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Abstract: Objective To investigate the neurotoxic mechanism induced by aconitine using network toxicology and molecular docking
techniques. Methods The potential targets of aconitine were systematically collected through the Swiss Target Prediction,
PharmMapper, and CTD databases. Neurotoxicity-related gene targets were retrieved using databases such as CTD, PharmGKB,
OMIM. The targets of aconitine and neurotoxicity-related targets were intersected to identify candidate targets. A PPI network of
candidate targets was constructed based on the STRING database platform, and network topological analysis was performed using
CytoScape 3.9.1 software to build a core target network diagram. GO and KEGG enrichment analyses of candidate targets were

conducted via the Metascape online analysis platform. Molecular docking simulations were implemented using PyMOL molecular
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visualization software to conduct preliminary verification of the network toxicology prediction results. Results A total of 848
potential targets of aconitine and 1 713 targets associated with neurotoxicity were identified, yielding 144 intersecting targets. Among
these, 20 core targets were determined, including Aktl, ALB, CASP3, IL-6, TNF, and others. GO enrichment analysis revealed that the
neurotoxicity induced by aconitine is primarily involved in biological processes such as the response to xenobiotic stimulus and
xenobiotic metabolic process, cellular components including the mitochondrial membrane and postsynapse, and molecular functions
like oxidoreductase activity and transcription factor binding. KEGG pathway analysis indicated significant enrichment in signaling
pathways related to the AGE-RAGE axis, neurotrophin, and prolactin signaling. Molecular docking results demonstrated that the
binding energies between aconitine and the top 10 core targets were all lower than -5.0 kcal/mol, indicating favorable binding affinity.
Conclusion Aconitine induces neurotoxicity through multi-target and multi-pathway mechanisms, potentially by regulating targets
such as TNF, CASP3, and Aktl, thereby affecting signaling pathways including AGE-RAGE, neurotrophin, and prolactin, ultimately
leading to neurotoxic effects.
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