• 实验研究 •

盐酸莫西沙星的单晶制备及其结构表征

雷勇胜,丁文宇,赵丽娜,潘 毅,陈 蔚* 天津药物研究院,天津 300193

摘 要:目的 培养盐酸莫西沙星的单晶,并对其进行结构表征。方法 通过溶剂挥发法制备盐酸莫西沙星单晶,并采用热 重分析仪(TGA)-差示扫描量热仪(DSC)和粉末 X 射线衍射仪(PXRD)对其结晶形态进行了表征。结果 制备得到盐 酸莫西沙星无色透明针状结晶。TGA-DSC 结果显示盐酸莫西沙星单晶熔点为 255 ℃。单晶 X 射线衍射结果表明该晶胞属 于单斜晶系,P21空间群,分子式为 C43H56Cl2F2N6O10,相对分子质量为 925.84。结论 采用 X 射线单晶衍射确证了盐酸莫 西沙星单晶的结构,为盐酸莫西沙星的进一步开发提供了研究基础。 关键词:盐酸莫西沙星;单晶培养; X 射线单晶衍射;结构表征

中图分类号: R913 文献标志码: A 文章编号: 1674 - 5515(2019)07 - 1941 - 06 **DOI:** 10.7501/j.issn.1674-5515.2019.07.001

Single crystal culture and structure characterization of moxifloxacin hydrochloride

LEI Yong-sheng, DING Wen-yu, ZHAO Li-na, PAN Yi, CHEN Wei

Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China

Abstract: Objective To cultivate single crystal of moxifloxacin hydrochloride, and to characterize the structure of moxifloxacin hydrochloride. **Methods** Evaporation methods was applied to grow single crystal of moxifloxacin hydrochloride. The crystal structure of moxifloxacin hydrochloride was studied by X-ray diffraction, and the structure of moxifloxacin hydrochloride was characterized by thermogravimetric analysis (TGA)-differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). **Results** Moxifloxacin hydrochloride colorless acicular crystal was obtained. Referring to the TGA-DSC results, the melting temperature of moxifloxacin hydrochloride was determined to be around 255 °C. Single crystal X-ray diffractometer confirmed the monoclinic lattice with space group P2₁ in moxifloxacin hydrochloride. Moreover, the chemical formula and relative molecular mass were C₄₃H₅₆Cl₂F₂N₆O₁₀ and 925.84, respectively. **Conclusion** The single crystal structure of moxifloxacin hydrochloride is characterized by single crystal X-ray diffractometer, which provides a basis for the further development of moxifloxacin hydrochloride. **Key words:** moxifloxacin hydrochloride; single crystal culture; X-ray single crystal diffraction; structure characterization

盐酸莫西沙星的化学名为 1-环丙基-6-氟-8-甲 氧基-7-([*S*,*S*]-2,8-二氮杂双环[4.3.0]壬-8-基)-4-氧代-1,4-二氢-3-喹啉羧酸盐酸盐,化学结构见图 1,是德 国拜耳公司在1999年研制的第4代光谱喹诺酮类药 物,于 2001年在中国上市。盐酸莫西沙星具有光谱 的抗菌活性,对革兰阳性菌、革兰阴性菌、厌氧菌、 抗酸菌和非典型微生物如支原体、衣原体和军团菌 等均有活性,同时安全性也优于其他喹诺酮类药物^[1], 临床上主要用于社区获得性肺炎^[2]、泌尿生殖系感 染^[3]、急慢性鼻窦炎^[4]、皮肤和皮肤组织感染等^[5]。 盐酸莫西沙星是一种淡黄色至黄色结晶性粉末,有 引湿性,在进行质量研究和晶型研究的过程中需要 对照品,但是该药品中国食品药品检定研究院不能 提供对照品,只能从欧洲药典委员会与美国药典委 员会购买,所以购买周期较长,同时价格也比较昂 贵。本研究通过溶剂挥发法培养了盐酸莫西沙星单

收稿日期: 2019-01-26

基金项目: 天津市科技计划资助项目(18YFZCSY00090)

作者简介: 雷勇胜(1982—), 男, 副研究员, 研究方向为药物的质量研究。E-mail: leiys@tjipr.com

^{*}通信作者 陈 蔚, 男, 研究员。E-mail: chenw@tjipr.com

图 1 盐酸莫西沙星的化学结构 Fig. 1 Chemical structure of moxifloxacin hydrochloride

1 仪器与试剂

Rigaku MM-007 Saturn 70 单晶律射仪; Rigaku Saturn724 CCD 面探测仪; D/max-2500 X-射线粉末 衍射仪; 瑞士梅特勒托利多 TGA/DSC 1 热分析仪。盐酸莫西沙星由天津药物研究院自制,质量分数为 99.95%,产品批号 170910;甲醇、乙腈均为色谱纯 试剂,购自 Finnigan 公司;水为超纯水,其他试剂 均为分析纯。

2 方法与结果

2.1 单晶的培养

根据盐酸莫西沙星的理化性质,同时进行了溶 解度试验,分别选取甲醇-水、乙腈-水体系作为 单晶培养用溶剂。根据不同比例的甲醇-水、乙腈-水体系分别进行试验,盐酸莫西沙星的浓度范围为 1~10 mg/mL。将上述各溶液在室温条件下缓慢挥 发,比较不同溶剂体系中单晶培养的结果。乙腈-水(1:1)体系挥发完全,所得结晶为絮状物;甲 醇-水(85:15)体系经1个月左右挥发完毕,所 得结晶为无色透明的细针结晶,可用于X射线单晶 衍射检测。故最佳的单晶培养溶剂体系是甲醇-水 (85:15)。

2.2 单晶的结构确证

晶体呈无色透明针状,衍射分析所用晶体大小 为 0.24 mm×0.20 mm×0.18 mm,属于单斜晶系, 空间群为 P2₁,晶胞参数: a=0.675 01(10) nm, b= 2.082 5(3) nm, c=1.519 11(16) nm, α =90°, β = 91.564(4)°, γ =90°, 晶胞体积 *V*=2.134 6(5) nm³, 晶胞内分子数 *Z*=4,单位晶格的独立区域中有两个 分子。用 Rigaku Saturn724 CCD 面探测仪收集衍射 强度数据,MoKa 辐射,人工多层膜聚焦镜,准直 管 φ =0.30 mm,晶体与 CCD 距离为 45 mm,管压 50 kV,管流 24 mA, ω 扫描,最大 2 θ 角为 56°, 扫描范围为 0°~180°,回摆角度为 2°,间隔为 2 °,扫描速度为 5 s/°,每个画面扫描 1 次,总计摄 取 220 幅图像,总衍射点为 22 356 个,独立衍射点 为 8 907 个 (Rint=0.061 5),可观察点 ($F_2 \ge 2\sigma F_2$) 为 7 249 个,数据完整度为 99.7%。

在微机上用直接法 (shelxs-97) 解析晶体结构, 从 E 图上获得全部 63 个非氢原孕位置,使用最小 二乘法修正结构参数和判别原子种类,使用几何计 算法和差值 Fourier 法获得全部氢原子位置 最终可 靠因子 *R*₁=0.04 (M), *wR*₂=0.072 7, *S*=0.939, Flack 因子为-0.03(4)。最终确定不对称单位化学计量式为 C₄₃H₅ (CEHG₁₀, 计算单个分子的相对分子质量为 925.84,计算晶体密度为 1.440 mg/m³。

晶态下分子排列属 P2₁ 空间群,由于分子中含 有原子序数大于 Si 的 Cl 原子,分子的绝对构型可 以通过其 Flack 因子确定,图 2 为分子的立体结构 图,图 3 为晶胞堆积图。表 1 为原子坐标参数及等 价温度因子,表 2、3 为成键原子间的键长和键角值。

图 2 盐酸莫西沙星的立体结构

Fig. 2 Stereostructure of moxifloxacin hydrochloride

Fig. 3 Cell stacking diagram of moxifloxacin hydrochloride

Table 1 Atomic coordinates and equivalent temperature factor										
原子	<i>x</i> /nm	y/nm	z/nm	$U(eq)/nm^2$	原子	<i>x</i> /nm	y/nm	z/nm	$U(eq)/nm^2$	
Cl(1)	4 161(1)	3 837(1)	3 840(1)	24(1)	C(15)	7 276(4)	5 088(1)	- 1 796(2)	17(1)	
Cl(2)	5 369(1)	6 454(1)	4 081(1)	23(1)	C(16)	7 786(4)	5 377(1)	- 1 008(2)	18(1)	
F(1)	7 581(2)	2 403(1)	- 302(1)	24(1)	C(17)	6 021(4)	4 371(1)	1 699(2)	28(1)	
F(2)	7 785(2)	10 490(1)	2 389(1)	24(1)	C(18)	9 080(4)	5 413(1)	485(2)	19(1)	
N(1)	10 789(3)	2 815(1)	3 534(1)	18(1)	C(19)	11 121(4)	5 232(1)	790(2)	21(1)	
N(2)	8 445(3)	3 014(1)	1 332(1)	16(1)	C(20)	10 762(4)	5 849(1)	286(2)	25(1)	
N(3)	8 157(3)	5 053(1)	- 255(1)	17(1)	C(21)	6 978(4)	5 489(1)	- 2 591(2)	21(1)	
N(4)	7 322(3)	10 283(1)	5746(1)	19(1)	C(22)	8 145(4)	10 241(1)	6 671(2)	23(1)	
N(5)	8 515(3)	9 784(1)	3976(1)	17(1)	C(23)	9 907(4)	9 790(1)	6 717(2)	22(1)	
N(6)	8 417(3)	7 850(1)	2198(1)	16(1)	C(24)	11 507(4)	9 983(1)	6 082(2)	21(1)	
O(1)	7 974(2)	4 354(1)	1353(1)	16(1)	C(25)	10 674(4)	10 112(1)	5 152(2)	18(1)	
O(2)	6 804(2)	4 109(1)	- 2 567(1)	21(1)	C(26)	8 819(4)	10 529(1)	5 120(2)	20(1)	
O(3)	6 533(3)	5 166(1)	- 3 326(1)	25(1)	C(27)	8 092(4)	10 463(1)	4 169(2)	20(1)	
O(4)	7 131(3)	6 074(1)	- 2 595(1)	29(1)	C(28)	9 981(4)	9 518(1)	4 628(2)	18(1)	
O(5)	8 135(2)	8 470(1)	3 864(1)	18(1)	C(29)	8 200(3)	9 495(1)	3 168(2)	14(1)	
O(6)	6 892(2)	8 883(1)	- 25(1)	21(1)	C(30)	8 183(3)	8 824(1)	3102(2)	16(1)	
O(7)	6 611(3)	7 835(1)	- 871(1)	25(1)	C(31)	8 115(3)	8 512(1)	2 276(2)	15(1)	
O(8)	7 346(3)	6 912(1)	- 194(1)	28(1)	C(32)	7 674(3)	8 870(1)	1 512(2)	15(1)	
C(1)	9 024(4)	2 946(1)	4 074(2)	21(1)	C(33)	7 522(3)	9 541(1)	1 580(2)	15(1)	
C(2)	7 522(4)	2 413(1)	3 967(2)	22(1)	C(34)	7 858(4)	9 835(1)	2369(2)	16(1)	
C(3)	6 880(4)	2 340(1)	3 001(2)	22(1)	C(35)	7 334(3)	8 559(1)	659(2)	16(1)	
C(4)	8 654(4)	2 205(1)	2 423(2)	17(1)	C(36)	7 483(3)	7 872(1)	661(2)	15(1)	
C(5)	10 334(4)	2 688(1)	2 573(2)	18(1)	C(37)	8 051(4)	7 557(1)	1 413(2)	17(1)	
C(6)	9 640(4)	3 289(1)	2 074(2)	18(1)	C(38)	6 155(4)	8 254(1)	4 040(2)	25(1)	
C(7)	8 176(4)	2 312(1)	1 438(2)	20(1)	C(39)	9 352(4)	7 462(1)	2 909(2)	21(1)	
C(8)	8 079(3)	3 354(1)	569(2)	14(1)	C(40)	11 346(4)	7 677(1)	3 247(2)	25(1)	
C(9)	8 025(3)	4 026(1)	558(2)	14(1)	C(41)	11 153(4)	7 099(1)	2 650(2)	29(1)	
C(10)	7 907(3)	4 382(1)	- 232(2)	13(1)	C(42)	7 154(4)	7 491(1)	- 156(2)	21(1)	
C(11)	7 500(3)	4 054(1)	- 1 033(2)	16(1)	C(43)	5 094(4)	6 254(2)	1 647(2)	41(1)	
C(12)	7 331(3)	3 386(1)	- 1 016(2)	16(1)	O(9)	7 849(3)	6 671(1)	5 829(1)	27(1)	
C(13)	7 674(4)	3 057(1)	- 259(2)	16(1)	O(10)	6 850(3)	6 126(1)	2 155(1)	33(1)	
C(14)	7 183(3)	4 402(1)	- 1 848(2)	16(1)						

表1 原子坐标和等价温度因子参数

2.3 晶型的表征

2.3.1 TGA-DSC 分析 采用 TGA-DSC 进行热稳定性 分析,确定其熔融温度,并确证其晶型。TGA-DSC 参数设置:升温速率 10 ℃/min,温度范围 30~280 ℃,参比物 Al₂O₃,气氛为 N₂。结果显示样品在 25~ 280 ℃只有 1 个吸热峰,峰顶温度为 255 ℃,同时 约有 3.3%的失重,推测为药物中的溶剂甲醇。

2.3.2 PXRD 分析 对上述晶体粉末采用 X 射线粉 末衍射仪进行晶型分析。X 射线粉末衍射仪以石墨 单色器的 Cu Kα 辐射为光源,管压 40 kV,管流 100 mA, 2θ 扫描范围 5°~50°,扫描速率 9°/min。 PXRD 图谱结果显示其特征峰分别为 5.7°、8.4°、10.0°、14.3°、16.9°、17.3°、20.3°、23.5°、24.0°、26.4°、26.7°、27.4°、29.1°,见图 4。

原子键	键长/nm	原子键	键长/nm	原子键	键长/nm	原子键	键长/nm	原子键	键长/nm
F(1)-C(13)	1.366(3)	O(3)-C(21)	1.331(3)	C(7)-H(7A)	0.990 0	C(22)-C(23)	1.515(4)	C(33)-H(33)	0.950 0
F(2)-C(34)	1.366(3)	O(3)-H(3)	0.92(3)	C(7)-H(7B)	0.990 0	C(22)-H(22A)	0.990 0	C(35)-C(36)	1.434(3)
N(1)-C(1)	1.490(3)	O(4)-C(21)	1.223(3)	C(8)-C(9)	1.401(3)	C(22)-H(22B)	0.990 0	C(36)-C(37)	1.363(3)
N(1)-C(5)	1.507(3)	O(5)-C(30)	1.374(3)	C(8)-C(13)	1.421(3)	C(23)-C(24)	1.521(4)	C(36)-C(42)	1.484(3)
N(1)-H(1A)	1.03(3)	O(5)-C(38)	1.442(3)	C(9)-C(10)	1.411(3)	C(23)-H(23A)	0.990 0	C(37)-H(37)	0.950 0
N(1)-H(1B)	0.93(3)	O(6)-C(35)	1.267(3)	C(10)-C(11)	1.417(3)	C(23)-H(23B)	0.990 0	C(38)-H(38A)	0.980 0
N(2)-C(8)	1.375(3)	O(7)-C(42)	1.343(3)	C(11)-C(12)	1.395(3)	C(24)-C(25)	1.531(3)	C(38)-H(38B)	0.980 0
N(2)-C(7)	1.483(3)	O(7)-H(7)	0.94(3)	C(11)-C(14)	1.446(3)	C(24)-H(24A)	0.990 0	C(38)-H(38C)	0.980 0
N(2)-C(6)	1.483(3)	O(8)-C(42)	1.214(3)	C(12)-C(13)	1.353(3)	C(24)-H(24B)	0.990 0	C(39)-C(41)	1.496(4)
N(3)-C(16)	1.347(3)	C(1)-C(2)	1.508(3)	C(12)-H(12)	0.9500	C(25)-C(26)	1.524(3)	C(39)-C(40)	1.496(4)
N(3)-C(10)	1.407(3)	C(1)-H(1C)	0.990 0	C(14)-C(15)	1.432(3)	C(25)-C(28)	1.537(3)	C(39)-H(39)	1.000 0
N(3)-C(18)	1.475(3)	C(1)-H(1D)	0.990 0	C(15)-C(16)	1.375(3)	C(25)-H(25)	1.0000	C(40)-C(41)	1.511(4)
N(4)-C(26)	1.498(3)	C(2)-C(3)	1.527(3)	C(15)-C(21)	1.478(3)	C(26)-C(27)	1.518(3)	C(40)-H(40A)	0.990 0
N(4)-C(22)	1.500(3)	C(2)-H(2A)	0.990 0	C(16)-H(16)	0.950 0	C(26)-H(26)	1.000 0	C(40)-H(40B)	0.990 0
N(4)-H(4A)	0.97(3)	C(2)-H(2B)	0.990 0	C(17)-H(17A)	0.980 0	C(27)-H(27A)	0.990 0	C(41)-H(41A)	0.990 0
N(4)-H(4B)	0.85(3)	C(3)-C(4)	1.530(3)	C(17)-H(17B)	0.980 0	C(27)-H(27B)	0.990 0	C(41)-H(41B)	0.990 0
N(5)-C(29)	1.379(3)	C(3)-H(3A)	0.990 0	C(17)-H(17C)	0.980 0	C(28)-H(28A)	0.990 0	C(43)-O(10)	1.422(3)
N(5)-C(27)	1.474(3)	C(3)-H(3B)	0.990 0	C(18)-C(19)	1.491(4)	C(28)-H(28B)	0.990 0	C(43)-H(43A)	0.980 0
N(5)-C(28)	1.487(3)	C(4)-C(5)	1.528(3)	C(18)-C(20)	1.491(4)	C(29)-C(30)	1.402(3)	C(43)-H(43B)	0.980 0
N(6)-C(37)	1.357(3)	C(4)-C(7)	1.538(3)	C(18)-H(18)	1.0000	C(29)-C(34)	1.419(3)	C(43)-H(43C)	0.980 0
N(6)-C(31)	1.399(3)	C(4)-H(4)	1.000 0	C(19)-C(20)	1.513(3)	C(30)-C(31)	1.411(3)	O(9)-H(9A)	0.93(3)
N(6)-C(39)	1.477(3)	C(5)-C(6)	1.530(3)	C(19)-H(19A)	0.990 0	C(31)-C(32)	1.405(3)	O(9)-H(9B)	0.73(3)
O(1)-C(9)	1.389(3)	C(5)-H(5)	1.000 0	C(19)-H(19B)	0.990 0	C(32)-C(33)	1.404(3)	O(10)-H(10)	0.96(3)
O(1)-C(17)	1.433(3)	C(6)-H(6A)	0.990 0	C(20)-H(20A)	0.990 0	C(32)-C(35)	1.461(3)		
O(2)- $C(14)$	1.271(3)	C(6)-H(6B)	0.990.0	C(20)-H(20B)	0 990 0	C(33)-C(34)	1.359(3)		

表 2 成键原子的键长数据 Table 2 Bond lengths of bonded atomos

表 3 扭转角数据 Table 3 Data of torsion angles

原子键	扭转角/(°)	原子键	扭转角/(°)	原子键	扭转角/(°)	原子键	扭转角/(°)
C(1)-N(1)-C(5)	114.86(19)	C(6)-C(5)-H(5)	108.8	H(19A)-C(19)-H(19B)	115.0	C(29)-C(30)-C(31)	121.4(2)
C(1)-N(1)-H(1A)	106.1(14)	N(2)-C(6)-C(5)	102.30(19)	C(18)-C(20)-C(19)	59.50(17)	N(6)-C(31)-C(32)	118.7(2)
C(5)-N(1)-H(1A)	106.4(13)	N(2)-C(6)-H(6A)	111.3	C(18)-C(20)-H(20A)	117.8	N(6)-C(31)-C(30)	121.8(2)
C(1)-N(1)-H(1B)	115.7(16)	C(5)-C(6)-H(6A)	111.3	С(19)-С(20)-Н(20А)	117.8	C(32)-C(31)-C(30)	119.5(2)
C(5)-N(1)-H(1B)	108.6(16)	N(2)-C(6)-H(6B)	111.3	C(18)-C(20)-H(20B)	117.8	C(33)-C(32)-C(31)	118.7(2)
H(1A)-N(1)-H(1B)	104.2(19)	C(5)-C(6)-H(6B)	111.3	C(19)-C(20)-H(20B)	117.8	C(33)-C(32)-C(35)	119.8(2)
C(8)-N(2)-C(7)	125.39(19)	H(6A)-C(6)-H(6B)	109.2	H(20A)-C(20)-H(20B)	115.0	C(31)-C(32)-C(35)	121.5(2)
C(8)-N(2)-C(6)	121.55(19)	N(2)-C(7)-C(4)	102.99(18)	O(4)-C(21)-O(3)	121.1(2)	C(34)-C(33)-C(32)	120.2(2)
C(7)-N(2)-C(6)	111.39(18)	N(2)-C(7)-H(7A)	111.2	O(4)-C(21)-C(15)	123.9(2)	C(34)-C(33)-H(33)	119.9
C(16)-N(3)-C(10)	120.0(2)	C(4)-C(7)-H(7A)	111.2	O(3)-C(21)-C(15)	115.0(2)	C(32)-C(33)-H(33)	119.9
C(16)-N(3)-C(18)	117.2(2)	N(2)-C(7)-H(7B)	111.2	N(4)-C(22)-C(23)	110.5(2)	C(33)-C(34)-F(2)	117.7(2)
C(10)-N(3)-C(18)	122.32(19)	C(4)-C(7)-H(7B)	111.2	N(4)-C(22)-H(22A)	109.6	C(33)-C(34)-C(29)	123.3(2)

续表 3		0					
原子键	扭转角/(°)	原子键	扭转角/(°)	原子键	扭转角/(°)	原子键	扭转角/(°)
C(26)-N(4)-C(22)	112.1(2)	H(7A)-C(7)-H(7B)	109.1	C(23)-C(22)-H(22A)	109.6	F(2)-C(34)-C(29)	119.0(2)
C(22)-N(4)-H(4B)	108.0(17)	O(1)-C(9)-C(8)	118.8(2)	C(22)-C(23)-C(24)	112.2(2)	C(37)-C(36)-C(35)	120.0(2)
H(4A)-N(4)-H(4B)	106(2)	O(1)-C(9)-C(10)	118.6(2)	C(22)-C(23)-H(23A)	109.2	C(37)-C(36)-C(42)	118.4(2)
C(29)-N(5)-C(27)	124.76(19)	C(8)-C(9)-C(10)	122.5(2)	C(24)-C(23)-H(23A)	109.2	C(35)-C(36)-C(42)	121.5(2)
C(29)-N(5)-C(28)	120.88(19)	N(3)-C(10)-C(9)	122.6(2)	C(22)-C(23)-H(23B)	109.2	N(6)-C(37)-C(36)	124.0(2)
C(27)-N(5)-C(28)	110.75(18)	N(3)-C(10)-C(11)	118.6(2)	C(24)-C(23)-H(23B)	109.2	N(6)-C(37)-H(37)	118.0
C(37)-N(6)-C(31)	119.7(2)	C(9)-C(10)-C(11)	118.8(2)	H(23A)-C(23)-H(23B)	107.9	С(36)-С(37)-Н(37)	118.0
C(37)-N(6)-C(39)	117.4(2)	C(12)-C(11)-C(10)	118.8(2)	C(23)-C(24)-C(25)	112.5(2)	O(5)-C(38)-H(38A)	109.5
C(31)-N(6)-C(39)	122.49(19)	C(12)-C(11)-C(14)	120.4(2)	C(23)-C(24)-H(24A)	109.1	O(5)-C(38)-H(38B)	109.5
C(9)-O(1)-C(17)	112.09(18)	C(10)-C(11)-C(14)	120.9(2)	C(25)-C(24)-H(24A)	109.1	H(38A)-C(38)-H(38B)	109.5
C(21)-O(3)-H(3)	105.8(17)	C(13)-C(12)-C(11)	120.6(2)	C(23)-C(24)-H(24B)	109.1	O(5)-C(38)-H(38C)	109.5
C(30)-O(5)-C(38)	111.51(18)	С(13)-С(12)-Н(12)	119.7	C(25)-C(24)-H(24B)	109.1	H(38A)-C(38)-H(38C)	109.5
C(42)-O(7)-H(7)	108.9(16)	С(11)-С(12)-Н(12)	119.7	H(24A)-C(24)-H(24B)	107.8	H(38B)-C(38)-H(38C)	109.5
N(1)-C(1)-C(2)	110.6(2)	C(12)-C(13)-F(1)	117.2(2)	C(26)-C(25)-C(24)	114.2(2)	N(6)-C(39)-C(41)	114.8(2)
N(1)-C(1)-H(1C)	109.5	C(12)-C(13)-C(8)	123.9(2)	C(26)-C(25)-C(28)	101.75(19)	N(6)-C(39)-C(40)	116.8(2)
C(2)-C(1)-H(1C)	109.5	F(1)-C(13)-C(8)	118.9(2)	C(24)-C(25)-C(28)	115.9(2)	C(41)-C(39)-C(40)	60.71(17)
N(1)-C(1)-H(1D)	109.5	O(2)-C(14)-C(15)	122.3(2)	C(26)-C(25)-H(25)	108.2	N(6)-C(39)-H(39)	117.4
C(2)-C(1)-H(1D)	109.5	O(2)-C(14)-C(11)	121.1(2)	C(24)-C(25)-H(25)	108.2	С(41)-С(39)-Н(39)	117.4
H(1C)-C(1)-H(1D)	108.1	C(15)-C(14)-C(11)	116.6(2)	C(28)-C(25)-H(25)	108.2	C(40)-C(39)-H(39)	117.4
C(1)-C(2)-C(3)	110.5(2)	C(16)-C(15)-C(14)	119.7(2)	N(4)-C(26)-C(27)	111.6(2)	C(39)-C(40)-C(41)	59.56(17)
C(1)-C(2)-H(2A)	109.6	C(16)-C(15)-C(21)	119.2(2)	N(4)-C(26)-C(25)	110.6(2)	C(39)-C(40)-H(40A)	117.8
C(3)-C(2)-H(2A)	109.6	C(14)-C(15)-C(21)	120.9(2)	C(27)-C(26)-C(25)	102.9(2)	C(41)-C(40)-H(40A)	117.8
C(1)-C(2)-H(2B)	109.6	N(3)-C(16)-C(15)	123.7(2)	N(4)-C(26)-H(26)	110.5	C(39)-C(40)-H(40B)	117.8
C(3)-C(2)-H(2B)	109.6	N(3)-C(16)-H(16)	118.1	C(27)-C(26)-H(26)	110.5	C(41)-C(40)-H(40B)	117.8
H(2A)-C(2)-H(2B)	108.1	C(15)-C(16)-H(16)	118.1	C(25)-C(26)-H(26)	110.5	H(40A)-C(40)-H(40B)	115.0
C(2)-C(3)-C(4)	111.3(2)	O(1)-C(17)-H(17A)	109.5	N(5)-C(27)-C(26)	102.47(19)	C(39)-C(41)-C(40)	59.73(17)
C(2)-C(3)-H(3A)	109.4	O(1)-C(17)-H(17B)	109.5	N(5)-C(27)-H(27A)	111.3	C(39)-C(41)-H(41A)	117.8
C(4)-C(3)-H(3A)	109.4	H(17A)-C(17)-H(17B)	109.5	C(26)-C(27)-H(27A)	111.3	C(40)-C(41)-H(41A)	117.8
C(2)-C(3)-H(3B)	109.4	O(1)-C(17)-H(17C)	109.5	N(5)-C(27)-H(27B)	111.3	C(39)-C(41)-H(41B)	117.8
C(4)-C(3)-H(3B)	109.4	H(17A)-C(17)-H(17C)	109.5	C(26)-C(27)-H(27B)	111.3	C(40)-C(41)-H(41B)	117.8
H(3A)-C(3)-H(3B)	108.0	H(17B)-C(17)-H(17C)	109.5	H(27A)-C(27)-H(27B)	109.2	H(41A)-C(41)-H(41B)	114.9
C(5)-C(4)-C(3)	112.5(2)	N(3)-C(18)-C(19)	118.4(2)	N(5)-C(28)-C(25)	103.47(19)	O(8)-C(42)-O(7)	121.1(2)
C(5)-C(4)-C(7)	100.67(19)	N(3)-C(18)-C(20)	117.6(2)	N(5)-C(28)-H(28A)	111.1	O(8)-C(42)-C(36)	123.9(2)
C(3)-C(4)-C(7)	112.63(19)	C(19)-C(18)-C(20)	60.98(16)	C(25)-C(28)-H(28A)	111.1	O(7)-C(42)-C(36)	115.0(2)
C(5)-C(4)-H(4)	110.2	N(3)-C(18)-H(18)	116.2	N(5)-C(28)-H(28B)	111.1	O(10)-C(43)-H(43A)	109.5
C(3)-C(4)-H(4)	110.2	C(19)-C(18)-H(18)	116.2	C(25)-C(28)-H(28B)	111.1	O(10)-C(43)-H(43B)	109.5
C(7)-C(4)-H(4)	110.2	C(20)-C(18)-H(18)	116.2	H(28A)-C(28)-H(28B)	109.0	H(43A)-C(43)-H(43B)	109.5
N(1)-C(5)-C(4)	113.0(2)	C(18)-C(19)-C(20)	59.52(16)	N(5)-C(29)-C(30)	120.0(2)	O(10)-C(43)-H(43C)	109.5
N(1)-C(5)-C(6)	112.9(2)	C(18)-C(19)-H(19A)	117.8	N(5)-C(29)-C(34)	124.2(2)	H(43A)-C(43)-H(43C)	109.5
C(4)-C(5)-C(6)	104.41(18)	C(20)-C(19)-H(19A)	117.8	C(30)-C(29)-C(34)	115.8(2)	H(43B)-C(43)-H(43C)	109.5
N(1)-C(5)-H(5)	108.8	С(18)-С(19)-Н(19В)	117.8	O(5)-C(30)-C(29)	118.3(2)	H(9A)-O(9)-H(9B)	113(3)
C(4)-C(5)-H(5)	108.8	C(20)-C(19)-H(19B)	117.8	O(5)-C(30)-C(31)	120.2(2)	C(43)-O(10)-H(10)	100.1(18)

图 4 盐酸莫西沙星的 PXRD 图 Fig 4 PXRD pattern of moxifloxacin hydrochloride

3 讨论

单晶射线衍射结构分析是一种独立的结构分析 方法,不需要借助任何其他波谱学技术,即可独立 地完成样品的结构、组分、含量、构型、构象、溶 剂、晶型等各类分析研究,特别是适合手性化合物 的绝对构型的分析。单晶射线衍射分析可以提供定 量的药物分子骨架、组成各环的构象、环与环间的 顺反连接方式、环自身的平面性质、环与环之间的 扭转角、侧链的相对取向位置、原子坐标等,为药 物分子立体结构与功能提供了基础研究数据^[6-7]。在 单晶射线衍射测定过程中,单晶的培养尤为关键, 在培养单晶的过程中,要选用合适的溶剂,适合的 温度,同时需要一定的时间。结果表明盐酸莫西沙 星晶体的化合物分子骨架由环丙基、喹啉羧酸及取 代二氮杂双环组成,二氮杂双环中4位上的氮原子 成盐酸盐。分子中存在两个手性碳原子,绝对构型 均为 S 构型。由于单晶培养溶剂为甲醇和水, 所以 晶体中存在一个甲醇分子与一个水分子。分子间存

在氢键。晶态下分子间以氢键作用力和范德华力维 系其在空间的稳定排列。由于该物质具有多晶现象, 进一步通过 X 射线粉末衍射、热分析技术对其进行 了晶型表征。

综上所述,本实验通过对盐酸莫西沙星单晶的 培养,使用单晶射线衍射技术确定了其绝对构型, 同时对其晶型进行了表征,为盐酸莫西沙星的进一 步开发提供了研究基础。

参考文献

- [1] 卢定强,王维胞,凌岫泉,等.新一代喹诺酮类盐酸莫
 西沙星的合成及应用研究进展 [J].现代化工,2014, 34(2):33-37.
- [2] 刘锋涛,张 玮. 莫西沙星与左氧氟沙星治疗社区获
 得性肺炎的效果分析 [J]. 中国医药导刊, 2013, 15(3):
 509-510.
- [3] 孙国强. 莫西沙星治疗非淋菌性尿道(宫颈)炎的疗效 和安全性观察 [J]. 海南医学, 2007, 18(10): 128-147.
- [4] 陈峰恩,王 华,杨世贤.莫西沙星治疗急性细菌性鼻 窦炎的临床疗效观察 [J]. 药物与临床, 2012, 19(19): 89-90.
- [5] Lipsky B A, Giordano P, Choudhri S, *et al.* Treating diabetic foot infections with sequential intravenous to oral moxifloxacin compared with piperacillin-tazobactam amoxicillin-clavulanate [J]. *Antimicrob Chemother*, 2007, 60(2): 370-376.
- [6] 谢寅省,高红云,刘 实.卡巴他赛的单晶培养和结构 确证 [J].现代药物与临床,2016,31(12):1879-1882.
- [7] 李玉荃, 王亚江, 刘志友, 等. 布南色林的单晶培养和 结构确证 [J]. 现代药物与临床, 2011, 26(3): 216-218.