[关键词]
[摘要]
目的 通过网络药理学及实验验证探讨肺筋草对脂多糖(LPS)诱导大鼠急性肺损伤(ALI)的防治作用及机制。方法 查阅肺筋草相关文献结合SwissADME数据库对肺筋草的活性成分进行筛选,通过Swiss Target Prediction平台预测肺筋草活性成分作用的潜在靶点,通过GeneCards数据库、DrugBank数据库、OMIM数据库检索与ALI相关的基因,与化合物的作用靶点进行比对,绘制韦恩图得到交集靶点。STRING数据库中输入交集靶点信息,选择综合得分在0.9以上的靶点,利用Cytoscape 3.9.0软件获得蛋白质-蛋白质相互作用(PPI)网络,利用Metascape数据库对关键靶点进行京都基因与基因组百科全书(KEGG)通路富集分析,筛选得到有关ALI的通路,通过Cytoscape 3.9.0软件绘制“关键成分-靶点-通路”网络图。将SD大鼠随机分为对照组、模型组、地塞米松(阳性药,5 mg · kg-1)组和肺筋草水提物( ASWE )高、中、低剂量( 9.00、4.50、2.25 g · kg-1)组,连续7 d对大鼠进行预防性ig给药,7 d后ip脂多糖(LPS,5 mg· kg-1)诱导ALI模型,对肺组织进行病理学观察分析,试剂盒法检测大鼠血清中的炎症因子以及肺组织中氧化应激指标的表达水平,实时荧光定量PCR(qRT-PCR)检测肺组织丝裂原活化蛋白激酶1(MAPK1)、Janus激酶2(JAK2)、核因子κB(NF-κB)、神经细胞瘤鼠肉瘤癌基因(Nras)、信号传导及转录激活蛋白(STAT)、内磺肽α(Ensa)mRNA水平,Western blotting实验检测肺组织NF-κB、JAK2蛋白表达。结果 筛选出肺筋草的主要活性成分10个,包括阿魏酸甲酯、香豆酸、熊果酸等,得到肺筋草作用于ALI关键靶点189个,MAPK1、MAPK8、STAT3、AKT1、PIK3R1、TP53、ESR1、RELA等为核心靶点,KEGG富集分析结果显示肺筋草可能通过MAPK、NF-κB、JAK-STAT等信号通路发挥药效作用。与模型组比较,ASWE各剂量组炎症细胞浸润等肺组织病理表现明显改善;中、高剂量组肿瘤坏死因子-α(TNF-α)水平显著降低(P<0.05),中剂量组白细胞介素(IL)-1β水平显著降低(P<0.05),各剂量组IL-6水平均有降低趋势;高、中剂量组超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)水平明显升高(P<0.05);低、中剂量组Nras、STAT3、MAPK1、JAK2、Ensa、NF-κB mRNA水平显著降低(P<0.05,0.01);中剂量组NF-κB、JAK2蛋白的表达量显著下降(P<0.05、0.01)。结论 肺筋草可以抑制炎症介质的过度分泌,调节氧化应激平衡而对ALI有防治作用,其作用机制可能与抑制MAPK1、NF-κB、STAT3等基因表达,从而抑制NF-κB/JAK等炎症信号通路相关。
[Key word]
[Abstract]
Objective To explore the mechanism of the preventive and therapeutic effects of Aletris spicata on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats through network pharmacology and experimental verification. Methods Review the relevant literature on A. spicata and use the SwissADME database to screen the active components of A. spicata. Predict the potential targets of the active components of A. spicata using the Swiss Target Prediction platform. Use the GeneCards database, DrugBank database, and OMIM database to search for genes related to ALI, compare them with the targets of the active compounds, and draw a Venn diagram to obtain the intersection targets. Input the intersection target information into the String database, select targets with a comprehensive score of 0.9 or above, and use Cytoscape 3.9.0 software to obtain a protein-protein interaction (PPI) network. Use the Metascape database to perform Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on key targets, and select pathways related to ALI. Draw a "key component-target-pathway" network diagram using Cytoscape 3.9.0 software. Randomly divide SD rats into a control group, a model group, a dexamethasone (positive drug, 5 mg· kg-1) group, and A. spicata water extract (ASWE) high, medium, and low dose (9.00, 4.50, 2.25 g· kg-1) groups. Continuously administer the rats with the drugs by ig for 7 days, ip LPS (5 mg· kg-1) to induce the ALI model 7 days later, and observe and analyze the pathological changes in the lung tissue. Detect the expression levels of inflammatory factors in the serum and oxidative stress indicators in the lung tissue using kit assays, and detect the mRNA levels of β -activated protein kinase 2 (TAK2), Janus kinase 2 (JAK2), nuclear factor kappa B (NF-κB), Nras, signal transducer and activator of transcription (STAT), and Ensa in the lung tissue using real-time quantitative PCR (qRT-PCR), and detect the expression levels of NF-κB and JAK2 proteins in the lung tissue using Western blotting experiments. Results Ten main active compounds of A. spicata were screened out, including methyl salicylate, coumarin, ursolic acid, etc. A total of 189 key targets were identified for A. spicata acting on ALI, with MAPK1, MAPK8, STAT3, AKT1, PIK3R1, TP53, ESR1, and RELA as core targets. The KEGG enrichment analysis showed that A. spicata may exert its therapeutic effects through MAPK, NF-κB, and JAK-STAT signaling pathways. Compared with the model group, the pulmonary tissue pathological manifestations of inflammatory cell infiltration in the ASWE treatment groups were significantly improved. The TNF-α level was significantly lower in the middle and high-dose groups (P < 0.05), and the IL-1β level was significantly lower in the middle-dose group (P < 0.05). The IL-6 level showed a downward trend in all dosage groups; the SOD and GSH-Px levels were significantly higher in the high and middle-dose groups (P < 0.05); The Nras, STAT3, MAPK1, JAK2, Ensa, and NF-κB mRNA levels were significantly lower in the high and middle-dose groups (P < 0.05, 0.01). The expression levels of NF-κB and JAK2 proteins were significantly lower in the middle-dose group (P < 0.05, 0.01). Conclusions A. spicata can inhibit the excessive secretion of inflammatory mediators, regulate the balance of oxidative stress and have a preventive and therapeutic effect on ALI. The mechanism may be related to inhibiting the expression of MAPK1, NF-κB, STAT3 and other genes, thereby inhibiting the expression of NF-κB/JAK and other inflammatory signaling pathways.
[中图分类号]
R285.5
[基金项目]
贵州省中医药管理局中医药、民族医药科学技术研究课题(QZYY-2022-015);贵州省科学技术基金(黔科合基础-ZK[2021]一般515);贵州省教育厅2023年度自然科学研究项目(黔教技[2023]069号);贵州省特色食药材高效综合利用科技创新人才团队建设(黔科合平台人才-CXTD[2023]020)