王亚楠[#],郭雅娟[#],宋 捷,胡燕平,汪 祺^{*},文海若^{*} 中国食品药品检定研究院,北京100050

摘 要:目的使用L5178Y细胞分别开展 tk 基因突变试验和 hprt 基因突变试验评价纳米氧化铁颗粒(iron oxide nanoparticle, IONP)的潜在基因突变风险,比较两种方法的灵敏性。方法不同质量浓度的PEG-IONP(31.25、62.5、125、250、500 μg/mL)分别与细胞作用3h,于给药后第0、2、6天将细胞接种于96孔板继续培养9~10d,用于计算平板接种效率。分别在给药后第2天或第6天加入三氟胸苷(TFT)和6-硫鸟嘌呤(6-TG)作为tk基因和 hprt基因选择剂,继续培养14d后分析基因突变频率。试验平行设置灭菌注射用水溶媒对照组和甲基甲烷磺酸酯(MMS,10 μg/mL)阳性对照组。结果溶媒对照组和阳性对照组的 hprt基因突变率均低于 tk基因突变率,且统计学结果提示 hprt基因突变试验数据获得显著性差异的起始浓度(250 μg/mL)高于 tk基因突变试验(125 μg/mL)。但整体而言两种试验方法对PEG-IONP的评价结果一致。结论 PEG-IONP可引起小鼠淋巴瘤 L5178Y细胞 tk基因及 hprt 基因突变率显著性升高。该研究结果可为纳米材料基因突变风险评价的选择提供借鉴与参考。

关键词: 氧化铁纳米颗粒; L5178Y 细胞; *tk* 基因; *hprt* 基因; 基因突变 中图分类号: R994 文献标志码: A 文章编号: 1674-6376 (2019) 10-1975-06 DOI: 10.7501/j.issn.1674-6376.2019.10.010

Comparative study on the *tk* and *hprt* gene mutation assays for nano-iron oxide particle

WANG Yanan, GUO Yajuan, SONG Jie, HU Yanping, WANG Qi, WEN Hairuo National Institutes for Food and Drug Control, Beijing 100050, China

Abstract: Objective To perform *tk* gene mutation assay and *hprt* gene mutation assay using L5178Y cells for evaluating the gene mutation risk of IONP, and comparing the sensitivity of both assays. **Methods** Cells were treated with different concentrations of PEG-IONP (31.25, 62.5, 125, 250, 500 μ g/mL) for 3 h. Cells were seeded in 96-well plates on 0, 2 and 6 days after treatment and cultured for 9 to 10 days for calculating the plating efficiency. TFT and 6-TG were adopt as the *tk* gene and *hprt* gene selection agents on 2 or 6 days after treatment respectively, and the gene mutation frequencies were analyzed after a 14 days incubation. Sterile water and MMS (10 μ g/mL) were included in parallel as vehicle control and positive control groups. **Results** The mutation rates of *hprt* gene in vehicle control group and the positive result in the *hprt* gene mutation assay (250 μ g/mL) was higher than the *tk* gene mutation (125 μ g/mL). However, the results for PEG-IONP are generally consistent in both assays. **Conclusion** PEG-IONP could significantly increase the mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation rates of both *tk* gene and *hprt* gene in mutation assays. **Conclusion** PEG-IONP could significantly increase the mutation rates of both *tk* gene and *hprt* gene in mouse lymphoma L5178Y cells. This data provided reference for the methods selection on the gene mutation risk assessment of nanomaterials.

Key words: iron oxide nanoparticle; lymphoma L5178Y cells; tk gene; hprt gene; gene mutation

纳米材料指在三维空间中至少有一维处于纳 米尺度范围(1~100 nm)或由其作为基本单元构成

的材料。以纳米氧化铁颗粒为代表的生物医用纳 米材料,具有体内脏器靶向性的特点,且对肿瘤组

收稿日期: 2019-05-16

基金项目:国家十三五"重大新药创制"专项课题(2018ZX09201017);国家自然科学基金(81503347)

[#]共同第一作者:王亚楠,女,硕士研究生,研究方向为遗传毒性评价。Tel:15001028786 E-mail:wangyanan_ytu@126.com 郭雅娟,女,硕士研究生,研究方向为药物安全性评价。Tel:15600902864 E-mail:1141023662@qq.com。

^{*}通信作者: 文海若,女,博士,副研究员,从事药物遗传毒性评价。Tel: (010) 67876252 E-mail: wenhairuo@nifdc.org.cn 汪 祺,女,副研究员,从事药理毒理研究。Tel: (010) 67095495 E-mail: sansan8251@sohu.com。

织亲和力高,故作为临床肿瘤组织造影剂和抗 肿瘤药物具有重要研发价值且已获得一定应用^[1-3]。 如纳米氧化铁可作为基因载体用于肿瘤基因治 疗^[4-5]。此外,人群在日常生活中也有可能接触到含 有纳米氧化铁颗粒的磁性材料、透明颜料和催化 剂等^[6-7]。

随着大量纳米材料涌入人们的生活,其对人体 的潜在毒性成为监管部门关注的重点。从遗传毒 性的角度分析,纳米材料的小尺寸效应和高表面活 性等特点,使其易于透过细胞膜并与细胞的遗传物 质产生直接或间接的相互作用。尤其是携带金属 离子的纳米颗粒,进入细胞后可通过氧化应激或炎 症等作用机制诱发染色体或DNA断裂^[8]。然而,经 典的遗传毒性评价方法细菌回复突变试验(即 Ames试验)在评价纳米材料的致突变性方面存在 一定局限。如2002-2010年发表的17种纳米材料 遗传毒性评价结果中,15种纳米材料的 Ames 试验 结果为阴性,但其中绝大多数却在体外染色体畸变 试验、体外微核试验、体外彗星试验,甚至体内研究 中呈阳性结果^[9]。Ames试验数据与其他遗传毒性 评价结果存在的巨大出入,导致研究者难以确定究 竟因纳米材料自身不诱导碱基突变,抑或是方法学 的局限使我们无法有效检出纳米材料的潜在致突 变性^[10]。Ames试验以细菌为试验体系,而纳米材 料自身不易穿透菌壁与细菌的遗传物质相互作用, 部分纳米材料的抑菌性也对试验结果产生重要影 响。除Ames试验外,基于哺乳动物细胞的tk基因 突变试验和 hprt 基因突变试验也是以基因突变为检 测终点的常用遗传毒性评价方法,且试验方法均有 相关OECD指导原则可依[11-12],可作为检测致突变 剂的体外备选方法。但因这两种哺乳动物细胞基 因突变试验方法常用于安评而非科研领域,用其对 纳米材料进行评价的文献资料很少,是否可有效检 出纳米材料的遗传毒性尚未得到充分验证。

tk基因突变试验和 hprt 基因突变试验均可使用 小鼠淋巴瘤细胞 L5178Y 细胞开展,其中使用 L5178Y 细胞开展 tk基因突变试验又称小鼠淋巴瘤 细胞试验(mouse lymphoma assay, MLA)。为便于 比较,本研究使用相同细胞系(L5178Y $tk^{+/-}$ -3.7.2C) 分别开展 tk基因突变试验和 hprt 基因突变试验,对 聚乙二醇表面修饰的纳米氧化铁颗粒(polyethylene glycol-modified iron oxide nanoparticles, PEG-IONP) 的潜在致突变性进行评价,并对两种评价方法进行 比较。 1 材料

1.1 细胞

小鼠淋巴瘤细胞L5178Y tk⁺⁻⁻-3.7.2C,2C,引自 日本国立医药品食品卫生研究所,经自发突变体清 除和支原体检查后于液氮长期保存。研究所用细 胞为复苏传代后6~10代。

1.2 主要化学试剂

PEG-IONP 5 nm(批号 MKBR4497V)、甲基甲 烷磺酸酯(methanesulfonic acidmethyl, MMS, 批号 126K3721)、NaHCO₃、6-硫鸟嘌呤(6-thioguanine, 6-TG, 批 号 SLBH7699V) 和 三 氟 胸 苷(Trifluorothymidine, TFT, 批号 BCBR3508V)购 自 Sigma-Aldrich, RPMI 1640 (HyClone),马血 清(HyClone),青链霉素混合液(Gibco),丙酮酸 钠(国药集团),灭菌注射用水(石家庄四药有限公 司)。试验中需配制马血清含量分别为0%、10%和 20%的 RPMI 培养基(含1% 青链霉素混合液和 200 μg/mL丙酮酸钠),其中含0%马血清的培养基(R0) 主要用于受试物处理时稀释或者处理后清洗细胞, 含10%马血清的培养基(R10)主要用于细胞传代培 养,含20%马血清的培养基(R20)主要用于96孔板 细胞培养。

1.3 纳米颗粒的表征

PEG-IONP 经 RPMI 1640 培养液稀释到一定浓度后,使用动态光散射法(Dynamic Light Scattering, DLS,所用仪器为 Zeta Sizer Nano ZS, Malvern 公司)测定颗粒在细胞培养液中的颗粒分布和表面带电性。经测定 PEG-IONP 在培养液中均匀分布且无明显聚集,颗粒平均分布为(5.6±0.4)nm,表面带电为-2 mV。

2 方法

2.1 细胞培养

L5178Y细胞解冻复苏后使用R10(含10%马血 清1%青链霉素混合液的RPMI1640培养基)在 37℃、5%CO₂条件下培养,隔天更换培养基,待细 胞增殖至适宜密度后进行试验。所有培养基中均 需添加200µg/mL丙酮酸钠及40mg/mLNaHCO₃。

2.2 给药处理

细胞达对数生长期后,更换R0(不含马血清、含 1% 青链霉素混合液的RPMI 1640 培养基),并添加 不同浓度的PEG-IONP(31.25、62.5、125、250、500 μg/mL),PEG-IONP最大给药浓度根据其未浓缩的 最高浓度及前期细胞毒性试验结果确定,当处理浓 度为500 μg/mL时对L5178Y细胞的增殖无明显影 响。试验平行设置灭菌注射用水溶媒对照组和 MMS(10 µg/mL)阳性对照组^[13-14]。细胞与受试物 于 37℃气浴震荡 3 h,之后 1 000 r/min 室温离心 5 min 并弃上清。给药后(d0)进行细胞计数,使用 R10将培养瓶中细胞浓度调整为2×10⁵个/mL,使用 R20(含 20% 马血清及 1% 青链霉素混合液的 RPMI 1640 培养基)将剩余细胞调整为8个/mL 后接种于 96 孔板(即 PE0 板,每孔 0.2 mL,平均 1.6 个细胞/ 孔),置 5% CO₂、37 ℃培养9~10 d后观察含克隆孔 数用于计算 PE0 接种效率。

2.3 tk基因突变试验

给药后第1天及第2天分别进行细胞计数,每次计数后均使用 R10将培养瓶内细胞密度调整为2×10⁵个/mL。给药后第2天(d2)计数后用 R20调整细胞密度为1×10⁴个/mL制备突变频率(mutation frequency, MF)平板:将细胞悬液与TFT(终质量浓度3µg/mL)混合后加入96孔板(每孔0.2 mL,平均2×10³个细胞/孔),平板于37℃、5% CO₂孵箱继续培养14d,观察突变克隆形成率;剩余细胞用 R20调整为8个/mL细胞悬液,并接种于96孔板(即 PE2 板,每孔0.2 mL,平均1.6个细胞/孔),置5% CO₂、37℃培养9~10d后观察含克隆孔数用于计算 PE2 接种效率(流程见图1)。上述试验操作均遵守药物非临床研究质量管理规范(Good Laboratory Practice, GLP)要求执行。

2.4 hprt基因突变试验

给药后第1天、第2天、第3天及第6天分别进行细胞计数,每次计数后均用R10将培养瓶内细胞密度调整为2×10⁵个/mL。给药后第2天(d2)和第6天(d6)分别用R20制作PE2及PE6平板用于计算接种效率,步骤同"2.3"节。给药后第6天细胞计数后用R20调整细胞密度为1×10⁴个/mL制备(mutation frequency,MF)平板:将细胞悬液与6-TG(终质量浓度 0.5 μg/mL)混合后加入96孔板(每孔0.2 mL,平

均2×10³个细胞/孔),平板于37℃、5% CO₂孵箱继续 培养14 d,观察突变克隆形成率(流程见图1)。上 述试验操作均在GLP体系下进行。

2.5 结果观察及数据处理

培养结束后,观察计数平板接种效率PE0、 PE2、PE6及MF,计算细胞相对存活率(relative survival rate, RS)、相对悬浮生长率(relative suspension growth rate, RSG)及相对总生长率(relative total growth rate, RTG),相应计算公式如下(a-f)所示。tk基因突变试验计数每个96孔MF平板中含突变细胞形成的克隆孔数及小克隆(small clone, SC)的孔数,计算总基因突变频率(MF)以及小克隆的突变百分率(SC%); hprt 基因突变试验不对大小克隆进行区分,需计数含有突变克隆的孔数并计算MF。所有数据使用3次试验结果,数据以 $\bar{x} \pm s$ 表示。

(a) 平板接种效率: PE= -ln($\frac{EW}{TW \times N}$), N=1.6, EW 为阴 性孔数, TW 为总孔数, N为接种于每孔的细胞数。 (b) 细胞相对存活率: RS=($\frac{PE处理组}{PE溶媒对照组}$) (c)细胞增值率: DCG= $\frac{本次计测的细胞密度}{前-次计测或调整后的细胞密度}$ (d)相对悬浮生长率: RSG= $\frac{(DCG1 \times DCG2) 处理组}{(DCG1 \times DCG2) 溶媒对照组}$ (e)相对总生长率: RTG=RS×RSG (f)总突变频率: MF= -ln($\frac{EW}{TW \times N \times PE}$), N=2 000, EW

为阴性孔数,TW为总孔数,N为接种于每孔的细胞数。

使用卡方检验将各组PEG-IONP处理组及阳性 对照组的突变率与溶媒对照组作比较。如一个或 多个PEG-IONP浓度组出现浓度相关性和/或可重 复性的突变率增加,且任意浓度组MF与溶媒对照 组MF相比超出126×10⁶,则判定为阳性结果;反之 为阴性。

Fig 1 Schematic diagram of tk and hprt gene mutation test procedure

• 1978 •

3 结果

3.1 PEG-IONP的tk基因突变试验

3次tk基因突变试验结果均值见表1,溶媒对照 组的MF为170.0×10⁻⁶,PE和MF均在本实验室的背 景数据范围内(PE: 50%~160%; MF: 110×10⁻⁶~ 250×10⁻⁶)^[13-14]。阳性对照MMS的MF为1100.7× 10⁻⁶(*P*<0.001),明显超出阳性结果判定阈值。 PEG-IONP的浓度为125、250、500 µg/mL时,tk基因 突变率分别为 294.0×10⁻⁶、320.3×10⁻⁶和 361.7×10⁻⁶, 均超出溶媒对照组的126×10°且呈浓度相关性增加 趋势(P<0.05)。提示当PEG-IONP浓度为125 μg/ mL及以上时,可诱导L5178Y细胞发生tk基因突 变。MLA实验可通过区分小克隆来大致区分受试 物的遗传毒性作用方式:小克隆数增加通常提示受 试物可诱导染色体断裂,而大克隆数量变化则与基 因点突变有关。本研究中PEG-IONP 各浓度组中 SC%与溶媒对照组比较未见显著性差异,提示当前 试验条件下PEG-IONP未导致L5178Y细胞明显的 染色体断裂效应。

3.2 PEG-IONP的 hprt 基因突变试验

3次 hprt基因突变试验结果均值如表2所示,溶 媒对照组的MF为124.3×10⁶,而阳性对照的hprt基 因突变率为971.0×10⁶(P<0.01)。当PEG-IONP的 浓度125 µg/mL、250 µg/mL及500 µg/mL时,tk基因 突变率分别为275.7×10⁶、261.0×10⁶和369.0×10⁶, 均超出溶媒对照组的126×10⁶且呈浓度依赖性增加 趋势^[13-14]。而使用卡方检验对上述数据进行显著性 分析发现,当浓度为125 µg/mL时3次试验数值与 溶媒对照组比较不存在显著性差异(P>0.05)。提 示当PEG-IONP浓度为250 µg/mL及以上时,可诱 导L5178Y细胞发生 hprt基因突变。

3.3 tk基因及hprt基因突变率比较

两种基因突变试验分别重复3次,其MF数值汇 总结果如图2所示。3次试验不同浓度组的突变率 差异在10%~40%,提示上述试验方法及试验结果 的复现性强。溶媒对照组和阳性对照组的*hprt*基因

表	1	PEG-IONP对L5178Y细胞tk基因突变的影响
Fable 1	Ef	fect of PEG-IONP on the <i>tk</i> gene mutation of L5178Y

组别	浓度/(µg•mL ⁻¹)	PE0/%	PE2/%	RS0/%	RSG/%	RTG/%	MF/(×10 ⁻⁶)	SC/%
溶媒对照	0	53	75	100	100	100	170.0	18
PEG-IONP	31.25	63	67	119	79	71	191.7	18
	62.5	55	69	103	81	74	260.0	19
	125	53	65	100	88	76	294.0^{*}	29
	250	55	61	103	84	69	320.3*	29
	500	45	56	84	77	58	361.7*	18
MMS	10	35	52	65	62	43	1 100.7***	67***

与溶媒对照组比较:*P<0.05***P<0.001

 $^*P < 0.05 ^{***}P < 0.001$ vs solvent control group

表 2	PEG-IONP对L5178Y细胞hprt基因突变的影响
Table 2	Effect of PEG-IONP on hprt gene mutation of L5178Y

组别	浓度/(µg• mL ⁻¹)	PE0/ %	PE2/ %	PE6/%	RS0/%	RS2/%	RS6/%	RSG2/%	RSG6 /%	RTG2 /%	RTG6/%	MF/(× 10 ⁻⁶)
溶媒对照	0	60	67	71	100	100	100	100	100	100	100	124.3
PEG-IONP	31.25	52	58	61	87	87	87	55	107	47	92	235.7
	62.5	56	55	60	94	82	84	70	87	57	74	210.0
	125	45	47	55	75	71	77	64	84	46	65	275.7
	250	45	53	58	75	80	82	78	85	62	70	261.0^{*}
	500	43	47	46	73	71	65	79	85	56	55	369.0*
MMS	10	28	34	33	48	50	46	72	84	36	39	971.0***

与溶媒对照组比较:*P < 0.05,***P < 0.001

 $P^* < 0.05$, $P^* < 0.001$ vs solvent control group

突变率均值略低于 tk 基因突变率,且统计学结果提示 hprt 基因突变试验数据获得显著性差异的起始浓度(250 μg/mL)高于 tk 基因突变试验(125 μg/mL)。 但整体而言两种试验方法对 PEG-IONP 的评价结果 一致。

图2 不同浓度 PEG-IONP 诱导的 tk 基因和 hprt 基因突变 率比较($\overline{x} \pm s$, n=3)

Fig 2 Comparison on mutation rates between *tk* gene and *hprt* gene induced by different concentrations of PEG-IONP($\overline{x} \pm s$, *n*=3)

4 讨论

IONP在磁共振成像造影方面和肿瘤靶向 药物载体等方面具有广泛的应用,而PEG是纳 米材料常见的表面修饰之一,经FDA 批准用于 临床的用于核磁共振造影的纳米氧化铁颗粒 Ferumoxsil 和 Ferumoxide 均为 PEG 包被。有研 究[15] 提示 IONP 表面经 PEG 修饰后可产生亲水 屏障层,从而有效减少肝脏和脾脏的网状内皮 吞噬系统对纳米颗粒的非特异性吞噬作用,延 长其在体内循环时间并促进其在肿瘤中的累 积。有文献报道 PEG-IONP 的遗传毒性结果可 为阳性。如粒径为10 nm的 PEG-IONP 在有和 无代谢活化条件下均可诱导 Ames 试验中全部 5 种测试菌株(TA97、TA98、TA100、TA102、 TA1535)呈阳性结果,但染色体畸变试验及微 核试验结果均为阴性^[16]。本研究中当PEG-IONP(5 nm)处理质量浓度大于 125 µg/mL 时, 可引起小鼠淋巴瘤 L5178Y 细胞 tk 基因及 hprt 基因突变率显著性升高。该浓度范围内,两项 试验的 PE0、PE2 和 PE6(仅 hprt 基因突变试验) 数值均未明显超出本实验室的背景数据范 围(50%~160%),可排除上述突变为处理浓度 过高、细胞毒性过大而引起的假阳性结果[13-14]。

Ames试验的不适用性主要与试验使用碱

性的固态培养基,加之革兰阴性菌的菌壁较 厚,可导致纳米材料不易穿透胞壁从而无法与 细菌充分接触,以及一些纳米材料有抗菌作用 有关[17]。而使用哺乳动物细胞开展的 tk/hprt 基 因突变试验不存在上述问题,可成为纳米材料 基因突变风险评价的备选方案。当前研究结果 提示两者在评价本研究使用的 PEG-IONP 时,两 种方法的评价结果一致,且均可检出高浓度条 件下诱导的基因突变。然而,Kirkland等^[18]回 顾了文献中 MLA 的预测效果后,认为 Ames 试 验和体外微核试验已足够用于预测啮齿类动物 致癌性和体内遗传毒性;在两者的基础上增加 MLA 后,检出率仅增加了1.5%(从316/405提高 至 322/405)。因此, MLA 试验结果对纳米材料 潜在诱导基因突变风险的评价结果的权重有待 考量。此外,也有文献报导使用啮齿类动物细 胞系开展的与人源细胞开展的 hprt 基因突变试 验检测纳米二氧化钛和碳纳米管的试验结果存 在一定矛盾,提示不同细胞系的敏感性及对 DNA 损伤的修复能力有所差异,从而对结果产 生影响[19-22]。本研究为两项评价方法在纳米材 料遗传毒性评价领域的应用的初步探索,其前 景仍有待大量研究数据支持。

tk基因突变试验和 hprt 基因突变试验应用于安 评各有短长^[23]。MLA 较 hprt 基因突变试验背景值 高,这与所突变的基因特性有关。hprt为X连锁基 因,该位点的突变可导致细胞死亡。在强致突变剂 作用下, hprt 基因突变可导致大量细胞死亡无法形 成克隆。故 hprt 基因突变试验仅可检测到弱致突变 剂,如点突变、小插入、移码和小缺失等主要涉及基 因内突变事件等,对染色体断裂大型缺失等的检测 敏感度较差。而位于常染色体的 tk 基因座对各类 突变均较为敏感,除tk基因内突变外,也可受到与tk 基因相关的染色体改变,如染色体缺失和由于有丝 分裂重组引起的重排等的影响[24-25]。尽管如此, MLA可通过区分大小克隆数量对受试物诱导基因 突变和/或染色体断裂的风险进行判断,从而兼顾不 同的遗传毒性检测终点。两项基因突变试验的异 同参见表3。

综上所述,本研究分别使用MLA和 hprt 基因突 变试验评价了 PEG-IONP 的潜在致突变风险,两者 对 PEG-IONP 的预测结果一致。当前纳米材料缺乏 可靠的体外基因突变风险评价方法,该研究结果可 为相关方法的选择提供借鉴与参考。

^{茲地達}は研究 Drug Evaluation Research 第42卷第10期 2019年10月

	表3 MLA和 hprt基因突变试验对比 Table 3 The comparison of MLA and hprt gene	mutation
	MLA	hprt 基因突变试验
适用细胞系	L5178Y	L5178Y、AHH-1、CHO、AS52、V79
基因位置	常染色体	X染色体
突变类型	基因内的点突变、小缺失、小插入,较大范围内的基因组的改变,如大突变、染色体重组以及非整倍体性等	主要为基因内部的突变,如点突变、小缺 失和重排
优点	灵敏性高,检测范围广	适用范围广,可在细胞系,实验动物和人 类之间比较同一基因的突变
缺点	只限于L5178Y细胞	仅能检测到基因内部点突变、小缺失等

参考文献

- Fan K, Cao C, Pan Y. 磁性氧化铁蛋白纳米颗粒在肿瘤 组织中的定位和成像 [J]. 中华预防医学杂志, 2012, 46 (10): 954.
- [2] 张重捷,邹奇,陈杰,等.超顺磁性纳米氧化铁颗粒标 记胰腺癌细胞的MR分子成像[J].中国医学影像技术, 2017, 33(8): 1158-1162.
- [3] 曹正国,周四维,孙 凯,等.超顺磁性葡聚糖氧化铁纳 米颗粒的制备及其作为基因载体的可行性研究 [J]. 癌 症, 2004, 23(10): 1105-1109.
- [4] Fu C, Ravindra N M. Magnetic iron oxide nanoparticles: Synthesis and applications[J]. Bioinspired Biomimetic & Nanobiomaterials, 2015, 1(4):229-244.
- [5] Wang Y X, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging [J]. Europ Radiol, 2001, 11(11): 2319.
- [6] 黄艳玲.纳米氧化铁-催化剂的研制及应用 [J]. 材料科 学与工程学报, 2000, 18(z2): 546-549.
- [7] 乔瑞瑞,贾巧娟,曾剑峰,等.磁性氧化铁纳米颗粒及其磁共振成像应用 [J]. 生物物理学报,2011,27(4):272-288.
- [8] 文海若,邵安良,陈 亮,等.适合纳米材料遗传毒性评价方法的选择 [J]. 癌变•畸变•突变, 2018, 30(4): 326-331.
- [9] Kumar A, Pandey A K, Singh S S, et al. Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells [J]. Chemosphere, 2011, 83(8): 1124-1132.
- [10] Maenosono S, Suzuki T, Saita S. Mutagenicity of watersoluble FePt nanoparticles in Ames test [J]. J Toxicol Sci, 2007, 32(5): 575-579.
- [11] OECD Guidelines for the Testing of Chemicals TG 476: In vitro Mammalian Cell Gene Mutation Tests Using the Hprt and Xprt Genes [S]. 1997.
- [12] OECD Guidelines for the Testing of Chemicals TG 490: In Vitro Mammalian Cell Gene Mutation Tests Using the Thymidine Kinase Gene [S]. 2015.
- [13] 胡燕平,文海若,宋 捷,等.对二甲基亚砜在小鼠淋巴 瘤细胞实验中适宜浓度的探索 [J]. 中国新药杂志, 2015,24(2):208-211.
- [14] 赵 洁, 胡燕平, 宋 捷, 等. 小鼠淋巴瘤细胞基因突变方 法的建立与应用 [J]. 毒理学杂志, 2006, 20(4): 268-269.
- [15] Rd O D, Peppas N A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles [J]. Int J

Pharm, 2006, 307(1):93-102.

- [16] Liu Y, Xia Q, Liu Y, et al. Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings [J]. Nanotechnology, 2014, 25 (42):425101.
- [17] Zhao R, Lv M, Li Y, et al. Stable nanocomposite based on PEGylated and silver nanoparticles loaded graphene oxide for long-term antibacterial activity [J]. ACS Applied Materials & Interfaces, 2017, 9(18): 15328-15341.
- [18] Kirkland D, Reeve L, Gatehouse D, et al. A core *in vitro* genotoxicity battery comprising the Ames test plus the *in vitro* micronucleus test is sufficient to detect rodent carcinogens and *in vivo* genotoxins [J]. Mutat Res, 2011, 721(1): 27-73.
- [19] Asakura M, Sasaki T, Sugiyama T, et al. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers [J]. Jrnl Occup Health, 2010, 52(3): 155-166.
- [20] Huang S, Chueh P J, Lin Y W, et al. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO₂ long-term exposure [J]. Toxicol Appl Pharmacol, 2009, 241(2): 182-194.
- [21] di Virgilio A L, Reigosa M, Arnal P M, et al. Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells [J]. J Hazard Mater, 2010, 177(1/2/3): 711-718.
- [22] Cveticanin J, Joksic G, Leskovac A, et al. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells [J]. Nanotechnology, 2010, 21(1): 015102.
- [23] Chen T, Harrington-Brock K, Moore M M. Mutant frequency and mutational spectra in theTk andHprt genes ofN-ethyl-N-nitrosourea-treated mouse lymphoma cells [J]. Environ Mol Mutagen, 2002, 39(4): 296-305.
- [24] Doak S H, Manshian B, Jenkins G J S, et al. *In vitro* genotoxicity testing strategy for nanomaterials and the adaptation of current OECD guidelines [J]. Mutat Res, 2012, 745(1/2): 104-111.
- [25] 张 勇. TK6和TK6-E6细胞TK、HPRT基因突变实验 比较研究 [D]. 成都: 四川大学, 2004.

· 1980 ·