牛蒡子中牛蒡子苷元的分离及结构表征

周渭渭^{1,2},刘振国³,单 淇¹,张新鑫¹,周 鸿³,辛 宁²,侯文彬^{1*}

1 天津药物研究院,天津市中药质量控制技术工程实验室,天津 300193;

2 广西中医学院, 广西 南宁 530001;

3 天津药物研究院药业有限责任公司,天津 300193

摘 要 目的:从牛蒡子中分离纯化出有效成分,并对其分子结构进行鉴定与表征。方法:采用醇提酸解法提取,分离出粗品,经过对粗品进行脱脂、结晶处理,得到无色棱状晶体。采用紫外光谱(UV)、红外光谱(FTIR)、质谱(MS)、氢谱(H-NMR)、碳谱(C-NMR)及单晶衍射对该有效成分进行组成和分子结构的鉴定与表征。结果:从牛蒡子粗粉中经提取分离,得到结晶,提取率为4.46%,显色反应及波谱分析均显示为木脂素类化合物。结论:该有效成分鉴定为牛蒡子苷元,即(3R,4R)-4-[(3,4-二甲氧基苯基)甲基]二氢-3-[(4-羟基-3-甲氧基苯基)甲基]-2(3H)-呋喃酮,分子式为C₂₁H₂₄O₆。

关键词 牛蒡子;牛蒡子苷元;分离;结构表征 中图分类号:R284.1 文献标志码:A 文章编号:1674-6376(2010)04-0279-05

Separation and structural characterization of arctigenin in Arctii Fructus

ZHOU Wei-wei^{1,2}, LIU Zhen-guo³, SHAN Qi¹, ZHANG Xin-xin¹, ZHOU Hong³, XIN Ning², HOU Wen-bin¹

- 1 Tianjin Engineering Laboratory of Quality Control Techniques for TCM, Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China;
- 2 Guangxi University of Traditional Chinese Medicine, Guangxi 530001, China;
- 3 Tianjin Institute of Pharmaceutical Research Pharmaceutical Responsible Co.Ltd, Tianjin, 300193, China
- Abstract Objective: To isolate and purify active component from *Arctii Fructus* and identify and characterize. Methods: The crude product was separated from *Arctii Fructus* by alcohol extraction and acid hydrolysis. Using recrystallization its structure was method, colorless prismatic crystal was obtained. The composition and molecular structure were characterized by UV, FTIR, MS, ¹H-NMR, ¹³C-NMR, and X-ray analyses. Results: The extracting rate of the crystal gained from the powder of *Arctii Fructus* was 4.46%. Both color reactions and spectral analyses indicated that the compound was lignan. Conclusion: The active component is characterized as (3R, 4R)-4-[(3,4-dimethoxyphenyl) methyl] dihydro-3-[(4-hydroxy-3-methoxy phenyl) methyl]-2(3H)-furanone (arctigenin, ARC-G) and the molecular formula is C₂₁H₂₄O₆.

Key words Arctii Fructus; arctigenin; separation; structural characterization

牛蒡子为牛蒡 Arctium lappa L. 的干燥成熟果 实,是著名的传统中药^[1]。全世界共有 10 种,我国 有 2 种。始载于《本草图经》^[2]。功能宣散风热、 消肿利咽,用于治疗风热感冒、咽喉肿痛、斑疹不 透、痈肿疮毒等症。现代药理学证明牛蒡子还具有 抗菌、抗肿瘤、降血糖等功效^[3-4]。值得注意的是, 牛蒡子在各药理研究中起作用的主要成分是牛蒡子 苷元。牛蒡子苷在进行动物体内试验(尤其是经口 给药)时表现出活性,主要是由于牛蒡子苷在消化 道中,在肠菌的作用下转变为苷元的脱甲基化物, 此脱甲基化物在肝脏中的儿茶酚-O-甲基转移酶 (COMT)的作用下恢复为苷元,苷元被血液输送到 各个器官而发挥作用。所以,可以认为牛蒡子苷元 是牛蒡子中的直接有效成分,而牛蒡子苷是前体物 质^[5-7]。

本实验采用醇提酸解法,提取分离出粗品,经

收稿日期: 2010-04-15

基金项目:"十一五"国家科技支撑计划资助项目(2007BAI41B06)。

作者简介:周渭渭(1984—),男,陕西省渭南市人,硕士研究生,研究方向:中药及天然产物的研究。Tel:13702025637 E-mail:zww984716@126.com * 通讯作者 侯文彬(1969—),男,研究员,硕士生导师。Tel:13802027519 E-mail:houwb@tjipr.com

过脱脂,然后进行结晶处理,得到牛蒡子苷元单晶。 利用紫外光谱(UV)、红外光谱(IR)推断了牛蒡 子苷元的母核结构及取代基位置;利用质谱确定出 相对分子质量,推导出分子式;对化合物的 ¹H-NMR,¹³C-NMR 核磁信号进行了归属;测定化 合物的单晶衍射图谱,并对其空间结构进行了确定 并进行结构验证。

1 实验部分

1.1 仪器及材料

熔点采用上海科学精密仪器有限公司产 SGW XT-4 型显微熔点仪测定,FTIR 光谱采用 Nicolet FT-IR 红外光谱仪测定,KBr 压片;UV 光谱采用日本岛津公司产UV-3101 型紫外光谱仪测定;H-NMR,C-NMR 谱采用 Bruker-AV400 型超导核磁共振仪(瑞士 Bruker 公司);ESI-MS 谱采用日本岛津公司产 LCMS-2010 型 LC-MS 联用仪测定;单晶衍射谱由 APEXIICCD area detector 型单晶衍射仪测定。

实验原料为野生牛蒡子,购于河北安国药市,由天津药物研究院周福军副研究员鉴定为 Arctium lappa L.,实验所用试剂均为分析纯。

1.2 牛蒡子中牛蒡子苷元的提取、分离和纯化

将 5 kg 牛蒡子粗粉用 70%乙醇溶液回流提取 3 次,每次 2 h;提取液加入硫酸调 pH 值至 1~2,并 保持温度 50℃下搅拌,进行酸水解;将水解液先用 石油醚萃取(脱脂) 3 次,再用醋酸乙酯萃取 3 次; 醋酸乙酯萃取液用水进行反洗,蒸干醋酸乙酯层, 甲醇溶解,以硅藻土拌样;用石油醚回流提取 3 次, 再用醋酸乙酯回流提取 3 次;蒸干醋酸乙酯提取液, 得浸膏 0.63 kg;浸膏以丙酮结晶,再反复重结晶, 得牛蒡子苷元纯品 223 g,收率 4.46%。牛蒡子苷元 的结构式见图 1。

图 1 牛蒡子苷元的结构式 Fig.1 Structure of arctigenin

2 牛蒡子苷元的结构表征

2.1 性状及显色反应

牛蒡子苷元为无色透明棱状结晶, mp 89~91℃。 易溶于氯仿、丙酮、甲醇等有机溶剂,不溶于水。 三氯化铁-铁氰化钾反应显阳性(蓝色),说明分子 内存在酚羟基; Molish 反应呈阴性,说明分子中不 含糖; 碘化铋钾反应呈阴性,说明分子中不含氮。 2.2 UV 光谱分析

UVλ_{max} (EtOH) nm (logε): 208 (末端吸收), 230 (4.47), 280 (4.08)。UV 谱在 220 和 276 nm 处有吸收,提示该化合物含有芳环结构。

2.3 IR 光谱分析

IR (KBr) cm⁻¹: 3 432 (OH), 3 000, 2 937, 2 915, 2838 (芳环), 1765 (C=O), 1605, 1516, 1464, 1452 (芳环),1156(内酯),1266,1238,1027(烷基芳香 醚), 813, 735, 701 (芳环)。3 432 cm⁻¹峰形强而宽大, 表明羟基存在着分子内或分子间的氢键缔合: 1 765 $cm^{-1}(vC=O)$ 处强峰为分子中羰基的特征吸收峰, 由于木脂素母核中存在的内酯环,氧原子有强的吸 电子诱导效应,使羰基氧上的电子云转向双键中间, 增加了 C=O 键的电子云密度,导致 C=O 双键性 增强,因而与羰基的特征峰(1705~1725 cm⁻¹) 相比,向高波数方向移动了约 40 cm⁻¹: 1 605、1 516、 1464、1452 cm⁻¹ (芳环骨架 C=C) 处出现了 4 个 强弱不等的吸收峰,为共轭芳环体系存在的重要标 志; 3 000、2 937、2 915、2 838 cm⁻¹ 为苯环的 (γC-H) 伸缩振动峰; 813、735 cm⁻¹ (γC-H, 面外弯曲振动) 处出现较强峰及 701 cm⁻¹ (γ C=C 面外弯曲振动) 处出现弱峰,表明分子结构中含有三取代苯环。 1266、1238、1027 cm⁻¹为烷基芳香醚的特征峰。 2.4 质谱分析

EI-MS *m* / *z*: 在 ESI 负离子模式下, 化合物形 成准分子离子峰[M-H]为 *m* / *z* 371.07, 牛蒡子苷元的 分子式为 C₂₁H₂₄O₆, 计算值为 372.4, 二者基本一致。 2.5 ¹³C-NMR 解析及 ¹H-NMR 解析

¹³C-NMR 谱显示含有 21 个碳原子, 在 δ110~ 149 出现 12 个苯环的碳信号, 在碳谱中 δ178.9、 71.48、46.75、41.13, 这些碳信号说明该化合物存 在五元内酯环结构。结合 2 个苄基中的亚甲基信号, 34.70 和 38.33 说明该化合物存在二苄基丁内酯型木 脂素基本骨架的信号。该化合物的氢谱在 δ3.78 出 现 3 个甲氧基信号, 说明分子中含有 3 个和苯环相 连的甲氧基。与牛蒡子苷元的光谱数据对照^[8], 二 者完全一致, 数据见表 1。

	Table 1 II-INIK allu	C-Mirk data of compounds (II-Mirk 400 Mirz, C-Mirk 100 Mirz, CDCI3)			
序号	¹ H 及 J	序号	¹³ C	序号	¹³ C
2	6.63(d,2)	1	130.69	3'	149.23
5	6.81(d,7.6)	2	112.04	4'	148.03
6	6.60(dd,8,1.6)	3	146.90	5'	111.79
7	2.88, 2.88(m)	4	144.76	6'	120.79
8	2.57(m)	5	114.36	7′	38.33
2'	6.46(d,2)	6	122.26	8′	41.13
5'	6.74(d,8)	7	34.70	9'	71.48
6'	6.54(dd,8,2)	8	46.75	OCH ₃	56.08
7'	2.57, 2.57(m)	9	178.94	OCH ₃	56.03
8′	2.57(m)	1'	129.69	OCH ₃	55.99
9′	3.85, 4.10 (dd)	2'	111.54		

表1 化合物的¹H-NMR 和¹³C-NMR 数据(¹H-NMR 400 MHz, ¹³C-MNR 100 MHz; 溶剂 CDCl₃) Table 1 ¹H-NMR and ¹³C-NMR data of compounds (¹H-NMR 400 MHz, ¹³C-MNR 100 MHz; CDCl₃)

2.6 单晶衍射图谱

2.6.1 晶体结构测定

选取尺寸为 0.30 mm×0.26 mm×0.16 mm 的 单晶,用 APEXIICCD area detector 型单晶衍射仪进 行检测。测量方法为 φ 扫描,用 A=0.071 073 nm 的石墨单色化的 MoKa 射线辐射,在 113 (2) K 温 度下,在 $\theta=2.04^{\circ}\sim 27.88^{\circ}$, $-12 \le h \le 12$, $-13 \le k \le 11$, $-26 \le L \le 23$ 。在 $\theta=2.04^{\circ}\sim 27.88^{\circ}$,扫描范 围内共收集到 16 214 个衍射点,其中独立衍射点 2 595 个,选择 I>2 σ 的 2 286 个衍射点,数据经吸 收校正后 $R_{int}=0.044$ 2,这些衍射点用于结构测定 和修正。氢原子采用各向同性热参数,其它原子均 采用各向异性热参数修正。

分析结果表明,晶体属斜方晶系,空间群: P2 (1)2(1)2(1),晶胞参数: *a*=0.949 08(19) nm; *b*=0.10071(2) nm; *c*=0.19937(4) nm; *V*= 1.9057(7) nm³;晶胞内所含分子数 *Z*=4; 密度计 算值 D_c =1.298 g·cm⁻³,吸收系数 μ=0.095 mm⁻¹。 最终收敛偏差因子 R_1 =0.0403, w R_2 =0.0851,拟 合优度 *s*=1.048,最终差值 Fourier 图上最高峰值为: $\Delta \rho_{max}$ =0.246×10³ e/nm³,最高峰值为 $\Delta \rho_{min}$ = -0.270×10 e/nm³, *W*=1/[σ^2 (F_o^2) + (0.054 4*P*)²+ 0.000 0*P*],其中 *P*= (F_o^2 +2 F_C^2)/3。用 SHEIXS97 (sheldriek, 1990)和 SHELXL97 (sheldrick, 1997) 程序完成晶体结构的解析和结构修正。

2.6.2 结构分析

牛蒡子苷元单晶的分子结构图见图 2, 键长和 键角数据列于表 2, 氢键的键长和键角列于表 3, 晶 胞三维堆积图见图 3。

图 3 牛蒡子苷元的晶胞三维堆积图 Fig.3 Three-dimensional packing diagram of arctigenin

Table 2 Bond distances for arctigenin							
键	L/nm	键	<i>L</i> /nm	键	<i>L</i> /nm		
O(1)-C(3)	1.371(2)	C(5)-C(6)	1.398(3)	C(13)-C(14)	1.536(2)		
O(1)-C(7)	1.431(2)	C(5)-H(5)	0.950 0	C(13)-H(13)	1.000 0		
O(2)-C(4)	1.369(2)	C(6)-H(6A)	0.950 0	C(14)-C(15)	1.506(3)		
O(2)-C(8)	1.427(2)	C(7)-H(7A)	0.980 0	C(14)-H(14A)	0.990 0		
O(3)-C(12)	1.357(2)	C(7)-H(7B)	0.980 0	C(14)-H(14B)	0.990 0		
O(3)-C(11)	1.458(2)	C(7)-H(7C)	0.980 0	C(15)-C(20)	1.388(3)		
O(4)-C(12)	1.205(2)	C(8)-H(8A)	0.980 0	C(15)-C(16)	1.401(2)		
O(5)-C(17)	1.372(2)	C(8)-H(8B)	0.980 0	C(16)-C(17)	1.381(3)		
O(5)-C(21)	1.422(2)	C(8)-H(8C)	0.980 0	С(16)-Н(16)	0.950 0		
O(6)-C(18)	1.366(2)	C(9)-C(10)	1.547(2)	C(17)-C(18)	1.397(3)		
O(6)-H(6)	0.89(2)	C(9)-H(9A)	0.990 0	C(18)-C(19)	1.385(2)		
C(1)-C(6)	1.387(2)	C(9)-H(9B)	0.990 0	C(19)-C(20)	1.400(3)		
C(1)-C(2)	1.402(3)	C(10)-C(11)	1.527(3)	С(19)-Н(19)	0.950 0		
C(1)-C(9)	1.510(3)	C(10)-C(13)	1.541(2)	C(20)-H(20)	0.950 0		
C(2)-C(3)	1.386(3)	C(10)-H(10)	1.000 0	C(21)-H(21A)	0.980 0		
C(2)-H(2)	0.950 0	C(11)-H(11A)	0.990 0	C(21)-H(21B)	0.980 0		
C(3)-C(4)	1.404(3)	C(11)-H(11B)	0.990 0	C(21)-H(21C)	0.980 0		
C(4)-C(5)	1.377(3)	C(12)-C(13)	1.507(3)				

表 2 牛蒡子苷元的键长 Table 2 Bond distances for arctigenin

表 3 牛蒡子苷元的键角

Table 3 Bond angles for arctigenin

键	<i>θ</i> / (°)	键	<i>θ</i> / (°)	键	<i>θ</i> / (°)
C(3)-O(1)-C(7)	116. 93 (15)	H(8A)-C(8)-H(8B)	109.5	C(15)-C(14)-C(13)	112. 63 (13)
C(4) - O(2) - C(8)	116. 38 (17)	O(2)-C(8)-H(8C)	109. 5	C(15)-C(14)-H(14A)	109.1
C(12)-O(3)-C(11)	109. 98 (15)	H (8A) –C (8) –H (8C)	109. 5	C(13)-C(14)-H(14A)	109.1
C(17)-O(5)-C(21)	116. 78 (15)	H(8B) - C(8) - H(8C)	109. 5	C(15)-C(14)-H(14B)	109.1
C(18)-O(6)-H(6)	111.6(17)	C(1) - C(9) - C(10)	114.84(14)	C(13)-C(14)-H(14B)	109.1
C(6) - C(1) - C(2)	117. 92 (18)	C(1)-C(9)-H(9A)	108.6	H(14A)-C(14)-H(14B)	107. 8
C(6) - C(1) - C(9)	122. 30 (18)	C(10) - C(9) - H(9A)	108.6	C(20)-C(15)-C(16)	118.61(17)
C(2) - C(1) - C(9)	119. 76 (16)	C(1)-C(9)-H(9B)	108.6	C (20) –C (15) –C (14)	122. 18 (17)
C(3) - C(2) - C(1)	121.15(17)	C (10) -C (9) -H (9B)	108.6	C(16)-C(15)-C(14)	119. 19 (17)
C(3) - C(2) - H(2)	119.4	H(9A) - C(9) - H(9B)	107. 5	C(17)-C(16)-C(15)	120. 55 (18)
C(1) - C(2) - H(2)	119.4	C(11)-C(10)-C(13)	102. 80 (15)	C(17)-C(16)-H(16)	119.7
O(1)-C(3)-C(2)	125. 05 (16)	C(11) - C(10) - C(9)	113. 17 (14)	C(15)-C(16)-H(16)	119. 7
O(1) - C(3) - C(4)	114.97(17)	C(13) - C(10) - C(9)	116. 55 (16)	O(5)-C(17)-C(16)	125.04(18)
C(2) - C(3) - C(4)	119.97(18)	C(11)-C(10)-H(10)	108	O(5)-C(17)-C(18)	114. 47 (16)
O(2) - C(4) - C(5)	125. 10(17)	C(13)-C(10)-H(10)	108	C(16)-C(17)-C(18)	120. 49 (17)
O(2) - C(4) - C(3)	115. 53 (18)	C (9) –C (10) –H (10)	108	O(6)-C(18)-C(19)	118.98(18)
C(5)-C(4)-C(3)	119.36(18)	O(3)-C(11)-C(10)	106. 54 (14)	O(6)-C(18)-C(17)	121. 50 (17)
C(4) - C(5) - C(6)	120. 18 (18)	O(3)-C(11)-H(11A)	110. 4	C(19)-C(18)-C(17)	119.50(17)
C(4) - C(5) - H(5)	119.9	C(10)-C(11)-H(11A)	110. 4	C(18)-C(19)-C(20)	119.78(18)

(续表3)

键	<i>θ</i> / (°)	键	<i>θ</i> / (°)	键	heta/ (°)
C(6) - C(5) - H(5)	119.9	O(3)-C(11)-H(11B)	110. 4	С(18)-С(19)-Н(19)	120. 1
C(1) - C(6) - C(5)	121. 38 (19)	C(10)-C(11)-H(11B)	110. 4	C(20) - C(19) - H(19)	120. 1
C(1) - C(6) - H(6A)	119.3	H(11A)-C(11)-H(11B)	108.6	C(15)-C(20)-C(19)	120.99(17)
C(5) - C(6) - H(6A)	119.3	O(4)-C(12)-O(3)	120. 98 (19)	C(15)-C(20)-H(20)	119.5
O(1)-C(7)-H(7A)	109. 5	O(4)-C(12)-C(13)	127.98(19)	C(19)-C(20)-H(20)	119.5
O(1)-C(7)-H(7B)	109. 5	O(3)-C(12)-C(13)	111.04(15)	O(5)-C(21)-H(21A)	109.5
H(7A)-C(7)-H(7B)	109. 5	C(12)-C(13)-C(14)	110. 17 (14)	O(5)-C(21)-H(21B)	109.5
O(1)-C(7)-H(7C)	109. 5	C(12)-C(13)-C(10)	103.86(15)	H(21A)-C(21)-H(21B)	109.5
H(7A)-C(7)-H(7C)	109. 5	C(14)-C(13)-C(10)	116. 43 (15)	O(5)-C(21)-H(21C)	109.5
H(7B) - C(7) - H(7C)	109. 5	C(12)-C(13)-H(13)	108. 7	H(21A)-C(21)-H(21C)	109.5
O(2)-C(8)-H(8A)	109. 5	C(14)-C(13)-H(13)	108. 7	H(21B)-C(21)-H(21C)	109.5
O(2)-C(8)-H(8B)	109. 5	C(10)-C(13)-H(13)	108. 7		

表 4 牛蒡子苷元中的氢键键长和键角 Table 4 Hydrogen bond distances and angles for arctigenin

D-HA	d(D-H)/nm	<i>d</i> (HA) /nm	<i>d</i> (DA) /nm	< (DHA) / (°)
O(6)-H(6)O(1)#1	0.89(2)	2.04(2)	2.830 1(19)	148(2)
O(6)-H(6)O(5)	0.89(2)	2.25(3)	2.681(2)	109.7(18)
O(6)-H(6)O(2)#1	0.89(2)	2.58(2)	3.243 3(19)	132.2(17)

3 讨论

3.1 本实验旨在克服现有技术使用易燃易爆的麻醉剂乙醚,有害的重金属铅盐的不足^[9],同时又考虑到经济成本方面,因而没有选择采用蜗牛酶对牛蒡子苷粗品进行酶解^[10],而是采用了最简单且方便的方法——酸解,利用硫酸对牛蒡子乙醇提取液调酸后,进行酸水解,从而实现制备抗病毒与抗肿瘤天然药物牛蒡子苷元。

3.2 本实验的实用性在于,酸水解反应将高含量的 牛蒡子苷高效率地转化为牛蒡子苷元,大大增加了 从单位质量药材中获得牛蒡子苷元的量,此方法获 得的纯品牛蒡子苷元得率至少比药材中原有量提高 了 20 倍。

3.3 单晶结构分析不是"万能的"确定分子结构的 手段,尤其是对于天然物等结构比较复杂、主要由 C、H、N和O等轻原子所组成的有机分子。本试 验通过紫外、红外、质谱和核磁等手段来确定分子 可靠结构,然后通过单晶结构分析进行了空间结构 验证。

参考文献

- [1] 中国药典[S]. 一部. 2010.
- [2] 肖培根. 新编中药志[M]. 第二卷, 北京: 化学工业出版社, 2002.
- [3] 王 潞, 赵 烽, 刘 珂. 牛蒡子苷及牛蒡子苷元的药 理作用研究进展[J]. 中草药, 2008, 39 (3): 467-470.
- [4] 徐朝晖, 李 婷, 邓 毅, 等. 牛蒡子提取物的降血糖 作用[J]. 中草药, 2005, 36 (7): 1043-1045.
- [5] Nose M, Fujimoto T, Takeda T, *et al.* Structural transformation of lignan compounds in rat gastrointestinal tract [J]. *Planta Med*, 1992, 58: 520-523.
- [6] Nose M, Fujimoto T, Nishibe S, *et al.* Structural transformation of lignan compounds in rat gastrointestinal tract II Serum concentration of lignans and their metabolites [J]. *Planta Med*, 1993, 59: 131-134.
- [7] 刘德茂, 史德胜. HPLC 法测定降糖益肾片中牛蒡 苷.[J]. 现代药物与临床, 2009, 24 (3): 171-172.
- [8] Kaoru U, Ariko S, Massanori K, et al. Studies on differentiation-inducers from Arctium Fructus (1) [J]. Chem Pharm Bull, 1993, 41 (10): 1774-1779.
- [9] 肖崇厚. 中药化学[M]. 上海: 上海科技出版社, 1987.
- [10] 胡英杰, 樊蕴华, 肖敏勋. 蜗牛酶水解牛蒡子苷制备苷 元的研究[J]. 广州中医药大学学报, 2004, 21 (6): 473-476.