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Abstract: Objective To explore the mechanism by which ginsenoside Rg) regulates ferroptosis to inhibit chronic myeloid leukemia
based on network pharmacology and in vitro experiments. Methods CTD, GeneCards and HERB databases were used to screen the
targets of ginsenoside Rg: and chronic myeloid leukemia. FerrDb V2 database was adopted to obtain the genes driving and inhibiting
ferroptosis. The intersection targets were obtained through Venn diagram. STRING database and Cytoscape were used to construct the

PPI network. DAVID database was utilized to conduct GO functional and KEGG pathway enrichment analysis on the intersection
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targets. Visualization was performed through the online drawing platform of Microbiomics, and in vitro experiments were conducted
to verify the prediction results. CCK-8 assay and colony formation assay were used to detect the effects of ginsenoside Rgi on the
proliferation and differentiation ability of K562 cells. Flow cytometry was used to analyze the cell cycle distribution. FerroOrange
fluorescent probe was used to detect the intracellular Fe?" level. BODIPY 581/591 C11 fluorescent probe was used to detect the level
of lipid peroxidation in cells. Transmission electron microscopy was used to observe the morphological changes of mitochondria.
Western blotting and qPCR were used to detect the expression levels of p53, SAT1, and ALOX15 proteins and mRNAs. Results
Results of network pharmacology indicate that there are 26 common target sites for the iron death-related ginsenoside Rg1 and chronic
myeloid leukemia, and the target genes are significantly enriched in cancer pathways and p53 signaling pathways, etc. The experimental
results showed that compared with the control group, ginsenoside Rg: significantly increased the proliferation inhibition rate of K562
cells (P < 0.05). After 48 hours of treatment with ginsenoside Rgi 20 umol/L, the mitochondrial volume decreased, the membrane
density increased, the density of mitochondrial cristae decreased, fusion even disappeared; the number of K562 cell colonies decreased
(P <0.01); the proportion of Go/G1 phase significantly increased, the proportion of S phase decreased (P < 0.001), and the proportion
of G2/M phase increased (P < 0.01); the content of Fe?* and lipid ROS in K562 cells significantly increased (P < 0.01, 0.001), the
expression of p53, SAT1, ALOX15 protein and mRNA in K562 cells was significantly upregulated (P < 0.01, 0.001). Conclusion

Ginsenoside Rg; inhibits the proliferation of leukemia K562 cells, which may be related to the induction of ferroptosis via regulation

of the pS3/SAT1/ALOX15 signaling pathway.

Key words: ginsenoside Rg1; chronic myeloid leukemia; ferroptosis; pS3; SAT1; ALOX15
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ginsenoside Rg1, chronic myeloid leukemia and ferroptosis
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