• 实验研究 •

阿普斯特的单晶制备及其表征

李振武^{1,2},张 亮²,王利杰¹,朱奕潼¹,张相洋^{1,2*}

摘 要:目的 制备阿普斯特 E 晶型的单晶,并对其进行结构表征和稳定性研究。方法 通过溶剂挥法制备出阿普斯特 E 晶型的单晶,采用差式扫描量热仪(DSC)、粉末 X 射线(PXRD)及单晶 X 射线仪(SXRD)对其进行表征,利用均浆实验对其晶型稳定性进行考察。结果 乙腈溶剂挥发法可制备得到阿普斯特 E 晶型的单晶,其 DSC 和 PXRD 图谱与文献报道一致。SXRD 结果表明阿普斯特 E 晶型的单位化学计量式为 C₂₂H₂₄N₂O₇S,相对分子质量为 460.49,晶体密度为 1.262 g/cm³,该晶胞属于正方晶系,空间群为 P4₁2₁2。均浆稳定性实验结果表明,不同极性溶剂中得到的晶体 DSC 图谱发生变化。结论 实验确证了阿普斯特 E 晶型的立体构型,不同溶剂中晶型发生变化。

关键词:阿普斯特;单晶;单晶 X 射线衍射;晶体结构;稳定性

中图分类号: R913 文献标志码: A 文章编号: 1674 - 5515(2018)02 - 0209 - 05 **DOI**: 10.7501/j.issn.1674-5515.2018.02.001

Single crystal preparation and structure confirmation of apremilast

LI Zhen-wu^{1, 2}, ZHANG Liang², WANG Li-jie¹, ZHU Yi-tong¹, ZHANG Xiang-yang^{1, 2}

1. East China University of Science and Technology, Shanghai 200237, China

2. Zhejiang Hisun Pharmaceutical Co., Ltd., Taizhou 318000, China

Abstract: Objective To prepare single crystals of apremilast form E, and to investigate the corresponding structure and thermodynamic stability. **Methods** Evaporation method was used to grow single crystals of apremilast form E, which were then characterized using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and single X-ray diffraction (SXRD). **Results** Single crystals of apremilast form E could be obtained through acetonitrile evaporation. DSC graph and PXRD spectrum was in good agreement with data reported in literatures. SXRD results showed that the unit stoichiometric of apremilast form E was $C_{22}H_{24}N_2O_7S$, and the relative molecular mass was 460.49, and crystal density was 1.262 g/cm^3 . The unit cell belonged to a tetragonal system, and the space group was $P4_12_12$. The slurry experiment results showed that DSC graphs of apremilast samples suspended in different polar solvents were different. **Conclusion** Crystal structure of apremilast form E is characterized, and the crystallization changes in different solvents.

Key words: apremilast; single crystal; SXRD; crystal structure; stability

阿普斯特化学名为(S)-2-[1-(3-乙氧基-4-甲氧基 苯基)-2-甲磺酰基乙基]-4-乙酰基氨基异吲哚啉-1,3-二酮,是美国食品药品监督管理局(FDA)批准的 首个也是唯一一个用于治疗斑状型银屑病的选择性 磷酸二酯酶 4 (PDE4)抑制剂,由美国 Celgene 公 司研发,于 2014 年 3 月 21 日上市,结构式见图 1。 阿普斯特是典型的多晶型药物,目前已报道晶 型包括 A、B、C、D、E、F、G、半乙醇半水溶剂 化物、醋酸乙酯溶剂化物、二氯甲烷溶剂化物、甲 苯溶剂化物及无定型,共 12 种^[1-3]。其中,晶型 E

^{1.} 华东理工大学, 上海 200237

^{2.} 浙江海正药业股份有限公司,浙江 台州 318000

收稿日期: 2017-11-20

基金项目:国家自然科学基金资助项目(21406071);中央高校基本科研业务费资助项目(22A201514006)

作者简介: 李振武(1979—),工程师,硕士,主要从事药物分析及药物晶型研究。Tel:(0576)88827709 E-mail:zwli@hisunpharm.com *通信作者 张相洋,男,博士,研究方向为药物晶体工程学。Tel:(021)64253624 E-mail:zxydcom@ecust.edu.cn

图 1 阿普斯特的化学结构 Fig. 1 Chemical structure of apremilast

稳定性良好,是具有药用价值的晶型之一。目前关 于阿普斯特 E 晶型的文献报道主要集中在临床研究 方面^[4],尚无其单晶制备及结构确证方面的报道。 自然界中的固体化学物质,由于分子结构的构型、 构象、分子作用力等各因素的影响而存在多种固体 状态^[5]。物质的结构决定物质的物理化学性质和性 能。对同一种药物的不同晶型,其溶解性、稳定性 及生物利用度等性质均存在差异,进而影响药物的 疗效,甚至产生不良影响^[6]。因此,原料药的结构 确证是药物研发的重要组成部分,是保证药学其他 方面研究、药理毒理研究和临床研究能否顺利进行 的前提条件。

为了深入研究阿普斯特的性质与结构,本文结 合预实验结果,通过溶剂挥发法制备了阿普斯特 E 晶型单晶,并通过差示扫描量热仪(DSC)及粉末 X 射线衍射仪(PXRD)和单晶 X 射线衍射仪 (SXRD)分别对其晶体空间结构进行了解析。此外, 通过均浆实验对其晶型稳定性进行了考察。

1 仪器与试剂

Bruker Smart-apex-2 APEX-II 单晶衍射仪; NETZSCH DSC214 Polyma DSC 检测仪; Rigaku D/max-2500 PXRD 衍射仪; 阿普斯特原料药(晶型 B)由浙江海正药业股份有限公司提供,样品经 HPLC 测定(按《美国药典》检测),质量分数大于 99.2%。所用试剂包括乙腈、甲醇、乙酸乙酯等(上 海市试剂有限公司)均为分析纯。

2 方法与结果

2.1 单晶制备

基于阿普斯特的理化性质,参考预实验结果, 本研究选取乙腈体系通过溶剂挥发法进行单晶培 养。平行实验3组,分别称取100 mg 阿普斯特样 品,室温条件下用10mL乙腈溶解并滤过,滤液注 入样品瓶中。然后将样品瓶密封,顶部扎小孔,室 温下恒温挥发培养4d。滤过并在30℃下真空干燥 24 h 后得到透明片状晶体。挑选外形规整、大小合适的单晶用于 SXRD 分析,其余晶体粉末用于 DSC 和 PXRD 分析。

2.2 DSC 分析

对上述晶体粉末采用 DSC 进行热稳定性分析, 确定其脱溶剂及熔融温度,并与专利报道 DSC 熔点 对比,确证晶型。DSC 用 Al 坩埚,升温范围为 25~ 200 ℃,升温速率为 10 ℃/min,气氛为 N₂。DSC 结果见图 2,样品在 25~200 ℃只有 1 个吸热峰, 为无溶剂化合物。外推起始点和峰值分别为 95.78、 100.25 ℃,对比专利报道的阿普斯特 E 晶型的 DSC 图谱(95.45、100.06 ℃)^[3],结果一致。

图 2 阿普斯特 E 晶型的 DSC 图谱 Fig. 2 DSC graph of apremilast form E

2.3 PXRD 分析

对晶体粉末采用 PXRD 测量二维衍射图谱,并与 专利报道晶型 PXRD 特征峰对比,确证晶型。PXRD 用经过石墨单色器的 Cu Kα 辐射(λ=1.541 78 nm) 为光源,管压 40 kV,管流 100 mA, 2θ 扫描范围 5°~ 45°,扫描速率 8°/min,步长 0.02°。结果显示其特征 峰分别位于 7.6°、9.2°、11.4°、15.5°、16.5°、17.9°、 19.6°、20.5°、21.6°、22.8°、23.8°、26.6°,见图 3。 对比专利报道晶型 E 的特征峰^[3],并结合上述 DSC 结果,确定制备得到的阿普斯特晶体为晶型 E。

图 3 阿普斯特 E 晶型的 PXRD 实验图谱(A)和理论图谱(B)

Fig. 3 PXRD experimental pattern (A) and theoretical pattern (B) for apremilast form E

2.4 SXRD 分析

将获得的单晶切割至0.25 mm×0.22 mm×0.20 mm 大小,进行 SXRD 分析,确定其分子空间结构 及晶胞参数。单晶衍射仪用 CCD 面探测仪收集衍射 强度数据,用经过石墨单色器的 Cu Kα (λ=1.541 78 nm) 辐射为光源,在 296 K 温度下进行衍射数据收 集。晶体结构用 01ex-2 软件中的 ShelXT 程序计算 得到,并采用 XL 程序通过最小二乘法修正结构参 数和判别原子种类,使用几何计算法和差值 Fourier 法获得全部氢原子位置。

SXRD 结果显示,检测到衍射点为 32 499 个, 独立衍射点为 4 532 个,最终的 R_1 =0.030 2, wR_2 = 0.076 4, Flack 参数为 0.020 (3),结构可靠因子 S= 1.032,接近于 1.0,表明权重方案合适、结构准确。 最终确定制备得到的阿普斯特 E 晶型属于正方晶 系,空间群为 P4₁2₁2,晶胞参数: a=1.2802 (7) nm, b=1.280 2 (2) nm, c=29.572 (3) nm, α = β = γ = 90°,晶胞体积 V=4.846 28 (4) nm³,晶胞内分子 数 Z=8。单位化学计量式为 C₂₂H₂₄N₂O₇S,为无溶 剂化物,与 DSC 结论一致。相对分子质量为 460.49, 理论密度为 1.262 g/cm³。此外,单晶结构的分析结 果表明 C₁₁为 S 构型手性中心 C 原子,分子内及分 子间不存在氢键联系。

此外,经 Material Studio 5.0 软件中的 Reflex 程序对上述单晶结构数据进行拟合,获得了其相应

的 PXRD 理论图谱(图 3)。对比图中理论与实验结 果的特征峰位置、强度及峰形,均表现一致,即上 述方法制备得到的晶体样品为单一晶型。

分子立体结构见图 4,分子晶胞堆积图见图 5, 单晶原子坐标和等价各向同性位移参数见表 1,键 长数据见表 2,扭转角数据见表 3。

图 4 阿普斯特 E 晶型的立体结构

				····· · · · · · · · · · · · · · · · ·		P	F		~)
原子	$x \times 10^4$	$y \times 10^4$	$z \times 10^4$	$U(eq)/(nm^2 \times 10)$	原子	$x \times 10^4$	$y \times 10^4$	$z \times 10^4$	$U(eq)/(nm^2 \times 10)$
S(1)	5 932(1)	1 618(1)	2 866(1)	22(1)	C(7)	6 776(2)	4 416(2)	3 773(1)	20(1)
O(1)	5 154(1)	2 414(1)	4 172(1)	24(1)	C(8)	6 018(2)	4 259(2)	3 400(1)	19(1)
O(2)	5 961(1)	4 712(1)	3 040(1)	24(1)	C(9)	7 205(2)	2 774(2)	5 263(1)	22(1)
O(3)	8 015(1)	3 175(1)	5 390(1)	27(1)	C(10)	6 573(2)	2 049(2)	5 552(1)	29(1)
O(4)	6 891(1)	2 092(1)	3 024(1)	31(1)	C(11)	4 519(2)	2 993(2)	3 258(1)	20(1)
O(5)	5 517(1)	755(1)	3 123(1)	31(1)	C(12)	4 959(2)	2 595(2)	2 808(1)	20(1)
O(6)	2 414(1)	5 470(1)	2 318(1)	24(1)	C(13)	6 107(2)	1 228(2)	2 300(1)	35(1)
O(7)	1 047(1)	5 684(1)	2 964(1)	29(1)	C(14)	3 595(2)	3 725(2)	3 180(1)	20(1)
N(1)	5 342(1)	3 467(1)	3 539(1)	19(1)	C(15)	3 451(2)	4 258(2)	2 770(1)	20(1)
N(2)	6 772(2)	2 956(1)	4 844(1)	21(1)	C(16)	2 603(2)	4 909(2)	2 705(1)	21(1)
C(1)	5 612(2)	3 101(2)	3 966(1)	18(1)	C(17)	1 866(2)	5 031(2)	3 054(1)	22(1)
C(2)	6 536(2)	3 712(2)	4 111(1)	20(1)	C(18)	2 003(2)	4 496(2)	3 459(1)	25(1)
C(3)	7 090(2)	3 675(2)	4 516(1)	20(1)	C(19)	2 867(2)	3 847(2)	3 518(1)	24(1)
C(4)	7 925(2)	4 382(2)	4 559(1)	23(1)	C(20)	374(2)	5 921(3)	3 335(1)	41(1)
C(5)	8 164(2)	5 074(2)	4 211(1)	26(1)	C(21)	3 198(2)	5 403(2)	1 970(1)	25(1)
C(6)	7 596(2)	5 117(2)	3 809(1)	24(1)	C(22)	2 913(2)	6 166(2)	1 602(1)	35(1)

Table 1 Atomic coordinates and equivalent isotropic displacement parameters ($nm^2 \times 10$)

表1 原子坐标参数和等价各向同性位移参数

Table 2 Bond lengths of bonded atomos							
原子键	键长/nm	原子键	键长/nm	原子键	键长/nm	原子键	键长/nm
S(1)-O(4)	1.447 5(18)	N(2)-C(3)	1.399(3)	C(10)-H(10B)	0.98	C(17)-C(18)	1.389(3)
S(1)-O(5)	1.441 0(18)	N(2)-C(9)	1.375(3)	C(10)-H(10C)	0.98	C(18)-H(18)	0.95
S(1)-C(12)	1.773(2)	C(1)-C(2)	1.482(3)	C(11)-H(11)	1	C(18)-C(19)	1.394(3)
S(1)-C(13)	1.761(2)	C(2)-C(3)	1.392(3)	C(11)-C(12)	1.531(3)	C(19)-H(19)	0.95
O(1)-C(1)	1.219(3)	C(2)-C(7)	1.382(3)	C(11)-C(14)	1.526(3)	C(20)-H(20A)	0.98
O(2)-C(8)	1.215(3)	C(3)-C(4)	1.407(3)	C(12)-H(12A)	0.99	C(20)-H(20B)	0.98
O(3)-C(9)	1.217(3)	C(4)-H(4)	0.95	C(12)-H(12B)	0.99	C(20)-H(20C)	0.98
O(6)-C(16)	1.371(3)	C(4)-C(5)	1.392(3)	C(13)-H(13A)	0.98	C(21)-H(21A)	0.99
O(6)-C(21)	1.442(3)	C(5)-H(5)	0.95	C(13)-H(13B)	0.98	C(21)-H(21B)	0.99
O(7)-C(17)	1.369(3)	C(5)-C(6)	1.394(3)	C(13)-H(13C)	0.98	C(21)-C(22)	1.507(3)
O(7)-C(20)	1.427(3)	C(6)-H(6)	0.95	C(14)-C(15)	1.403(3)	C(22)-H(22A)	0.98
N(1)-C(1)	1.392(3)	C(6)-C(7)	1.385(3)	C(14)-C(19)	1.376(3)	C(22)-H(22B)	0.98
N(1)-C(8)	1.395(3)	C(7)-C(8)	1.483(3)	C(15)-H(15)	0.95	C(22)-H(22C)	0.98
N(1)-C(11)	1.472(3)	C(9)-C(10)	1.501(3)	C(15)-C(16)	1.382(3)		
N(2)-H(2)	0.88	C(10)-H(10A)	0.98	C(16)-C(17)	1.408(3)		

表 2 成键原子的键长数据 Table 2 Bond lengths of bonded atomos

表 3 成键原子的扭转角数据

 Table 3
 Torsion angles of bonded atoms

			<i>,</i>		
原子角	扭转角/(°)	原子角	扭转角/(°)	原子角	扭转角/(°)
O(4)-S(1)-C(12)	109.36(11)	C(6)-C(7)-C(8)	129.93(19)	C(14)-C(15)-H(15)	119.4
O(4)-S(1)-C(13)	108.49(12)	O(2)-C(8)-N(1)	124.6(2)	C(16)-C(15)-C(14)	121.12(19)
O(5)-S(1)-O(4)	117.64(10)	O(2)-C(8)-C(7)	128.8(2)	C(16)-C(15)-H(15)	119.4
O(5)-S(1)-C(12)	109.42(10)	N(1)-C(8)-C(7)	106.61(17)	O(6)-C(16)-C(15)	124.78(19)
O(5)-S(1)-C(13)	109.26(12)	O(3)-C(9)-N(2)	123.5(2)	O(6)-C(16)-C(17)	115.85(19)
C(13)-S(1)-C(12)	101.45(11)	O(3)-C(9)-C(10)	122.9(2)	C(15)-C(16)-C(17)	119.36(19)
C(16)-O(6)-C(21)	116.25(17)	N(2)-C(9)-C(10)	113.6(2)	O(7)-C(17)-C(16)	115.93(19)
C(17)-O(7)-C(20)	116.21(19)	C(9)-C(10)-H(10A)	109.5	O(7)-C(17)-C(18)	124.5(2)
C(1)-N(1)-C(8)	110.98(17)	C(9)-C(10)-H(10B)	109.5	C(18)-C(17)-C(16)	119.6(2)
C(1)-N(1)-C(11)	123.45(17)	C(9)-C(10)-H(10C)	109.5	C(17)-C(18)-H(18)	119.9
C(8)-N(1)-C(11)	125.29(17)	H(10A)-C(10)-H(10B)	109.5	C(17)-C(18)-C(19)	120.1(2)
C(3)-N(2)-H(2)	115.9	H(10A)-C(10)-H(10C)	109.5	C(19)-C(18)-H(18)	119.9
C(9)-N(2)-H(2)	115.9	H(10B)-C(10)-H(10C)	109.5	C(14)-C(19)-C(18)	120.9(2)
C(9)-N(2)-C(3)	128.17(19)	N(1)-C(11)-H(11)	107.2	C(14)-C(19)-H(19)	119.6
O(1)-C(1)-N(1)	125.2(2)	N(1)-C(11)-C(12)	111.25(17)	C(18)-C(19)-H(19)	119.6
O(1)-C(1)-C(2)	128.31(19)	N(1)-C(11)-C(14)	112.80(17)	O(7)-C(20)-H(20A)	109.5
N(1)-C(1)-C(2)	106.47(17)	C(12)-C(11)-H(11)	107.2	O(7)-C(20)-H(20B)	109.5
C(3)-C(2)-C(1)	129.66(19)	C(14)-C(11)-H(11)	107.2	O(7)-C(20)-H(20C)	109.5
C(7)-C(2)-C(1)	108.19(19)	C(14)-C(11)-C(12)	110.99(16)	H(20A)-C(20)-H(20B)	109.5
C(7)-C(2)-C(3)	122.1(2)	S(1)-C(12)-H(12A)	108.7	H(20A)-C(20)-H(20C)	109.5
N(2)-C(3)-C(4)	125.6(2)	S(1)-C(12)-H(12B)	108.7	H(20B)-C(20)-H(20C)	109.5
C(2)-C(3)-N(2)	118.07(19)	C(11)-C(12)-S(1)	114.22(14)	O(6)-C(21)-H(21A)	110.1
C(2)-C(3)-C(4)	116.3(2)	C(11)-C(12)-H(12A)	108.7	O(6)-C(21)-H(21B)	110.1
C(3)-C(4)-H(4)	119.6	C(11)-C(12)-H(12B)	108.7	O(6)-C(21)-C(22)	108.00(19)
C(5)-C(4)-C(3)	120.7(2)	H(12A)-C(12)-H(12B)	107.6	H(21A)-C(21)-H(21B)	108.4
C(5)-C(4)-H(4)	119.6	S(1)-C(13)-H(13A)	109.5	C(22)-C(21)-H(21A)	110.1
C(4)-C(5)-H(5)	118.7	S(1)-C(13)-H(13B)	109.5	C(22)-C(21)-H(21B)	110.1
C(4)-C(5)-C(6)	122.7(2)	S(1)-C(13)-H(13C)	109.5	C(21)-C(22)-H(22A)	109.5
C(6)-C(5)-H(5)	118.7	H(13A)-C(13)-H(13B)	109.5	C(21)-C(22)-H(22B)	109.5
C(5)-C(6)-H(6)	122	H(13A)-C(13)-H(13C)	109.5	C(21)-C(22)-H(22C)	109.5
C(7)-C(6)-C(5)	115.9(2)	H(13B)-C(13)-H(13C)	109.5	H(22A)-C(22)-H(22B)	109.5
C(7)-C(6)-H(6)	122	C(15)-C(14)-C(11)	122.09(19)	H(22A)-C(22)-H(22C)	109.5
C(2)-C(7)-C(6)	122.3(2)	C(19)-C(14)-C(11)	118.94(19)	H(22B)-C(22)-H(22C)	109.5
C(2)-C(7)-C(8)	107.74(19)	C(19)-C(14)-C(15)	118.9(2)		

2.5 均浆稳定性试验

将乙腈体系溶剂挥发法得到的晶体样品分别置 于乙腈、醋酸乙酯和甲醇溶剂中,室温条件下搅拌 2 d,滤过并在 30℃下真空干燥 24 h 后进行 DSC 分 析,结果见图 6。上述溶剂中得到晶体的熔点峰值 温度分别为 100.31、109.98、157.21 ℃,对应专利 报道分别为晶型 E、晶型 G 和晶型 B^[3],即阿普斯 特 E 晶型在不同极性溶剂中会发生转晶。

图 6 阿普斯特 E 晶型在不同极性溶剂中打浆后的 DSC 图谱 Fig. 6 DSC graphs of apremilast form E after suspension in different polar solvents

3 讨论

阿普斯特是典型的多晶型药物,其中 E 晶型热 力学稳定性良好,为具有药用价值的晶型之一。该 晶型的结构确证是进行相关药品研发和质量研究的 关键和难点。本研究通过乙腈体系溶剂挥发法制备 了阿普斯特单晶。由于阿普斯特在乙腈溶剂中成核 与生长速率较快,为获得外观完整,大小合适的单 晶,实验中需控制体系中溶剂的挥发速率,使其缓 慢析晶。 单晶制备得到的晶体经 DSC 和 PXRD 分析, 并与专利报道结果进行对比,确证为 E 晶型。通过 Material Studio 软件对阿普斯特单晶结构数据进行 模拟计算,获得了该化合物的理论 PXRD 图谱,与 实验图谱对照,结果一致,表明本研究制备得到的 阿普斯特晶体结构为单一晶型。

均浆稳定性实验结果表明,在不同极性溶剂中 得到的晶体 DSC 图谱发生变化,即晶型发生改变, 说明不同极性溶剂中稳定晶型不同,这对后续原料 药及制剂生产过程中的晶型稳定性研究具有的重要 意义。

参考文献

- [1] Wu Y D, Zhang X L, Liu X H, et al. The preparation, characterization, structure and dissolution analysis of apremilast solvatomorphs [J]. Acta Crystallogr C Struct Chem, 2017, 73(Pt 4): 305-313.
- Wu Y D, Liu X H, Xu J, *et al.* Crystal structure of an apremilast ethanol hemisolvate hemihydrate solvatomorph
 [J]. *Acta Crystallogr E Crystallogr Commun*, 2017, 73(Pt 6): 821-824.
- [3] George W M, Peter H S, Man H W, *et al.* Solid forms comprising (+)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methyl sulfonylethyl]-4-acetylaminoisoindoline-1,3-dione, compositions thereof, and uses thereof [P]. US: 7893101, 2011-02-22.
- [4] 赵 倩, 孙 悦, 石 玉, 等. 磷酸二酯酶-4 抑制剂阿 普斯特 [J]. 现代药物与临床, 2014, 29(4): 428-433.
- [5] Llinà A, Goodman J M. Polymorph control: past, present and furture [J]. *Drug Discov Today*, 2008, 13(5/6): 198-210.
- [6] Censi R, Di Martino P. Polymorph impact on the bioavailiability and stability of poorly soluble drugs [J]. *Molecules*, 2015, 20(10): 18759-18776.