卡巴他赛的单晶培养和结构确证

谢寅省,高红云,刘 实 北京美迪康信医药科技有限公司,北京 100012

摘 要:目的 培养卡巴他赛的单晶,进行结构确证。方法 选择适宜的单晶培养用溶剂体系和培养条件。对卡巴他赛单晶进行 X-射线单晶衍射实验,并进行结构鉴定。结果 醋酸乙酯 - 正己烷体系 7 d 挥发得到卡巴他赛无色透明柱状结晶。根据原子坐标、等价温度因子、键长、扭转角数据确定卡巴他赛不对称单位化学计量式为 C₄₉H₆₅NO₁₆,相对分子质量为 924.02,晶体密度为 1.273 mg/m³。得到卡巴他赛立体结构,证明该晶胞属于单斜晶系,空间群为 P2₁。结论 采用 X-射线单晶衍射检测卡巴他赛单晶确证了其空间结构,提示合成的卡巴他赛结构正确。 关键词:卡巴他赛;单晶培养;X-射线单晶衍射;结构确证 中图分类号:R914 文献标志码:A 文章编号: 1674 - 5515(2016)12 - 1879 - 04 DOI: 10.7501/j.issn.1674-5515.2016.12.002

Single crystal culture and structure confirmation of cabazitaxel

XIE Yin-sheng, GAO Hong-yun, LIU Shi

Beijing Medconxin Pharmaceutical Technology Limited Company, Beijing 100012, China

Abstract: Objective To cultivate single crystal of cabazitaxel, and to establish the structure of cabazitaxel. **Methods** To selected the best condition by inspecting the different solvent. Suitable solvent and culture conditions were selected to cultivate single crystal. Single crystal of cabazitaxel was studied by X-ray diffraction, and the structure of cabazitaxel was identified. **Results** Cabazitaxel colorless transparent columnar crystal was obtained in ethyl acetate - hexane solvent system after volatilization for 7 d. According to data of atomic coordinates, equivalent temperature factor, bond distance, and torsion angles, asymmetric unit stoichiometric of cabazitaxel was established as $C_{49}H_{65}NO_{16}$, relative molecular mass were 924.02, and crystal density were 1.273 mg/m³. Stereostructure of cabazitaxel was obtained, and the crystal was proved to monoclinic system, and space group was P2₁. **Conclusion** The single crystal size of cabazitaxel is obtained and proved right for X-ray analysis which suggests the structure of cabazitaxel is correct.

Key words: cabazitaxel; single crystal culture; X-ray single crystal diffraction; structure confirmation

卡巴他赛的化学名(2α,5β,7β,10β,13α)-4-乙酰氧 基-13-({(2*R*,3*S*)-3-[(叔丁氧羰基) 氨基]-2-羟基-3-苯 基丙酰基}氧基)-1-羟基-7,10-二甲氧基-9-氧代-5,20-环氧紫杉烷-11-烯-2-基苯甲酸酯,化学结构见图 1, 是法国赛诺菲-安万特公司开发的新一代微管抑制 剂抗肿瘤药,美国 FDA 在 2010 年 6 月 17 日批准 上市。该药与泼尼松联用治疗既往用含多烯紫杉醇 治疗方案的转移性激素难治前列腺癌患者。大规模 Ⅲ期癌症试验显示,接受多烯紫杉醇为基础的化疗、 且疾病进展的去势治疗失败转移性前列腺癌男性患 者,用卡巴他赛治疗可显著延长总生存期,使死亡 风险降低了 30%。其作用机制同紫杉醇、多西他赛 一样,是加强微管蛋白聚合作用和抑制微管解聚作 用,导致形成稳定的非功能性微管束,因而破坏肿 瘤细胞的有丝分裂。与其他紫杉醇类药物相比,该 药发生药物耐受性的几率低,可用于治疗多药耐药 性肿瘤,此外该药可透过血脑屏障^[1]。卡巴他赛是 一种类白色结晶性粉末,存在多晶型现象,文献也 报道了卡巴他赛的固态形式^[2-5]。本公司合成了该原 料药,完成了工艺稳定性工作,已经达到中试规模, 并且完成了卡巴他赛的质量研究工作。虽然通过红 外吸收光谱、紫外吸收光谱、核磁共振、元素分析、

收稿日期: 2016-10-08

作者简介: 谢寅省(1978—), 男, 山东菏泽人, 工程师, 毕业于沈阳药科大学制药工程学院, 主要从事药物合成工作。 Tel: (010)84917791 E-mail: wellyyy@qq.com

质谱、X-射线粉末衍射和热分析等手段对其结构进行了确证,但是无法确证其立体构型。由于目前无法通过商业化获得卡巴他赛对照品,故本实验培养了卡巴他赛的单晶,并进行了 X-射线单晶衍射测试,确证了其立体构型。

图 1 卡巴他赛的化学结构 Fig. 1 Chemical structure of cabazitaxel

1 仪器与试剂

Rigaku MM-007 Saturn 70 单晶衍射仪; Rigaku Saturn 70 CCD 面探测仪。卡巴他赛由本公司自制, 质量分数为 99.73%, 产品批号 140312; 所用试剂 均为分析纯, 来源为北京化工厂。

2 方法与结果

2.1 单晶的培养

根据卡巴他赛的理化性质,分别选取丙酮-正 己烷、醋酸乙酯-正己烷、乙醇-正己烷、二氯甲 烷-正己烷作为单晶培养用溶剂。称取卡巴他赛 20 mg,用丙酮 6 mL 溶解,再加入 2 mL 正己烷,制 成稀溶液。其他溶剂体系均按上述方法配制。将上 述各溶液在室温条件下缓慢挥发,比较不同溶剂体 系中单晶培养的结果。二氯甲烷-正己烷体系 4 d 即挥发完全,所得结晶为絮状物;丙酮-正己烷体 系 5 d 挥发完毕,所得结晶为细针状物;乙醇-正 己烷体系 6 d 挥发完毕,所得结晶为细针状物;醋 酸乙酯-正己烷体系 7 d 挥发完毕,所得结晶为无 色透明柱状结晶,可用于 X-射线单晶衍射检测。故 最佳的单晶培养溶剂体系是醋酸乙酯-正己烷。

2.2 衍射实验

衍射所用的晶体呈无色透明柱状,晶体大小为 0.26 mm×0.20 mm×0.18 mm,属于单斜晶系,空 间群为 P2₁,晶胞参数: a=1.191 7 nm, b=1.733 6 nm, c=1.270 9 nm, $\alpha=90^{\circ}$, $\beta=113.353^{\circ}$, $\gamma=90^{\circ}$, 晶胞体积 V=2.410 7 nm³,晶胞内分子数 Z=2,单 位晶格的独立区域中有 1 个分子。用 Rigaku Saturn 70 CCD 面探测仪收集衍射强度数据, Mo Kα 辐射, 人工多层膜聚焦镜,准直管 φ =0.30 mm,晶体与 CCD 距离为 45 mm,管压 50 kV,管流 16 mA, ω 扫描,最大 2 θ 角为 60°,扫描范围为 0~180°,回 摆角度为 1°,间隔为 1°,扫描速度为 3 s/°,每个画 面扫描 1 次,共计摄取 540 幅图像,总衍射点为 32 142 个,独立衍射点为 12 358 个(Rint=0.095 8), 可观察点(F2≥2σF2)为 7 128 个,数据完整度为 97.2%。

2.3 结构鉴定

在微机上用直接法 (shelxs-97) 解析晶体结构, 从 E 图上获得全部 66 个非氢原子位置,使用最小 二乘法修正结构参数和判别原子种类,使用几何计 算法和差值 Fourier 法获得全部氢原子位置,结构可 靠因子 *S*=0.982,在标准范围 0.95~1.05。最终确 定不对称单位化学计量式为 C₄₉H₆₅NO₁₆,计算单个 分子的相对分子质量为 924.02,计算晶体密度为 1.273 mg/m³。同时证明该晶胞属于单斜晶系,空间 群为 P2₁。卡巴他赛的立体结构见图 2。原子坐标和 等价温度因子数据见表 1,部分键长数据见表 2,部 分扭转角数据见表 3。

Fig. 2 Stereostructure of cabazitaxel

3 讨论

采用醋酸乙酯 - 正己烷溶剂体系的缓慢挥发溶 剂法,在室温条件下培养得到了卡巴他赛的醋酸乙 酯合物单晶。实验中应选用挥发性适中的溶剂或混 合溶剂,避免溶剂过快挥发析出结晶。

结构鉴定表明,该晶胞属于单斜晶系,空间群为 P2₁,晶胞参数: a=1.1917 nm, b=1.7336 nm, c=1.2709 nm, $a=90^{\circ}$, $\beta=113.353^{\circ}$, $\gamma=90^{\circ}$, 晶胞体积 V=2.4107 nm³,晶胞内分子数 Z=2,单位晶格的独立区域中有 1 个分子。

12 月	•

Table 1 Atomic coordinates and equivalent temperature factor									
原子	<i>x</i> /nm	y/nm	z/nm	U (eq)	原子	<i>x</i> /nm	y/nm	z/nm	U (eq)
01	5 019(2)	6 302(1)	5 799(2)	23(1)	C17	2 951(3)	6 599(2)	3 679(2)	22(1)
O2	3 496(2)	7 251(1)	4 257(2)	20(1)	C18	1 745(2)	6 484(2)	3 740(2)	23(1)
O3	3 398(2)	6 194(1)	3 175(2)	29(1)	C19	1 417(3)	6 866(2)	4 544(3)	27(1)
O4	3 056(2)	8 775(1)	4 260(2)	22(1)	C20	293(3)	6 712(2)	4 599(3)	29(1)
05	4 253(2)	9 812(1)	5 023(2)	26(1)	C21	-500(3)	6 180(2)	3 843(3)	32(1)
O6	2 967(2)	8 873(1)	1 714(2)	26(1)	C22	-175(3)	5 804(2)	3 043(3)	31(1)
07	7 065(2)	9 432(1)	3 384(2)	25(1)	C23	940(3)	5 948(2)	2 985(3)	27(1)
08	7 804(2)	7 775(1)	3 892(2)	26(1)	C24	3 407(2)	9 396(2)	4 963(2)	23(1)
O9	9 122(2)	8 045(1)	6 130(2)	25(1)	C25	2 620(3)	9 487(2)	5 621(3)	30(1)
O10	5 378(2)	8 635(1)	7 879(2)	23(1)	C26	7 581(3)	10 179(2)	3 800(3)	36(1)
O11	6 636(3)	8 378(1)	9 726(2)	55(1)	C27	5 515(3)	8 011(2)	2 470(2)	22(1)
O12	5 732(2)	9 557(1)	10 529(2)	29(1)	C28	9 930(3)	8 551(2)	5 873(3)	31(1)
O13	2 758(2)	8 031(1)	7 770(2)	29(1)	C29	7 298(3)	6 614(2)	5 411(3)	25(1)
O14	2 838(2)	7 598(1)	9 511(2)	30(1)	C30	7 490(3)	6 677(2)	7 388(3)	27(1)
O15	8 469(3)	9 610(2)	1 191(3)	64(1)	C31	7 108(3)	9 252(2)	7 233(3)	28(1)
O16	9 783(2)	8 774(1)	971(2)	41(1)	C32	5 819(3)	8 751(2)	9 017(2)	29(1)
N1	3 531(2)	8 755(1)	9 400(2)	29(1)	C33	5 271(3)	9 466(2)	9 325(2)	26(1)
C1	5 441(2)	7 084(2)	5 779(2)	20(1)	C34	3 875(3)	9 415(2)	8 886(2)	26(1)
C2	4 786(2)	7 366(2)	4 512(2)	21(1)	C35	3 324(3)	10 169(2)	9 098(2)	24(1)
C3	4 960(2)	8 232(2)	4 240(2)	18(1)	C36	3 505(3)	10 855(2)	8 595(3)	30(1)
C4	3 713(2)	8 619(2)	3 524(2)	20(1)	C37	3 017(3)	11 546(2)	8 783(3)	35(1)
C5	2 826(3)	8 240(2)	2 425(2)	24(1)	C38	2 367(3)	11 573(2)	9 462(3)	35(1)
C6	3 682(2)	9 328(2)	2 749(2)	22(1)	C39	2 170(3)	10 891(2)	9 947(3)	32(1)
C7	4 870(2)	9 649(2)	2 737(2)	22(1)	C40	2 641(3)	10 198(2)	9 756(3)	30(1)
C8	6 006(2)	9 273(2)	3 624(2)	21(1)	C41	3 022(3)	8 115(2)	8 793(2)	23(1)
C9	5 897(2)	8 374(2)	3 674(2)	20(1)	C42	2 520(3)	6 781(2)	9 134(3)	33(1)
C10	7 238(2)	8 099(2)	4 376(2)	22(1)	C43	1 254(3)	6 748(2)	8 180(3)	47(1)
C11	7 888(2)	8 294(2)	5 664(2)	21(1)	C44	3 499(4)	6 451(2)	8 784(3)	48(1)
C12	7 220(2)	7 952(2)	6 350(2)	21(1)	C45	2 553(4)	6 412(2)	10 224(3)	54(1)
C13	6 868(3)	7 090(2)	6 221(2)	22(1)	C46	9 078(3)	9 029(2)	1 488(3)	41(1)
C14	4 994(3)	7 541(2)	6 596(2)	22(1)	C47	9 101(4)	8 502(2)	2 423(4)	56(1)
C15	5 986(2)	8 032(2)	7 486(2)	22(1)	C48	9 894(3)	9 244(2)	74(3)	47(1)
C16	6 832(2)	8 401(2)	7 002(2)	21(1)	C49	10 170(4)	8 721(3)	-730(3)	57(1)

表 1 原子坐标和等价温度因子 Table 1 Atomic coordinates and equivalent temperature factor

表 2 部分键长数据

 Table 2
 Data of partial bond distance

原子键	键长/nm	原子键	键长/nm	原子键	键长/nm	原子键	键长/nm
01-C1	1.449(3)	O2-C17	1.363(3)	C7-C8	1.523(4)	C21-C22	1.386(4)
O2-C17	1.363(3)	O13-C41	1.218(3)	C8-C9	1.566(4)	C22-C23	1.383(4)
O2-C2	1.454(3)	O14-C41	1.358(3)	C9-C27	1.547(4)	C24-C25	1.493(4)
O3-C17	1.209(3)	O14-C42	1.493(3)	C9-C10	1.565(4)	C32-C33	1.524(4)
O4-C24	1.355(3)	O15-C46	1.210(4)	C10-C11	1.547(4)	C33-C34	1.533(4)
O4-C4	1.463(3)	O16-C46	1.332(4)	C11-C12	1.515(4)	C34-C35	1.534(4)
O5-C24	1.218(3)	O16-C48	1.449(4)	C12-C16	1.345(4)	C35-C40	1.381(4)
O6-C5	1.472(3)	N1-C41	1.352(4)	C12-C13	1.543(4)	C35-C36	1.406(4)
O6-C6	1.481(3)	N1-C34	1.454(4)	C13-C30	1.546(4)	C36-C37	1.393(4)
O7-C8	1.438(3)	C1-C14	1.559(4)	C13-C29	1.555(4)	C37-C38	1.369(4)
O7-C26	1.441(3)	C1-C2	1.563(4)	C14-C15	1.531(4)	C38-C39	1.395(4)
O8-C10	1.215(3)	C1-C13	1.565(4)	C15-C16	1.515(4)	C39-C40	1.388(4)
O9-C11	1.418(3)	C2-C3	1.572(4)	C16-C31	1.514(4)	C42-C45	1.513(5)
O9-C28	1.433(3)	C3-C4	1.554(4)	C17-C18	1.482(4)	C42-C44	1.516(5)
O10-C32	1.343(3)	C3-C9	1.570(4)	C18-C19	1.397(4)	C42-C43	1.516(5)
O10-C15	1.468(3)	C4-C5	1.525(4)	C18-C23	1.404(4)	C46-C47	1.491(5)
O11-C32	1.217(4)	C4-C6	1.567(4)	C19-C20	1.394(4)	C48-C49	1.497(5)
O12-C33	1.414(3)	C6-C7	1.527(4)	C20-C21	1.395(4)		

原子角	扭转角/(°)	原子角	扭转角/(°)	原子角	扭转角/(°)
C17-O2-C2	118.0(2)	C10-C9-C8	104.1(2)	C23-C22-C21	120.5(3)
C24-O4-C4	117.7(2)	C27-C9-C3	113.9(2)	C22-C23-C18	119.6(3)
C5-O6-C6	90.93(18)	C10-C9-C3	116.2(2)	O5-C24-O4	122.9(2)
C8-O7-C26	112.2(2)	C8-C9-C3	105.1(2)	O5-C24-C25	126.3(3)
C11-O9-C28	113.4(2)	O8-C10-C11	119.5(2)	O4-C24-C25	110.8(2)
C32-O10-C15	115.9(2)	O8-C10-C9	119.9(2)	O11-C32-O10	125.1(3)
C41-O14-C42	119.9(2)	C11-C10-C9	120.4(2)	O11-C32-C33	122.7(3)
C46-O16-C48	118.2(3)	O9-C11-C12	109.5(2)	O10-C32-C33	112.0(2)
C41-N1-C34	122.2(2)	O9-C11-C10	112.1(2)	O12-C33-C32	110.3(2)
O1-C1-C14	104.5(2)	C12-C11-C10	111.5(2)	O12-C33-C34	107.5(2)
O1-C1-C2	106.0(2)	C16-C12-C11	120.9(2)	C32-C33-C34	111.9(2)
C14-C1-C2	111.3(2)	C16-C12-C13	118.7(2)	N1-C34-C33	109.9(2)
O1-C1-C13	109.6(2)	C11-C12-C13	120.1(2)	N1-C34-C35	112.1(2)
C14-C1-C13	111.5(2)	C12-C13-C30	109.9(2)	C33-C34-C35	111.4(2)
C2-C1-C13	113.3(2)	C12-C13-C29	115.9(2)	C40-C35-C36	118.5(3)
O2-C2-C1	103.9(2)	C30-C13-C29	103.3(2)	C40-C35-C34	122.2(3)
O2-C2-C3	107.6(2)	C12-C13-C1	104.8(2)	C36-C35-C34	119.2(3)
C1-C2-C3	118.0(2)	C30-C13-C1	112.4(2)	C37-C36-C35	120.0(3)
C4-C3-C9	110.6(2)	C29-C13-C1	110.8(2)	C38-C37-C36	121.1(3)
C4-C3-C2	111.3(2)	C15-C14-C1	114.0(2)	C37-C38-C39	119.1(3)
C9-C3-C2	115.5(2)	O10-C15-C16	109.7(2)	C40-C39-C38	120.3(3)
O4-C4-C5	108.2(2)	O10-C15-C14	107.8(2)	C35-C40-C39	120.9(3)
O4-C4-C3	109.6(2)	C16-C15-C14	112.2(2)	O13-C41-N1	125.0(3)
C5-C4-C3	120.3(2)	C12-C16-C31	125.6(3)	O13-C41-O14	126.6(3)
O4-C4-C6	111.8(2)	C12-C16-C15	116.9(2)	N1-C41-O14	108.3(2)
C5-C4-C6	85.8(2)	C31-C16-C15	117.4(2)	O14-C42-C45	101.3(2)
C3-C4-C6	119.1(2)	O3-C17-O2	123.4(3)	O14-C42-C44	109.0(3)
O6-C5-C4	92.1(2)	O3-C17-C18	126.1(3)	C45-C42-C44	111.4(3)
O6-C6-C7	113.2(2)	O2-C17-C18	110.4(2)	O14-C42-C43	109.8(3)
O6-C6-C4	90.10(19)	C19-C18-C23	119.9(3)	C45-C42-C43	111.9(3)
C7-C6-C4	120.1(2)	C19-C18-C17	122.1(3)	C44-C42-C43	112.9(3)
C8-C7-C6	113.1(2)	C23-C18-C17	117.9(2)	O15-C46-O16	122.7(3)
O7-C8-C7	111.0(2)	C20-C19-C18	119.9(3)	O15-C46-C47	125.3(3)
O7-C8-C9	107.1(2)	C19-C20-C21	119.6(3)	O16-C46-C47	111.9(3)
C7-C8-C9	113.1(2)	C22-C21-C20	120.4(3)	O16-C48-C49	108.0(3)

表 3 部分扭转角数据 Table 3 Data of partial torsion angles

结果表明,卡巴他赛为三环二萜类化合物,该 化合物分子骨架由从红豆杉中提取的紫杉醇前体 10-脱乙酰基巴卡丁Ⅲ经双甲基化后与羧酸缩合而 成,其中卡巴他赛母体上的立体构型与已知的紫杉 醇母体上的立体构型一致,卡巴赛侧链上的立体构 型为 α*R*,β*S*。卡巴他赛晶体中包含一分子醋酸乙酯。 晶态下分子以弱氢键作用力和范德华力维系其在空 间的稳定排列。

参考文献

[1] Jordan M A, Wilson L. Microtubules as a target for

anticancer drugs [J]. Nat Rev Cancer, 2004, 4(4): 253-265.

- [2] E 迪迪埃, M-A 佩林. 二甲氧基多西他赛丙酮化合物及 其制备方法 [P]. 中国: 200480026128.X, 2004-09-16.
- [3] 吕 扬, 杜冠华, 徐 薇, 等. 一种卡巴他赛吡啶合物 结晶形式 [P]. 中国: 201310313587.7, 2013-07-24.
- [4] O斯莫, P 维拉斯皮尔, T 霍拉斯, 等. 卡巴他赛的固态
 形式及其制备方法 [P]. 中国: 201280028715.7, 2012-04-11.
- [5] 赵 俊, 王孝雯, 刘文杰, 等. 卡巴他赛多晶型形式及 其制备方法 [P]. 中国: 201210535297.2, 2012-12-12.