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Abstract: Objective To explore the mechanism of Gastrodia elata in treatment of cerebral infarction based on network pharmacology
and molecular docking techniques, and to verify it by molecular dynamics simulation technology. Methods The active components and
potential targets of G. elata were screened using SymMap and BATMAN-TCM 1.0 databases. The targets related to cerebral infarction
were collected from GeneCards and DisGeNET databases. The protein-protein interaction network was constructed using STRING
database and Cytoscape 3.10.1 software. The intersection targets of G. elata and cerebral infarction were imported into the DAVID

database for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Cytoscape 3.10.1
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was used to construct a network of “Gastrodia elata-active ingredients-potential targets-signaling pathways-cerebral infarction”. The
active components and core targets were docked using Autodock Tools 1.5.7, and the affinity and stability of the binding models were
analyzed through molecular dynamics simulation. Results Thirteen key active components of G. elata in treatment of cerebral
infarction were screened, including hydroxybenzoic acid, 4-hydroxybenzylamine, y-sitosterol, dauricine, citronellal, etc. There were
89 intersection target genes between drugs and diseases. The five highest moderate values in PPI network diagram were tumor necrosis
factor (TNF), insulin (INS), interleukin-1 (IL-1p), prostaglandin endoperoxide synthase 2 (PTGS2), peroxisome proliferator-activated
receptor y (PPARG). There were 566 items in the GO analysis, in which biological processes (BP) were mostly enriched in signal
release, regulation of inflammatory response, transport of organic hydroxyl compounds, etc. The cell composition (CC) was mostly
enriched in neuronal cell bodies, secretory granule cavities, cytoplasmic vesicle cavities, etc. Molecular function (MF) was mostly
enriched in steroids, protease binding and nuclear receptor activity. There were 88 KEGG enrichment results, including neuroactive
interactions, human cytomegalovirus, lipid and atherosclerosis, 5-hydroxytryptaminergic synapses, and cyclic adenosine
monophosphate (cAMP) signaling pathways. The results of molecular docking showed that the core active components of G. elata
could well bind to the five target proteins with the highest moderate value in the PPI network diagram, forming relatively stable
complexes. Molecular dynamics simulation further verified that y-sitosterol had good affinity and binding stability with INS, dauricine
and TNEF, and citronellal and TNF. Conclusion G. elata may act on target genes such as TNF and INS through active ingredients such as
y-sitosterol, dauricine and citronellal, regulate signal release, regulate inflammatory response and cAMP signaling pathway to achieve anti-
inflammatory, anti-oxidative stress and anti-apoptosis, thus playing a role in the treatment of cerebral infarction.
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Table 1 Active ingredients and corresponding targets of Gastrodia elata

B 1D PR AR Xof N2 R
SMITO01162 20-hexadecanoylingenol 207N MRS 10
SMIT21463 4-(4'-hydroxybenzyloxy)benzyl methyl ether A-(4'-F3 A A ) P TR 1
SMIT21521 4-hydroxybenzylamine 4-32FELHE 38
SMIT21488 4-ethoxymethylphenyl-4'-hydroxybenzylether 4- LR R R OR R4 R T 1
SMIT19056 y-sitosterol v 34
SMIT01371 dauricine W 1 55 T 22
SMIT25943 p-hydroxybenzyl alcohol Yo 5 LR PR 13
SMIT15810 p-hydroxybenzaldehyde R oK B g 3
SMIT24071 gaultheroside A EEBRE 2
SMIT15811 m-hydroxybenzoic acid i) o R 75
SMIT22643 4-hydroxybenzyl ether 4-F7 LR BT 1
SMIT04852 vanillyl alcohol HHE 2
SMIT01340 citronellal AW 21
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Fig.1 “Gastrodia elata-active ingredients-target” network
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Fig. 5 “Gastrodia elata-active ingredients-potential targets-signaling pathways-cerebral infarction” network
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Table 2 Binding energy of main active ingredients of Gastrodia elata and target protein molecules

46 B H#g/(kcal mol ™)

L [ F B 2 R 4-FR RN -4 W U 5 ol
TNF -5.39 -5.31 ~7.01 -9.79 ~7.51
INS -4.96 ~4.60 ~7.62 —6.66 ~4.33
IL-1B ~4.65 -3.16 -5.81 -3.04 -2.87
PTGS2 —4.21 -331 -5.50 -2.02 -4.02
PPARG -4.28 -3.72 -5.53 -5.15 ~4.00
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