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Abstract: Objective To investigate the potential targets and molecular mechanism of calycosin in treating metabolic dysfunction-
associated fatty liver disease based on network pharmacology and molecular docking technology. Methods Targets of calycosin were
predicted using the TCMIP and SwissTargetPrediction database. Disease targets were collected from OMIM and GeneCards database.
The common targets were obtained by intersecting the drug and disease targets. PPI network was constructed using the STRING
database, and core targets were screened. GO functional annotation and KEGG pathway enrichment analysis were performed using the
DAVID database. “Drug-target-pathway” regulatory network was constructed using Cytoscape software. Molecular docking validation
of the key active ingredient with the core targets was performed using the CB-Dock2 online platform. Results A total of 252 targets

of calycosin, and 2 607 metabolic dysfunction-associated fatty liver disease -related disease targets were obtained, resulting in 89
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common intersection targets. A total of core targets such as PPARG, CYP3A4, PPARA, MAPK1, AR, and PGR were identified. GO

enrichment analysis indicated that the core targets were primarily involved in biological processes such as the positive regulation of

transcription by RNA polymerase II, cellular components like the nucleus, and molecular functions including DNA-binding

transcription factor activity. KEGG pathway analysis suggested that calycosin might exert its therapeutic effects by regulating pathways

such as the adipocytokine signaling pathway, PPAR signaling pathway, IL-17 signaling pathway, and lipid and atherosclerosis.
Molecular docking results showed that calycosin could bind stably with targets like PPARG, CYP3A4, PPARA, MAPKI, AR, and

PGR. Conclusion Calycosin may treat metabolic dysfunction-associated fatty liver disease through multi-target and multi-pathway

synergistic effects, providing a scientific basis for further pharmacological research and clinical application.

Key words: calycosin; metabolic dysfunction-associated fatty liver disease; network pharmacology; molecular docking; PPARG;
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