孕烯醇酮单晶的制备及其结构表征

邓吉秀,武斌斌,许佳旋,杨硕晔*,张鹏帅* 河南工业大学 生物工程学院,河南 郑州 450001

摘 要:目的 制备孕烯醇酮单晶,进行结构表征。方法 采用溶剂挥发法进行单晶培养,采用单晶 X 射线衍射(SC-XRD) 检测晶胞参数和分子结构,采用差示扫描量热(DSC)进行热稳定性表征,使用粉末 X 射线衍射(PXRD)进行晶型表征,采用 CrystalExplorer 17.5 软件构建孕烯醇酮的 Hirshfeld 表面和 2D 指纹图谱。结果 孕烯醇酮棒状晶体空间群为 P21,属于单斜晶系,分子式为 C21H32O2,相对分子质量为 316.46,理论密度为 1.187 g/m³。晶型为孕烯醇酮晶型I。H…H、H…O/O…H和 C…H/H…C 为孕烯醇酮分子之间相互作用力的主要作用方式。结论 确证了孕烯醇酮晶型I的单晶结构和晶体参数,为孕烯醇酮的晶型研究提供参考。

关键词: 孕烯醇酮; 单晶 X 射线衍射; 差示扫描量热; 粉末 X 射线衍射; Hirshfeld 表面 中图分类号: R965 文献标志码: A 文章编号: 1674 - 5515(2025)01 - 0071 - 08 DOI: 10.7501/j.issn.1674-5515.2025.01.010

Preparation and structure characterization of pregnenolone single crystal

DENG Jixiu, WU Binbin, XU Jiaxuan, YANG Shuoye, ZHANG Pengshuai

School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract: Objective To prepare pregnenolone single crystal and characterize its structure. **Methods** Single crystals were cultivated using solvent evaporation method. Single crystal X-ray diffraction (SC-XRD) was used to detect the unit cell parameters and molecular structure, differential scanning calorimetry (DSC) was used for thermal stability characterization, powder X-ray diffraction (PXRD) was used for crystal form characterization, and CrystalExplorer 17.5 software was used to construct the Hirshfeld surface and 2D fingerprint of pregnenolone. **Results** The space group of pregnenolone rod-shaped crystal was P2₁, belonging to the monoclinic crystal system, with a molecular formula of $C_{21}H_{32}O_2$, a relative molecular mass of 316.46, and a theoretical density of 1.187 g/m³. The crystal form was pregnenolone crystal form I. H…H, H…O/O…H, and C…H/H…C were the main modes of intermolecular interactions between pregnenolone molecules. **Conclusion** Single crystal structure and crystal parameters of pregnenolone crystal form I are confirmed, providing reference for the study of pregnenolone crystal form.

Key words: pregnenolone; single crystal X-ray diffraction; differential scanning calorimetry; powder X-ray diffraction; Hirshfeld surface

孕烯醇酮的化学名为 5-孕甾烯-3β-醇-20-酮(分 子式: C₂₁H₃₂O₂, CAS: 145-13-1),是一种重要神 经类固醇^[1],化学结构式见图 1。众所周知,药物的 化学结构与其生物活性之间存在密切的关系。通过 结构鉴定,可以确认药物是否具有预期的药效,并 为优化药物的活性提供依据^[2]。因此,确定药物原 料药的晶体结构是药物研发的重要组成部分,也是 评估药物作用机制和药物临床应用前提条件。单晶 X 射线衍射(SC-XRD)是确定药物晶体结构的重 要手段和直接证据^[3],被广泛用于药物晶体的结构 的鉴定和表征^[4-6]。目前,有相关研究已经报道了孕 烯醇酮的单晶信息。Lancaster等^[7]以孕烯醇酮作为 添加剂探究黄体酮共晶的研究中报道了孕烯醇酮 的单晶参数,该单晶参数已经被剑桥晶体数据库

收稿日期: 2024-10-28

基金项目:河南省科技攻关项目(242102311232)

作者简介:邓吉秀(1998-),女,贵州黔南人,硕士研究生。E-mail:1763594329@qq.com

^{*}通信作者:张鹏帅,男,讲师,博士,研究方向为相平衡与工业结晶。E-mail: zps988@haut.edu.cn

杨硕晔,男,博士,副教授,硕士研究生导师,研究方向为功能性纳米材料与新型药物递送系统、药用活性化合物合成与结构 修饰。E-mail: yangshuoyecpu@163.com

图 1 孕烯醇酮的化学结构式 Fig. 1 Chemical structure of pregnenolone

(CCDC)所收录,CCDC 号为 625224。Friščić 等^[8] 报道了孕烯醇酮单晶,该单晶 CCDC 号为 753868。 本实验采用溶剂挥发法制备了孕烯醇酮单晶,提供 了孕烯醇酮单晶的热分析表征数据,旨在丰富孕烯 醇酮单晶数据及其相关热力学性质。

1 试剂与仪器

孕烯醇酮原料药购于上海阿拉丁生化科技股份有限公司,质量分数为99.71%。所用试剂分别为分析纯的甲醇、乙醇、*N*-甲基吡咯烷酮(NMP)和*N*,*N*-二甲基甲酰胺(DMF)。

日本 Rigaku XtaLAB Synergy (λ =1.541 8 Å, Cu Kα)(1Å=0.1 nm)单晶衍射仪。单晶体衍射数 据由 HyPix6000 光子直读探测器收集,检测器活性 单元面积 80.0 mm×77.5 mm,感应单元为硅阵列探 测模式(单元厚度≥600 µm),读取时间≤7.4 ms, 样品至检测器距离 35 mm,检测管压最大值为 50 kV, 管流最大值为 1 mA。使用德国耐驰 DSC214 差示 扫描量热仪对样品进行 DSC 表征,仪器的标准不 确定度为±0.5 K。使用日本理学 Rigaku Miniflex 600 台式 X 射线衍射仪(λ =1.5418Å, Cu Kα 辐射) 进行粉末 X 射线衍射,测试步长为 0.02°,测试范 围为 5°~50°,电压 40 kV,电流 15 mA。

2 方法与结果

2.1 单晶培养

采用溶剂挥发法制备了孕烯醇酮单晶^[9]。根据 孕烯醇酮的理化性质,分别选取甲醇、乙醇、DMF 和 NMP 4 种纯溶剂作为单晶培养溶液,配制 45 ℃ 下的饱和溶液,静置 5~6h,待溶液中部分的晶体 由于温度降低、溶液饱和度过大而析出,此时析出 的部分晶体和上清液分层。用一次性无菌注射器缓 慢吸取上清液,将上清液置于 20 mL 透明玻璃瓶 中,盖上薄膜,并在薄膜上扎 7~8 个小孔,使得上 述溶液在室温条件下缓慢挥发。5~6d 后甲醇和乙 醇溶液中出现的晶体大小不一,晶体质量较差。 NMP 溶液中的晶体颗粒小,且易于聚集。DMF 溶 液中的晶体大小均一,透明度良好,晶体质量较高。 最终选取 DMF 为孕烯醇酮单晶培养液,通过上述 方法获得孕烯醇酮晶体,挑选大小均一、表面光滑 透明的晶体用于 SC-XRD 检测。见图 2。

图 2 孕烯醇酮的晶体显微镜图 Fig. 2 Crystal microscope of pregnenolone

2.2 单晶结构确证

将所获得的孕烯醇酮棒状晶体切割至大小0.12 mm×0.11 mm×0.1 mm, 经过 SC-XRD 检测, 确定 孕烯醇酮晶体晶胞参数和分子结构。晶胞参数: a 6.191 60 (10) Å, b11.866 5 (2) Å, c12.060 5 (2) Å, α90°, β91.961 (2)°, γ90°, 空间群为 P2₁, 属于单斜晶系。晶胞体积 V=885.598 Å³, 晶胞内分 子数 Z=2。2θ 扫描范围为 7.33°~147.30°(0.80 Å), 温度为: 293(2)K, *hkl* 范围-4≤*h*≤7, -14≤*k*≤14, -14≤l≤14,总衍射点5223个,独立衍射点2883 个 (R_{int}=0.0283, R_{sigma}=0.0352), 数据完整度为 99.6%。晶体结构采用 Olex-1.5 软件中的 Shelxt 通 过双重法求解,采用 XL 程序通过最小二乘法修正 结构参数和判别原子种类,根据分子结构自动加氢 获得全部氢原子,解析结果可靠因子 R1=0.0398, wR2=0.1072, S=1.047, 其中结构可靠因子 S 接近 于1.0,表明权重方案合适、结构准确。孕烯醇酮的 立体结构中 C(11)为手性中心碳原子,构型为 S 构型,表征绝对构型 Flack 参数为-0.2 (2)。最终确 定分子式为C21H32O2, 计算单个分子的相对分子质 量为 316.46, 理论密度为 1.187 g/m³。为确保数据 的准确性,将实验所测得的单晶数据与 CCDC 收录 的晶体参数进行对比,结果表明本实验所获得的孕 烯醇酮晶体参数与 CCDC 收录的晶体参数数据基 本一致,但并不是完全一致,其中的数值差异可能 由晶体质量、测试条件、解析方法不同所致。孕烯 醇酮的立体结构和晶胞结构见图 3。孕烯醇酮的原 子坐标参数和等效各向同性位移参数见表 1, 孕烯 醇酮等效各向异性位移参数见表 2, 孕烯醇酮键长 数据见表 3, 孕烯醇酮键角见表 4, 孕烯醇酮扭转角 数据见表 5。

图 3 孕烯醇酮的立体结构图(A)和晶胞结构图(B) Fig. 3 Stereostructure (A) and cell structure (B) of pregnenolone

表1 孕烯醇酮的原子坐标参数和等效各向同性位移参数

 Table 1
 Atomic coordinates and equivalent isotropic atomic displacement parameters for pregnenolone

原子	<i>x</i> /Å	y/Å	z/Å	$U(eq)/Å^2$	原子	<i>x</i> /Å	y/Å	z/Å	$U(eq)/Å^2$
O(1)	0.651 6(3)	0.421 2(2)	0.151 71(15)	0.060 4(5)	H(12A)	0.353 336	0.721 725	1.005 977	0.083 9
H(1)	0.764 576	0.453 437	0.137 697	0.091 0	H(12B)	0.504 187	0.626 142	1.054 025	0.083 0
O(2)	0.031 3(3)	0.578 5(2)	1.095 09(18)	0.068 5(6)	H(12C)	0.354 891	0.693 381	1.132 959	0.083 0
C(1)	0.624 6(4)	0.421 3(2)	0.268 84(19)	0.043 2(5)	C(13)	0.244 8(3)	0.537 31(18)	0.828 83(17)	0.032 7(5)
H(1A)	0.699 050	0.355 413	0.300 903	0.052 0	C(14)	0.074 4(3)	0.628 8(2)	0.805 7(2)	0.039 9(5)
C(2)	0.384 3(4)	0.410 8(2)	0.289 29(19)	0.041 7(5)	H(14A)	0.063 503	0.643 676	0.727 485	0.060 0
H(2A)	0.307 625	0.471 467	0.251 102	0.050 0	H(14B)	0.115 932	0.696 547	0.844 449	0.060 0
H(2B)	0.331 375	0.340 093	0.258 490	0.050 0	H(14C)	-0.062 950	0.603 612	0.830 774	0.060 0
C(3)	0.336 4(3)	0.415 19(19)	0.411 51(18)	0.033 6(4)	C(15)	0.469 4(3)	0.578 9(2)	0.800 01(18)	0.038 4(5)
C(4)	0.210 7(3)	0.337 8(2)	0.457 3(2)	0.037 6(5)	H(15A)	0.576 929	0.524 785	0.826 206	0.046 0
H(4)	0.154 632	0.281 352	0.411 298	0.045 0	H(15B)	0.498 648	0.649 946	0.837 387	0.046 0
C(5)	0.152 9(4)	0.334 7(2)	0.576 4(2)	0.039 3(5)	C(16)	0.487 3(3)	0.595 0(2)	0.674 71(19)	0.038 2(5)
H(5A)	0.233 079	0.274 539	0.613 403	0.047 0	H(16A)	0.635 586	0.614 346	0.659 461	0.046 0
H(5B)	0.000 241	0.317 769	0.580 900	0.047 0	H(16B)	0.397 259	0.658 258	0.651 776	0.046 0
C(6)	0.200 7(3)	0.445 20(18)	0.636 82(18)	0.031 0(4)	C(17)	0.421 4(3)	0.491 99(18)	0.603 78(17)	0.030 0(4)
H(6)	0.088 271	0.500 022	0.615 763	0.037 0	H(17)	0.527 791	0.433 022	0.621 740	0.036 0
C(7)	0.202 4(3)	0.428 83(18)	0.761 92(18)	0.033 9(5)	C(18)	0.434 0(3)	0.513 86(18)	0.477 51(18)	0.030 2(4)
H(7)	0.324 531	0.378 760	0.779 852	0.041 0	C(19)	0.313 3(4)	0.622 4(2)	0.442 53(19)	0.039 4(5)
C(8)	0.005 8(4)	0.374 9(2)	0.813 7(2)	0.047 5(6)	H(19A)	0.300 922	0.626 076	0.363 051	0.059 0
H(8A)	0.005 799	0.293 830	0.803 184	0.057 0	H(19B)	0.392 208	0.686 700	0.470 221	0.059 0
H(8B)	-0.127 443	0.405 693	0.781 795	0.057 0	H(19C)	0.171 702	0.621 956	0.472 511	0.059 0
C(9)	0.032 6(5)	0.405 2(3)	0.937 2(2)	0.060 5(8)	C(20)	0.675 3(3)	0.524 0(2)	0.448 63(18)	0.037 1(5)
H(9A)	0.065 649	0.338 193	0.980 604	0.073 0	H(20A)	0.733 733	0.592 364	0.481 946	0.044 0
H(9B)	-0.099 791	0.437 934	0.963 389	0.073 0	H(20B)	0.753 613	0.460 828	0.481 479	0.044
C(10)	0.218 9(4)	0.490 5(2)	0.949 15(19)	0.041 4(5)	C(21)	0.714 7(4)	0.526 4(2)	0.324 56(19)	0.042 0(5)
H(10)	0.350 268	0.447 904	0.968 860	0.050 0	H(21A)	0.646 061	0.592 453	0.291 628	0.050 0
C(11)	0.189 9(4)	0.577 9(2)	1.039 1(2)	0.046 2(6)	H(21B)	0.868 626	0.531 356	0.312 905	0.050 0
C(12)	0.366 4(5)	0.662 4(3)	1.059 9(2)	0.055 3(7)					

现代药物与临床 Drugs & Clinic

Vol. 40 No.1 January 2025

原子	$U_{11}/{ m \AA}^2$	$U_{22}/{ m \AA}^2$	$U_{33}/{ m \AA}^2$	$U_{23}/{ m \AA}^2$	$U_{13}/{ m \AA}^2$	$U_{12}/{ m \AA}^2$
O(1)	0.071 9(12)	0.073 3(14)	0.037 0(9)	-0.009 2(9)	0.018 1(8)	-0.008 9(11)
O(2)	0.073 2(12)	0.078 5(16)	0.055 9(12)	-0.009 7(11)	0.032 8(10)	-0.003 2(11)
C(1)	0.049 0(12)	0.045 7(13)	0.035 4(11)	-0.000 3(11)	0.011 5(9)	0.004 7(11)
C(2)	0.046 2(12)	0.043 8(12)	0.035 3(11)	-0.005 3(10)	0.004 0(9)	-0.004 1(10)
C(3)	0.030 8(10)	0.034 7(11)	0.035 2(10)	-0.000 5(9)	0.002 4(8)	0.000 9(8)
C(4)	0.038 0(11)	0.033 1(11)	0.042 0(12)	-0.007 2(9)	0.005 1(9)	-0.003 6(9)
C(5)	0.041 1(11)	0.031 9(11)	0.045 5(13)	-0.001 8(10)	0.009 1(9)	-0.007 1(9)
C(6)	0.026 7(9)	0.029 9(10)	0.036 6(10)	0.000 0(8)	0.005 1(7)	-0.000 8(8)
C(7)	0.030 8(10)	0.033 9(11)	0.037 7(11)	0.003 8(9)	0.009 6(8)	0.000 4(8)
C(8)	0.052 2(14)	0.044 2(13)	0.047 5(14)	-0.000 3(11)	0.020 7(11)	-0.011 4(11)
C(9)	0.071 4(17)	0.064 0(18)	0.047 5(15)	0.004 8(14)	0.023 0(13)	-0.018 0(15)
C(10)	0.045 1(12)	0.045 0(13)	0.034 7(11)	0.004 3(10)	0.008 9(9)	0.002 9(10)
C(11)	0.054 2(13)	0.053 1(15)	0.031 9(11)	0.005 0(10)	0.007 8(10)	0.005 9(12)
C(12)	0.060 9(15)	0.061 0(17)	0.044 2(14)	-0.007 1(13)	0.005 5(11)	0.001 3(13)
C(13)	0.029 6(9)	0.036 0(11)	0.032 7(10)	0.001 5(9)	0.005 4(7)	0.000 7(8)
C(14)	0.034 5(10)	0.039 6(12)	0.045 8(12)	-0.003 1(11)	0.002 5(9)	0.002 4(9)
C(15)	0.030 9(10)	0.050 8(13)	0.033 7(11)	-0.004 4(10)	0.005 0(7)	-0.005 8(9)
C(16)	0.034 2(10)	0.045 3(13)	0.035 5(11)	-0.002 2(9)	0.007 2(8)	-0.013 1(9)
C(17)	0.023 8(9)	0.034 5(10)	0.032 0(10)	0.000 2(9)	0.004 6(7)	-0.000 3(8)
C(18)	0.025 8(9)	0.031 9(10)	0.032 9(10)	-0.001 2(8)	0.004 1(7)	0.000 8(7)
C(19)	0.042 8(11)	0.036 8(11)	0.038 7(11)	0.002 8(10)	0.003 7(9)	0.004 1(10)
C(20)	0.028 8(9)	0.045 5(13)	0.037 3(11)	-0.001 0(9)	0.005 8(8)	-0.004 4(9)
C(21)	0.038 6(11)	0.051 4(14)	0.036 7(12)	0.000 6(10)	0.010 8(8)	-0.005 1(10)

表 2 孕烯醇酮等效各向异性位移参数 Table 2 Anisotropic displacement parameters for pregnenolone

表 3 孕烯醇酮的键长数据 Table 3 Data of bond distance for pregnenolone

原子键	键长/Å	原子键	键长/Å	原子键	键长/Å	原子键	键长/Å
O(1)–H(1)	0.820 0	C(5)–C(6)	1.524(3)	C(17)–C(18)	1.549(3)	C(7)–C(8)	1.528(3)
O(1)–C(1)	1.428(3)	C(12)–H(12B)	0.960 0	C(18)–C(19)	1.540(3)	C(7)–C(13)	1.537(3)
O(2)–C(11)	1.211(3)	C(12-H(12C)	0.9600	C(18)–C(20)	1.550(3)	C(8)–H(8A)	0.970 0
C(1)–H(1A)	0.980 0	C(13)–C(14)	1.533(3)	C(19)–H(19A)	0.960 0	C(8)–H(8B)	0.970 0
C(1)–C(2)	1.521(3)	C(13)–C(15)	1.527(3)	C(19)–H(19B)	0.960 0	C(8)–C(9)	1.536(4)
C(1)–C(21)	1.515(4)	C(14)–H(14A)	0.9600	C(19)–H(19C)	0.960 0	C(9)–H(9A)	0.970 0
C(2)–H(2A)	0.970 0	C(14)–H(14B)	0.9600	C(20)–H(20A)	0.9700	C(9)–H(9B)	0.970 0
C(2)–H(2B)	0.970 0	C(14)–H(14C)	0.9600	C(20)–H(20B)	0.9700	C(9)–C(10)	1.537(4)
C(2)–C(3)	1.514(3)	C(15)–H(15A)	0.9700	C(20)–C(21)	1.525(3)	C(10)–H(10)	0.980 0
C(3)–C(4)	1.335(3)	C(15)-H(15B)	0.9700	C(21)–H(21A)	0.9700	C(10)–C(11)	1.516(4)
C(3)–C(18)	1.529(3)	C(15)–C(16)	1.531(3)	C(21)–H(21B)	0.9700	C(10)–C(13)	1.567(3)
C(4)–H(4)	0.930 0	C(16)–H(16A)	0.9700	C(6)–H(6)	0.980 0	C(11)–C(12)	1.497(4)
C(4)–C(5)	1.492(3)	C(16)–H(16B)	0.970 0	C(6)–C(7)	1.521(3)	C(12)–H(12A)	0.960 0
C(5)–H(5A)	0.970 0	C(16)–C(17)	1.539(3)	C(6)–C(17)	1.540(2)		
C(5)-H(5B)	0.9700	C(17)–H(17)	0.9800	C(7)–H(7)	0.9800		

第40卷第1期 2025年1月

现代药物与临床

Drugs & Clinic

Vol. 40 No.1 January 2025 • 75 •

Table 4 Data of bond angle for pregnenolone								
原子键	键角/(°)	原子键	键角/(°)	原子键	键角/(°)			
C(1)-O(1)-H(1)	109.5	H(8A)C(8)H(8B)	109.0	C(16)-C(15)-H(15A)	109.4			
O(1)-C(1)-H(1A)	108.7	C(9)–C(8)–H(8A)	111.0	C(16)-C(15)-H(15B)	109.4			
O(1)–C(1)–C(2)	107.98(19)	C(9)–C(8)–H(8B)	111.0	C(15)-C(16)-H(16A)	108.5			
O(1)–C(1)–C(21)	112.7(2)	C(8)–C(9)–H(9A)	110.2	C(15)-C(16)-H(16B)	108.5			
C(2)-C(1)-H(1A)	108.7	C(8)–C(9)–H(9B)	110.2	C(15)-C(16)-C(17)	115.03(18)			
C(21)–C(1)–H(1A)	108.7	C(8)–C(9)–C(10)	107.5(2)	H(16A)C(16)H(16B)	107.5			
C(21)-C(1)-C(2)	110.04(19)	H(9A)-C(9)-H(9B)	108.5	C(17)–C(16)–H(16A)	108.5			
C(1)–C(2)–H(2A)	109.1	C(10)-C(9)-H(9A)	110.2	C(17)–C(16)–H(16B)	108.5			
C(1)-C(2)-H(2B)	109.1	C(10)-C(9)-H(9B)	110.2	C(6)–C(17)–H(17)	106.3			
H(2A)C(2)H(2B)	107.9	C(9)–C(10)–H(10)	107.3	C(6)–C(17)–C(18)	112.92(15)			
C(3)–C(2)–C(1)	112.33(18)	C(9)–C(10)–C(13)	104.27(19)	C(16)–C(17)–C(6)	111.30(16)			
C(3)-C(2)-H(2A)	109.1	C(11)-C(10)-C(9)	114.3(2)	C(16)-C(17)-H(17)	106.3			
C(3)-C(2)-H(2B)	109.1	C(11)-C(10)-H(10)	107.3	C(16)–C(17)–C(18)	113.09(17)			
C(2)–C(3)–C(18)	116.50(18)	C(11)-C(10)-C(13)	116.0(2)	C(18)–C(17)–H(17)	106.3			
C(4)–C(3)–C(2)	121.0(2)	C(13)-C(10)-H(10)	107.3	C(3)–C(18)–C(17)	110.56(17)			
C(4)–C(3)–C(18)	122.5(2)	O(2)–C(11)–C(10)	121.4(2)	C(3)-C(18)-C(19)	108.57(16)			
C(3)-C(4)-H(4)	117.4	O(2)–C(11)–C(12)	120.3(3)	C(3)-C(18)-C(20)	108.01(17)			
C(3)–C(4)–C(5)	125.3(2)	C(12)-C(11)-C(10)	118.3(2)	C(17)–C(18)–C(20)	108.36(16)			
C(5)-C(4)-H(4)	117.4	C(11)-C(12)-H(12A)	109.5	C(19)–C(18)–C(17)	111.66(17)			
C(4)–C(5)–H(5A)	109.0	C(11)-C(12)-H(12B)	109.5	C(19)–C(18)–C(20)	109.62(18)			
C(4)–C(5)–H(5B)	109.0	C(11)-C(12)-H(12C)	109.5	C(18)-C(19)-H(19A)	109.5			
C(4)–C(5)–C(6)	112.96(18)	H(12A)-C(12)-H(12B)	109.5	C(18)–C(19)–H(19B)	109.5			
H(5A)–C(5)–H(5B)	107.8	H(12A)–C(12)–H(12C)	109.5	C(18)–C(19)–H(19C)	109.5			
C(6)–C(5)–H(5A)	109.0	H(12B)-C(12-H(12C)	109.5	H(19A)-C(19)-H(19B)	109.5			
C(6)–C(5)–H(5B)	109.0	C(7)–C(13)–C(10)	99.68(18)	H(19A)–C(19)–H(19C)	109.5			
C(5)–C(6)–H(6)	108.8	C(14)-C(13)-C(7)	113.20(17)	H(19B)-C(19)-H(19C)	109.5			
C(5)–C(6)–C(17)	110.24(17)	C(14)-C(13)-C(10)	109.14(17)	C(18)-C(20)-H(20A)	108.7			
C(7)–C(6)–C(5)	111.06(17)	C(15)–C(13)–C(7)	106.96(17)	C(18)-C(20)-H(20B)	108.7			
C(7)–C(6)–H(6)	108.8	C(15)-C(13)-C(10)	116.62(17)	H(20A)-C(20)-H(20B)	107.6			
C(7)–C(6)–C(17)	109.07(16)	C(15)-C(13)-C(14)	110.86(19)	C(21)-C(20)-C(18)	114.19(17)			
C(17)–C(6)–H(6)	108.8	C(13)-C(14)-H(14A)	109.5	C(21)-C(20)-H(20A)	108.7			
C(6)–C(7)–H(7)	106.0	C(13)-C(14)-H(14B)	109.5	C(21)-C(20)-H(20B)	108.7			
C(6)–C(7)–C(8)	118.72(19)	C(13)–C(14)–H(14C)	109.5	C(1)-C(21)-C(20)	110.55(19)			
C(6)–C(7)–C(13)	114.15(17)	H(14A)–C(14)–H(14B)	109.5	C(1)-C(21)-H(21A)	109.5			
C(8)–C(7)–H(7)	106.0	H(14A)–C(14)–H(14C)	109.5	C(1)-C(21)-H(21B)	109.5			
C(8)–C(7)–C(13)	105.10(18)	H(14B)-C(14)-H(1C)	109.5	C(20)-C(21)-H(21A)	109.5			
C(13)–C(7)–H(7)	106.0	C(13)-C(15)-H(15A)	109.4	C(20)-C(21)-H(21B)	109.5			
C(7)–C(8)–H(8A)	111.0	C(13)-C(15)-H(15B)	109.4	H(21A)-C(21)-H(21B)	108.1			
C(7)–C(8)–H(8B)	111.0	C(13)-C(15)-C(16)	111.23(16)					
C(7)–C(8)–C(9)	103.7(2)	H(15A)-C(15)-H(15B)	108.0					

表 4 孕烯醇酮键角数据

・76・ 第40卷第1期 2025年1月

现代药物与临床 Drugs & Clinic

Vol. 40 No.1 January 2025

原子键	扭转角/(°)	原子键	扭转角/(°)	原子键	扭转角/(°)
O(1)-C(1)-C(2)-C(3)	-177.5(2)	C(6)-C(7)-C(13)-C(10)	176.27(16)	C(11)–C(10)–C(13)–C(7)	-164.25(19)
O(1)-C(1)-C(21)-C(20)	178.16(19)	C(6)–C(7)–C(13)–C(14)	60.5(2)	C(11)-C(10)-C(13)-C(14)	-45.4(2)
C(1)–C(2)–C(3)–C(4)	-130.5(2)	C(6)–C(7)–C(13)–C(15)	-61.9(2)	C(11)-C(10)-C(13)-C(15)	81.1(3)
C(1)–C(2)–C(3)–C(18)	51.2(3)	C(6)–C(17)–C(18)–C(3)	-44.4(2)	C(13)-C(7)-C(8)-C(9)	-34.0(3)
C(2)-C(1)-C(21)-C(20)	57.6(2)	C(6)–C(17)–C(18)–C(19)	76.6(2)	C(13)-C(10)-C(11)-O(2)	121.1(3)
C(2)–C(3)–C(4)–C(5)	-179.7(2)	C(6)–C(17)–C(18)–C(20)	-162.54(18)	C(13)-C(10)-C(11)-C(12)	-60.7(3)
C(2)–C(3)–C(18)–C(17)	-165.80(17)	C(7)–C(6)–C(17)–C(16)	-50.4(2)	C(13)-C(15)-C(16)-C(17)	-52.9(3)
C(2)-C(3)-C(18)-C(19)	71.4(2)	C(7)–C(6)–C(17)–C(18)	-178.84(17)	C(14)-C(13)-C(15)-C(16)	-68.2(2)
C(2)-C(3)-C(18)-C(20)	-47.4(2)	C(7)–C(8)–C(9)–C(10)	9.2(3)	C(15)-C(16)-C(17)-C(6)	49.5(2)
C(3)-C(4)-C(5)-C(6)	15.3(3)	C(7)–C(13)–C(15)–C(16)	55.7(2)	C(15)-C(16)-C(17)-C(18)	177.82(16)
C(3)-C(18)-C(20)-C(21)	50.7(3)	C(8)–C(7)–C(13)–C(10)	44.5(2)	C(16)-C(17)-C(18)-C(3)	-171.87(16)
C(4)-C(3)-C(18)-C(17)	15.9(3)	C(8)–C(7)–C(13)–C(14)	-71.3(2)	C(16)-C(17)-C(18)-C(19)	-50.9(2)
C(4)-C(3)-C(18)-C(19)	-106.9(2)	C(8)–C(7)–C(13)–C(15)	166.30(19)	C(16)-C(17)-C(18)-C(20)	69.9(2)
C(4)-C(3)-C(18)-C(20)	134.3(2)	C(8)–C(9)–C(10)–C(11)	145.8(2)	C(17)-C(6)-C(7)-C(8)	-175.59(19)
C(4)-C(5)-C(6)-C(7)	-163.51(17)	C(8)–C(9)–C(10)–C(13)	18.1(3)	C(17)-C(6)-C(7)-C(13)	59.6(2)
C(4)-C(5)-C(6)-C(17)	-42.5(2)	C(9)–C(10)–C(11)–O(2)	-0.2(4)	C(17)–C(18)–C(20)–C(21)	170.49(19)
C(5)-C(6)-C(7)-C(8)	-53.9(3)	C(9)–C(10)–C(11)–C(12)	177.9(2)	C(18)–C(3)–C(4)–C(5)	-1.5(3)
C(5)-C(6)-C(7)-C(13)	-178.75(17)	C(9)–C(10)–C(13)–C(7)	-37.7(2)	C(18)-C(20)-C(21)-C(1)	-58.1(3)
C(5)-C(6)-C(17)-C(16)	-172.57(18)	C(9)–C(10)–C(13)–C(14)	81.2(2)	C(19)–C(18)–C(20)–C(21)	-67.4(2)
C(5)-C(6)-C(17)-C(18)	59.0(2)	C(9)–C(10)–C(13)–C(15)	-152.3(2)	C(21)-C(1)-C(2)-C(3)	-54.1(3)
C(6)-C(7)-C(8)-C(9)	-163.1(2)	C(10)-C(13)-C(15)-C(16)	166.1(2)		

表 5 孕烯醇酮扭转角数据 Table 5 Data of torsion angle for pregnenolone

2.3 热稳定性表征

差示扫描量热(DSC)是测定物质熔点和熔融 焓的重要表征方法^[10],广泛用于分析样品的热流随 温度发生的变化,因此本实验采用 DSC 对制备的 孕烯醇酮单晶原料药进行热稳定性表征。以 2.5℃/min 的升温速率从 25℃升温至 250℃,惰性 气体 N₂为保护气体(N₂体积流量为 100 mL/min), 坩埚: Al2O3。结果见图 4。

孕烯醇酮的 DSC 出现了 2 个明显的吸热峰。 在温度 177~189 ℃出现了 1 个较小的吸热峰,吸 热峰特征表明被测样品在 177.13 ℃开始融化,峰 值为 184.27 ℃。在 193~196 ℃出现 1 个较显著的 尖锐吸热峰,该吸热峰的峰值为 193.69 ℃。本实验 所测的孕烯醇酮的第1个吸热峰范围(177~189 ℃) 和第 2 个吸热峰范围(193~196 ℃) 基本符合专利 报道的孕烯醇酮晶型I的 DSC 曲线特征^[11]。

2.4 粉末 X 射线衍射(PXRD)分析

孕烯醇酮晶体的理论 X 射线衍射 (XRD) 图和 孕烯醇酮晶体原料的 PXRD 结果对比见图 5。所得 的 PXRD 主要特征峰的在 7.16°、10.18°、14.58°、 16.04°、17.26°、17.66°、20.82°、21.28°、21.86°、 22.92°、25.56°、26.56°、27.50°、30.16°、31.30°、 31.44°、32.64°、33.26°、34.22°、39.34°、40.08°、 45.36°、47.46°。实验 PXRD 图谱、理论图谱与专利 报道的孕烯醇酮晶型I的 PXRD 的衍射峰位置基本 一致^[11],进一步证实所获得的孕烯醇酮单晶的晶型 为孕烯醇酮晶型I。

2.5 分子间相互作用

为了更清晰地展现孕烯醇酮晶体结构分子之 间的相互作用力,采用 CrystalExplorer 17.5 软件构 建孕烯醇酮的 Hirshfeld 表面和 2D 指纹图谱,结果 见图 6。Hirshfeld 表面上的红色、白色和蓝色分别 表示分子间接触距离小于、等于、大于相应原子的 范德华半径之和^[12]。其中红色斑点表示C(1)处的 OH 和 C (11) 处的氧原子与相邻分子之间的相互 作用力最强,因为C(1)处的OH能够作为氢键供 体与相邻分子形成氢键(O-H…O),同样的C(11) 上的氧原子存在孤立电子对,能够作为氢键的受体 与相邻分子形成氢键(O…H-O)。根据 Hirshfeld 表 面到距离该点最近的表面外的原子核的距离(de) 和表面内的原子核的距离(d_i),可绘制出 2D 指纹 图谱。2D 指纹图谱显示了分子之间相互作用力的 方式对整体的贡献程度^[13]。可见 H…H、H…O/O…H 和 C…H/H…C 为孕烯醇酮分子之间相互作用力的 主要作用方式,对 Hirshfeld 表面的贡献分别为 82.4% 15.1% 2.6%

3 讨论

本实验采用溶剂 DMF 在室温条件下缓慢挥发 制备得到孕烯醇酮单晶,经过 SC-XRD 对孕烯醇酮 的晶体结构进行鉴定。鉴定结果表明,孕烯醇酮单 晶属于单斜晶系,晶胞参数: a 6.191 60 (10) Å, b 11.866 5 (2) Å, c 12.060 5 (2) Å, α 90°, β 91.961 (2) °, γ 90°, 空间群为 P2₁。晶胞体积 V=885.598 Å³,晶胞内分子数 Z=2。为确定孕烯醇酮晶型,使 用 DSC 和 PXRD 进行孕烯醇酮晶型表征。表征结 果显示,解析得到的单晶参数为孕烯醇酮晶型I。本

图 6 孕烯醇酮的 Hirshfeld 表面分析图(a)和 2D 指纹图 (b~d)

Fig. 6 Hirshfeld surface analysis (a) and 2D fingerprint (b — d) of pregnenolone

实验所得结果提供了孕烯醇酮晶型I的单晶制备方 法和晶体参数,对孕烯醇酮晶型和生物利用度研究 提供基础数据和指导意义。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] Gonzalez E, Guengerich F P. Kinetic processivity of the two-step oxidations of progesterone and pregnenolone to androgens by human cytochrome P450 17A1 [J]. *J Biol Chem*, 2017, 292(32): 13168-13185.
- [2] Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs [J]. *Molecules*, 2015, 20(10): 18759-18776.
- [3] 周宇乔, 王诗语, 董沛, 等. X 射线衍射单晶测试中晶 体移位处理暨二亚胺衍生物结构解析研究 [J]. 化学 研究与应用, 2022, 34(8): 1856-1861.
- [4] 许常旭,杨海刚,莫小鹏,等.(S)-2-(Boc-氨基)-3-[(S)-2-氧代-3-吡咯烷基]丙酸甲酯单晶制备及其结构表征
 [J].现代药物与临床,2024,39(3):604-608.
- [5] Redhammer G J, Tippelt G. Crystal chemistry of synthetic Mg (Si1-xGex) O3 pyroxenes: A single-crystal X-ray diffraction study [J]. *Minerals*, 2024, 14(9): 864.
- [6] Teneva Y, Simeonova R, Besarboliev O, et al. X-ray single-crystal analysis, pharmaco-toxicological profile and enoyl-ACP reductase-inhibiting activity of leading sulfonyl hydrazone derivatives [J]. Crystals, 2024, 14(6): 560.
- [7] Lancaster R W, Karamertzanis P G, Hulme A T, *et al.* The polymorphism of progesterone: Stabilization of a

'disappearing'polymorph by co-crystallization [J]. J Pharm Sci, 2007, 96(12): 3419-3431.

- [8] Friščić T, Lancaster R W, Fabian L, *et al.* Tunable recognition of the steroid α-face by adjacent π-electron density [J]. *Proc Natl Acad Sci*, 2010, 107(30): 13216-13221.
- [9] 江晓静. 单晶培养的方法和影响因素 [J]. 化工管理, 2013(12): 210.
- [10] 刘毅, 覃玲, 郭贤辉, 等. 热重和差示扫描量热分析技术在药物分析中的应用进展 [J]. 中国药物警戒, 2024, 21(3): 283-289.

- [11] 张鹏帅,邓吉秀,靳春霞,等. 一种孕烯醇酮新晶型及 其制备方法: 中国, CN202410101452.2 [P]. 2024-06-04.
- [12] 田雅雯, 郭伟, 孙嘉汝, 等. 非洛地平新晶型的结构解析及 Hirshfeld 表面分析 [J]. 中国新药杂志, 2024, 33(1): 89-95.
- [13] Nikpour M, Mirzaei M, Chen Y G, et al. Contribution of intermolecular interactions to constructing supramolecular architecture: Synthesis, structure and Hirshfeld surface analysis of a new hybrid of polyoxomolybdate and ((1Htetrazole-5-yl) methyl)morpholine [J]. *Inorg. Chem. Commun*, 2009, 12(9): 879-882.

[责任编辑 解学星]