX-PDA-FA NPs对HeLa细胞表现出更高的抑制效果,说明利用 肿瘤细胞表面过量表达的特异性受体这一特点,通 过FA 靶向能够有效地增强肿瘤抑制能力,为PTX NPs的进一步靶向研究提供参考。

参考文献

- [1] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行 情况分析 [J]. 中华肿瘤杂志, 2019, 41(1): 19-28.
- [2] 魏长慧,朱继存,牛媛娜,等.2015年中国分地区恶性肿 瘤发病和死亡分析 [J].中国肿瘤,2019,23(5):506-511.
- [3] Han M H, Zheng H, Guo Y F, et al. Novel folate-targeted paclitaxel nanoparticles for tumor targeting: Preparation, characterization, and efficacy [J]. RSC Adv, 2016, 6(51): 45664-45672.
- [4] Weaver B A. How Taxol/paclitaxel kills cancer cells [J]. Mol Biol Cell, 2014, 25(18): 2677-2681.
- [5] Singla A K, Garg A, Aggarwal D. Paclitaxel and it

茲如時時研究 Drug Evaluation Research 第43卷第1期 2020年1月

formulations [J]. Int J Pharm, 2002, 235: 179-192.

- [6] Choudhury H, Gorain B, Tekade R K, et al. Safety against nephrotoxicity in paclitaxel treatment: oral nanocarrier as an effective tool in preclinical evaluation with marked *in vivo* antitumor activity [J]. Regul Toxicol Pharmacol, 2017, 91(12): 179-189.
- [7] Zhang X M, Wu Y B, Zhang M, et al. Sodium cholateenhanced polymeric micelle system for tumor-targeting delivery of paclitaxel [J]. Int J Nanomedicine, 2017, 13 (12): 8779-8799.
- [8] Cheng F F, Zhang J J, Xu F, et al. pH-Sensitive polydopamine nanocapsules for cell imaging and drug delivery based on folate receptor targeting [J]. Biomed Nanotechnol, 2013, 9(7): 1155-1163.
- [9] Bi D, Zhao L, Yu R, et al. Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH- sensitive property for tumor targeting therapy [J]. Drug Deliv, 2018, 25(1): 564-575.
- [10] 陈田娥, 王 鸽, 陈敏婷, 等. TPGS-壳聚糖载紫杉醇胶 束的制备及大鼠在体肠吸收研究 [J]. 中草药, 2018, 49 (24): 5780-5786.

- [11] Peng, L. Surface modification of MPEG- b -PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy [J]. Int J Nanomedicine, 2015, 10: 2985-2996.
- [12] Sun J, Jiang L, Lin Y, et al. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. [J]. Int J Nanomedicine, 2017, 12: 1517-1537.
- [13] Zhao J, Wan Z, Zhou C, et al. Hyaluronic Acid Layer-By-Layer (LbL) Nanoparticles for Synergistic Chemo-Phototherapy [J]. Pharm Res, 2018, 35(10): 196-210.
- [14] Zhang Y, Huo M R, Zhou J P, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles [J]. AAPS J, 2010, 12(3): 263-271.
- [15] Thu H P, Nam N H, Quang B T, et al. *In vitro* and *in vivo* targeting effect of folate decorated paclitaxel loaded PLA-TPGS nanoparticles [J]. Saudi Pharm J, 2015, 23(6): 683-688.
- [16] Park J, Brust T F, Lee H J, et al. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers [J]. ACS Nano, 2014, 3(8): 3347-3356.

· 56 ·