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Abstract:    One important purpose to investigate medicinal plants is to understand genes and enzymes that govern the biological 

metabolic process to produce bioactive compounds. Genome wide high throughput technologies such as genomics, 
transcriptomics, proteomics and metabolomics can help reach that goal. Such technologies can produce a vast amount of 
data which desperately need bioinformatics and systems biology to process, manage, distribute and understand these 
data. By dealing with the “omics” data, bioinformatics and systems biology can also help improve the quality of 
traditional medicinal materials, develop new approaches for the classification and authentication of medicinal plants, 
identify new active compounds, and cultivate medicinal plant species that tolerate harsh environmental conditions. In 
this review, the application of bioinformatics and systems biology in medicinal plants is briefly introduced.  
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Introduction 

Bioinformatics is the application and development 
of computational tools for biological sciences. The main 
tasks of bioinformatics are the management and analyses 
of biological data. Over the past few decades, rapid 
developments of high-throughput technologies such as 
genomics, proteomics, and metabolomics have generated 
a huge amount of data in molecular biology. To fully 
understand biological processes, bioinformatics has 
increasingly become an essential tool for many 
biological areas (Kann, 2009). Because each "omics" 
data is not isolated, systems biology aims to understand 
biology as a system and tries to integrate different 
"omics" data sources for the analysis of networks, 
regulation, and understanding of how the system works 
from a whole system point of view (Ray, Chong, and 
Gough, 2002). The publications of the completed 
Arabidopsis thaliana genome sequence (Aubourg et al, 
2000) and sequence for rice genome (Goff et al, 2002) as 

well as some agricultural organisms such as maize 
(Schnable et al, 2009) open a new era for plant and 
agricultural sciences. Bioinformatics and systems 
biology play a critical role in processing, distributing and 
interpreting this novel and hard to be handled data. 
Chinese herbal medicine is an important medicinal 
resource for the world, but the genome information of 
medicinal plants is far behind model organisms and other 
economic plants.  In order to identify functional genes 
and enzymes that control bioactive compound production 
of medical plants, improve quality of traditional 
medicinal materials, develop new methods for the 
classification and authentication, and cultivate medicinal 
plants species with pathogen and abiotic stress and other 
hard environmental resistances, and save endangered 
traditional medicinal species, more genomics, proteomics 
and metablomics information needs to be produced. As 
next generation sequencing technology has dramatically 
reduced the cost of genome sequencing, bioinformatics 
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and systems biology will be required more in the field 
(Xu, 2003). In this review, the potential applications of 
transcirptomics, metabolomics, proteomics, genomics, 
epigenomics, and systems biology in medicinal plants 
are described. The review discusses the importance of 
information management of medicinal plants with the 
focus more on medicinal plants themselves other than 
bioactive compounds with prediction of targets and 
their medicinal effects using bioinformatics.   

Transcriptomics  
Transcriptomics is to analyze the information of a 

whole transcriptome of an organism. A transcriptome is 
the set of all RNA molecules, including mRNA, tRNA, 
rRNA, and non-coding RNA produced in one or group 
of cells. Generally, transcriptomics indicates the global 
analysis of gene expression profile at mRNA level.  
Genome-wide gene expression technologies mainly 
include cDNA-AFLP, SAGE, DNA microarray (or 
gene chip), and oligo-microarray. Currently the most 
popular transcriptomics method is oligo-microarray due 
to its whole genome coverage advantage.  Microarray 
can be used to measure gene expression changes of 
medicinal plants. Materials used for microarray could 
be different organs for the same organism, the same 
organ at different development stages, or even cultured 
plant cells. Others include different geographic 
locations, natural growth environments, or cultivation 
conditions. Unfortunately, there are only a few public-
cations using high throughput gene expression profiles 
to study gene expression changes in medicinal plants. 
cDNA microarray was utilized to investigate the gene 
expression profiles of hairy root of Salvia miltiorrhiza 
Bunge at different stages (Cui et al, 2007). The ultimate 
goals for a gene expression study are to identify genes 
that are responsible for regulating active medicinal 
compounds, anti-pathogen infection, or adaption to 
hard environment. A transcriptome analysis approach 
was applied to the isolation of trichome-specific genes 
from a medicinal plant Cistus creticus subsp. creticus 
(L.) Heywood (Falara et al, 2008). Ethylene responsive 
element binding protein genes for S. militiorrhiza was 
analyzed using functional transcriptomics (Xu et al, 
2009). DNA microarray can also be used for 
authentication of medicinal plants. However, it usually 
doesn’t use whole genome information, instead, 5S 
ribosomal RNA genes (Carles et al, 2005) or 18SRNA 

genes (Zhu, Fushimi, and Komatsu, 2008) across close 
related species are used. 

To design a DNA microarray, the best way is to 
use the whole genome sequence information for a 
specific organism. Since almost no medicinal plants 
whole genome has been sequenced, an alternative way 
to accomplish this feat is to get the whole transcriptome 
information through generating expression sequence 
tags (ESTs). We see that more ESTs from several 
medicinal plants such as Panax quinquefolius L. (Wu et 
al, 2010; Chen et al, 2008), Huperzia serrata (Thunb. 
ex Murray) Trev. (Luo et al, 2009), P. notoginseng 
(Burk.) F. H. Chen. (He, Zhu, and Zhang, 2008), 
Rehmannia glutinosa Libosch. (Sun et al, 2010), and 
Catharanthus roseus (L.) G. Don (Shukla et al, 2006) 
have been produced. My team has built an automatic 
system for large scale EST sequence retrieval, assembly,  
function and pathway analysis, and all processed data 
were put into ESTMD, EST model database  (Pirooznia 
and Deng, 2007; Deng et al, 2006a). The system has 
been successfully used for the analysis of plant EST 
sequences (Thara et al, 2004) and animal EST 
sequences (Pirooznia et al, 2007; Pirooznia et al, 2009; 
Pozhitkov et al, 2009; Deng et al, 2006b; Pirooznia et 
al, 2009; Pozhitkov et al, 2009; Boyko et al, 2006). 

Since the traditional sequencing technologies such 
as Sanger Sequencing usually generate less than ten 
thousands ESTs for a non-model organism, cDNA 
microarrays were widely designed for the gene 
expression study. Our collaborators have successfully 
used the strategy for microarray design with a wide 
range of purposes of such gene expression studies (Gust 
et al, 2009; Gong et al, 2008a; Gong et al, 2007; Majji 
et al, 2009a; Majji et al, 2009b; Milev-Milovanovic et 
al, 2009; Pondugula et al, 2006). Recently developed 
next generation sequencing technologies, such as 
illumine, 454, and solid approaches have revolutionized 
the EST generation. My team has analyzed millions of 
EST sequences of Northern bobwhite (Colinus 
virginianus L.) (Rawat et al, unpublished data) and red 
earthworm from the 454 platform. Assembled unique 
sequences are used to design oligo-microarrays (Gong 
et al, 2008b). This new strategy enables us to design an 
array with almost the whole genome transcriptome.  

Metabolomics 
Metabolomics is to survey the information of the 
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whole metabolome of an organism. Metabonomics is 
more specifically defined as "the quantitative measure-
ment of the dynamic multi-parametric metabolic 
response of living systems to pathophysiological 
stimuli or genetic modification" (Nicholson, Lindon, 
and Holmes, 1999). Metabolome is the complete set of 
small-molecule metabolites including metabolic inter-
mediates, hormones and other signaling molecules, and 
secondary metabolites that exist in a biological sample, 
such as a single organism (Oliver et al, 1998). Because 
metabolomics actually focuses on real physiological 
and biochemical processes, it becomes increasingly 
more important in biomedical researches. About 7900 
metabolites are contained at the Human Metabolome 
Database (HMDB is available at: www. hmdb. ca) and 
based on the analysis of the current scientific literature 
the database is still far from complete. In contrast, 
much more is known in plants.  More than 50 000 
metabolites have been characterized from the plant 
kingdom. Metabolomics should be extremely important for 
medicinal plants, because one of our objectives to study 
medicinal plants is to find active compounds, which, in 
fact, are metabolites. Therefore, the fast development of 
metabolomics technology provides us a valuable 
opportunity to advance the studies of medicinal plants. 
One advantage of conducting metabolomics is that 
genomics information is not needed. Metabolomics can 
be used to compare metabolite quantitative changes in 
medicinal materials between different organisms, ages, 
origins, organs, developmental stages, environmental 
cultivation and culture conditions, and processing 
methods. It can help us understand the metabolic 
pathways for the production of these bioactive 
compounds generate metabolic fingerprinting of 
medicinal plants for the authentication and quality 
control, classify medicinal plants, and establish a 
quantitative version of chemotaxonomic analysis to 
advance our knowledge of the evolutional relationship of 
medicinal plants. Moreover, the technology can help us 
quickly and efficiently recognize the composition and 
quantity of a medical plant, find new potential 
compounds (Wang et al, 2007), identify existing 
compounds, and confirm and generate new knowledge 
of the pharmacological and toxic effects of the plant. 

Metabolic fingerprinting techniques have been 
successfully employed to evaluate the quality of herbal 

material and phytopharmaceutical with MS and NMR 
methods (Van der et al, 2009). For instance, metabolomics 
profiling was used to differentiate 12 Cannabis sativa 
cultivars (Choi et al, 2004b; Choi et al, 2004a) and 
determine the quantity of ginkgolic acids from Ginkgo 
leaves and products in six commercial Ginkgo products 
(Choi et al, 2004a).  Metabolic profiling of Angelica 
acutiloba (Sieb. & Zucc.) Kitag. roots, utilizing gas 
chromatography-time-of-flight-mass spectrometry, could 
be used accurately to assess the quality of the medicinal 
materials based on cultivation area and cultivar via 
multivariate pattern recognition (Tianniam et al, 2008). 
Comparative metabolomics strategy coupled with cell- 
and gene-based assays were used for species classi-
fication and anti-inflammatory bioactivity validation of 
medicinal Echinacea species, i.e.  Echinacea purpurea 
(L.) Moench, E. pallida Nutt., and E. angustifolia DC. 
(Hou et al, 2009). More metabolic profiling have been 
conducted in the medicinal plant barrel medic 
(Medicago truncatula) which is also a model organism 
for legume biology (Schliemann et al, 2008; Farag et al, 
2008; Barsch et al, 2006b; Barsch et al, 2006a). 

Popular methods used to perform metabolomic 
experiments are mass spectrometry (MS) and nuclear 
magnetic resonance (NMR). My team has used 
metabolomic profiling to study type 2 diabetes. We 
focused more on lipid compounds and tried to measure 
lipid species (nearly 400) simultaneously (Welti et al, 
2007), named lipidomics.  Using human blood plasma 
samples, we compared the lipid profiles among type 2 
diabetic (n = 62), pre-diabetic (n = 23) and healthy 
subjects (n = 35). Ten to 13 lipid species were 
significantly changed (1.2–3 fold) in pre-diabetic and 
diabetic subjects compared with controls. Our data 
indicate that lipidomic technology is a valuable high-
throughput method that can potentially be used to 
identify novel biomarkers for diagnosis and treatment 
of type 2 diabetes (Mao et al, 2009). An automated 
electrospray ionization-tandem mass spectrometry 
(ESI-MS/MS) approach was used for the lipidomics 
technology in our study. Fig. 1 illustrates the ion 
current chromatography of PA, PC and PE of human 
plasma. The same technology is being used in the 
studies of breast cancer and prostate cancer with some 
interesting preliminary data being achieved (Deng, 
unpublished data). The foundation of metabolomics 



Deng YP et al. Chinese Herbal Medicines, 2010, 2(3): 170-179 173

technology is already developed in China. For 
instance, qualitative compound composition analyses 
have been extensively studied for a broad purposes in 
China (Li et al, 2008; Li et al, 1996b; Li et al, 1996a; 

Li et al, 1995; Wu et al, 1998; Yu et al, 1999). We 
need to set up a quantitative metabolomics platform 
and bioinformatics certainly plays an important role to 
make it functional.   

 

 
Fig. 1  The ion current chromatogram of ESI-MS/MS analysis of phospholipids PA, PC, and PE of human plasma sample 

Proteomics 
Proteomics is the information of a whole proteome, 

which refers to the entire complement of proteins 
including the modulation made to a particular set of 
proteins within an organism or system. This will alter 
over time or under different environmental conditions 
that a cell or organism undergoes (Wilkins et al, 1996). 
Besides dealing with protein expression changes, 
proteomics also covers the studies of protein structure 
and function, protein and protein interaction, and 
protein post-translational modifications that majorly 
include phosphorylation and ubiquitination.  Proteins 
can be subjected to methylation, acetylation, glyco-
sylation, oxidation, and nitrosylation (Blackstock and 
Weir, 1999). Published proteomic data of medicinal 
plants is most obtained from medicago. Most reports 
focus on the protein expression and phosphorylation 
changes at various conditions (Castillejo et al, 2009; 
Dam et al, 2009; Aloui et al, 2009; Van Noorden et al, 
2007; Prayitno et al, 2006). There is no report of 

proteomic observations on Chinese medicinal plants, and 
the major reason is the lack annotation of protein and 
gene sequence information of Chinese medicinal plants. 
The current situation of proteomics studies indicates that 
it is urgent for us to generate more genome and proteome 
information of medicinal plants. My team has worked on 
some data analysis of proteomics data such as 
comparison of different feature selection and classi-
fication methods for MALDI-MS data (Liu et al, 2009b). 
Based on whole proteome information, we found some 
new drosophila chitinases (Zhu et al, 2004).  

Genomics and epigenomics   
Genomics is the study of an organism’s whole 

genome. Genome refers to all of the DNA sequences in 
an organism. So far, there are very few genomes of 
medicinal plants that have been fully sequenced. The 
draft genome of the transgenetic tropical fruit tree 
papaya (Carica papaya Linnaeus), which also possesses 
medicinal value, was sequenced (Ming et al, 2008). The 
genome sequencing of M. truncatula is close to being 
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completed. However, there are a high volume of publi-
cations related to identification and authentication of 
medicinal plants at the DNA level. DNA-based techniques 
that do not require whole genome information like PCR, 
RFLP, AFLP, RAPD, and sequencing are employed to 
resolve ambiguities in plant identification and discri-
mination (Titanji, Ngwa, and Ngemenya, 2007; Chen et 
al, 2010; Song et al, 2009; Yu, 2010). Since there are 
more than 5000 medicinal plants and many of them are 
endangered species, it is essential to select one or more 
model medicinal plants to sequence their whole 
genomes which will profoundly enhance the research of 
medicinal plants. 

Epigenomics is the whole genome level study of 
epigenetic elements. Epigenetic mechanisms, including 
DNA methylation and modifications to histone proteins, 
regulate high-order DNA structure and gene expression. 
Small RNA studies could also be part of epigenomics.  
Epigenomics is important for us to understand the 
mechanisms of gene expression changes of medicinal 
plants. Our team has also begun to apply epigenomics 
related technologies to environmental and human 
disease studies.    

"Omics" data analyses 
"Omics" data, usually high-dimensional data, 

requires common statistical and machine learning 
methods. Here, we use transcriptomics data as examples 
to talk about “omics” data analyses. After a microarray 
design is finished, the next critical steps are experimental 
design, data quality control and normalization. Our team 
has developed a web application tool for two-channel 
microarray interwoven loop design which any biologist 
can easily use for analysis (Pirooznia et al, 2008a). We 
also used a simulated strategy and developed a hybrid 
normalization method for microarray normalization 
(Pirooznia and Deng, 2007). We developed a distribution-
free convolution model for background correction of 
oligonucleotide microarray data as well (Chen et al, 
2009). The original purpose of a DNA microarray 
experiment is to identify differential genes across 
different conditions. Next, a clustering algorithm could 
be applied in order to cluster genes that have similar 
behaviors. The genes in the same cluster should have 
similar functions. For instance, we could employ 
clustering algorithms to identify a group of functionally 
similar genes that are involved in the same biological 

process or pathway that affects an active compound’s 
production in a medicinal plant. Clustering algorithms 
can be divided into unsupervised and supervised 
algorithms. Unsupervised algorithms mainly include 
hierarchical K-means and self organizing map methods. 
K-means is one of the most popular methods used in 
gene expression data analyses due to its high compu-
tational performance. However, it is well known that K-
means might converge to a local optimum, and its result 
is subject to the initialization process, which randomly 
generates the initial clustering. In other words, different 
runs of K-means on the same input data might produce 
different solutions. 

Genetic K-means Algorithm (GKA) is an algorithm 
which hybridizes a genetic algorithm with the K-means 
algorithm. This hybrid approach combines the robust 
nature of the genetic algorithm with the high 
performance of the K-means algorithm. As a result, 
GKA will always converge to the global optimum faster 
than other genetic algorithms. We have successfully 
developed a faster version of GKA, i.e. FGKA which 
runs 20 times faster than GKA. We further developed an 
extension to FGKA, Incremental Genetic K-means 
Algorithm (IGKA) that inherits all the advantages of 
FGKA including the convergence to the global optimum. 
This addition outperforms FGKA when the mutation 
probability is small (Lu et al, 2004). We also developed 
two new algorithms: markov chain correlation based 
clustering algorithm (Deng, Chokalingam, and Zhang, 
2005a) and particle swarm optimization K-means 
algorithm (Deng et al, 2006c) for clustering gene 
expression data. Both algorithms perform better than the 
existing K-means algorithm. We also developed an 
automatic method for the determination of cluster 
number in clustering microarray data based on dynamic 
validity index (Shen et al, 2005). We have proposed a 
graph theory method to accurately characterize co-
regulated genes for Arabidopsis microarray data (Rawat, 
Seifert, and Deng, 2008). In terms of gene functional 
analysis, we have successfully predicted the function of a 
yeast gene YJL103C based on gene expression clustering 
(Deng et al, 2005b). Recently we created a better web 
tool to search Gene Ontology more efficiently (Pirooznia 
et al, 2008b). 

More advanced microarray and other high 
throughput data analysis allow the use of classification 



Deng YP et al. Chinese Herbal Medicines, 2010, 2(3): 170-179 175

supervised machine learning algorithms to identify 
predictive biomarkers. The strategy has been successfully 
used for the diagnosis and prognosis of various diseases 
such as cancer (Cooper, 2001). An advantageous 
application of classification algorithms in medicinal 
plants could be authentication and quality control, as 
well as characterization, of the right species that could 
aid in the evolutional studies of medicinal plants. 
Actually, all the information related to a medicinal 
material such as DNA markers, gene expression data, 
chemical compound composition and quantity, 
morphology and so on could be used as training data 
for running classification algorithms. The goal here is 
to identify a list of efficient markers to precisely 
distinguish different medicinal materials. Before 
building a classifier, feature selection is important. 
There are many feature selection methods including 
support vector machine recursive feature elimination 
(SVM-RFE), chisquare, infogain, gainratio, relief, 
wrapper, and CSF. Generally used classification 
algorithms include decision tree J48, random forest 
(RF), Naivy Bayes (NB), simple logistic (SL), RBF 
Neural Nets, MLP Neural Nets and support vector 
machines (SVMs). We have compared different feature 
selection and classification algorithms based on 
multiple types of microarray data using training and test 
cross-validation to judge the performances. We found 
SVMs usually outperforms other classification methods 
(Pirooznia et al, 2008c). It is necessary to build user-
friendly software with graphical a user interface (GUI) 
to classify high-throughput data for general biologists. 
So far, almost all classification algorithms need 
experienced statisticians to perform the task. Since 
SVM is a very good algorithm for microarray data 
classification, many users may use it for data analysis 
by creating a GUI. We (Pirooznia and Deng, 2006) 
have developed a user-friendly, java GUI application 
allowing users to perform SVM training, classification 
and prediction. We demonstrated that our software can 
accurately classify genes into functional categories 
based upon expression data from DNA microarray 
experiments. We have also developed Parallel 
Multicategory Support Vector Machines (PMC-SVM) 
for classifying microarray data (Zhang et al, 2006). 
Recently, we proposed a new gene feature selection 
method called Recursive Feature Addition (RFA), which 

combines supervised learning and statistical similarity 
measures, that outperforms other popular feature selection 
methods including the Support Vector Machine Recursive 
Feature Elimination (SVMRFE) (Liu et al, 2009a).   

Databases 
Database is an important aspect of bioinformatics.  

It is critical to develop web based searchable databases 
related to medicinal plants. Current medicinal plant 
databases are mainly medicinal resource databases which 
usually include taxonomy, biogeography, cultivation 
conditions, medical organs, medicinal functions, and 
biological active compounds of medicinal plant species 
as well as images of individual species. These databases 
could be generated based on a country or district’s need. 
For example, CMKb is a web-based relational prototype 
database for integrating Australian Aboriginal customary 
medicinal plant knowledge. Some databases only 
contain the medicinal plants (Jarayaman, 2000) that can 
treat a specific diseases such as antifertility (Ghosh and 
Chattopadhyay, 2000), asthma (Kasirajan et al, 2007), 
and diabetes (Arulrayan et al, 2007). China has 
developed many nationwide and regional medicinal 
plant resource databases, some of which are prescription 
or active and inactive compounds, chemical and targets. 
One disadvantage is that most of these resource 
databases are only written in Chinese and the knowledge 
cannot be shared with the world. 

Databases can also be developed based on genetic 
and genomics information. For instance, there is a lot of 
DNA finger printing information available that could be 
stored in a web accessible and searchable database. 
DNA, mRNA level, and gene function for a group of 
medicinal plants or even a single plant species could be 
used to develop medicinal plant genome databases. 
Functional genomics, proteomics and metabolomics 
data can also be managed to build functional “omic” 
databases for medicinal plants. For example, if more 
metabolites are available, we could develop a metabolite 
database of medicinal plants. My team has participated 
in the development of BeetleBase, an online Tribloium 
genome database (Wang et al, 2007). We also developed 
EST database (Deng et al, 2005b) and RiboaptDB, a 
comprehensive online searchable database of ribozyme 
and aptamers (Thodima, Pirooznia, and Deng, 2006).  

Integrative systems biology 
Integrative systems biology involves the integration 
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of genomics, transcriptomics, proteomics, and meta-
bolomics information to create a whole system network 
view of a biological entity using bioinformatics (Saito 
K). Integrating transcirptomics and metabolomics data 
can help us to predict gene function particularly for 
genes involved in complicated pathways that can 
produce bioactive constituents. Through integrated 
metabolite and transcript profiling, a biosynthetic 
mechanism for hispidol in Medicago truncate, cell 
cultures were characterized (Farag et al, 2009).  We 
have done an integrative metal-analysis for lung cancer 
marker gene identification (Jiang et al, 2004) using 
different microarray data resources. Gene shaving (GS) 
methods based on Random Forests (RF) and Fisher's 
Linear Discrimination (FLD) were applied separately to 
the joint data set for cancer gene selection. The two 
methods discovered 13 and 10 marker genes (5 in 
common) for RF and FLD, respectively, with expression 
patterns differentiating diseased from normal samples. 
We also found that patterns of 36 genes were 
significantly correlated with patient survival (P < 0.05). 
One of the most challenging tasks in systems biology in 
the post-genomic era is to reconstruct the transcriptional 
regulatory networks using reverse engineering algorithms. 
This is also the major task of systems biology. By 
collaborating with computer scientists, we have recently 
developed an ensemble learning approach to reverse-
engineering transcriptional regulatory networks from 
time-series gene expression data. Our method starts 
with building an ensemble of decision trees for each 
microarray data to capture the association between the 
expression levels of yeast genes and the binding of 
transcription factors to gene promoter regions as 
determined by integrating with another type of omics 
data, a chromatin immunoprecipitation microarray 
(ChIP-chip) data. Cross-validation experiments show 
that the method is more accurate and reliable than the 
naive decision tree algorithm and several other ensemble 
learning methods (Ruan et al, 2009). We also designed a 
slice pattern model to reconstruct gene regulatory network 
using time-series data (Wang et al, 2009). 
 
Conclusion 

This article demonstrated the importance of 
bioinformatics and systems biology in medicinal plant 
research. Functional genomics, proteomics, metabolo- 

mics and integrated systems biology have the ability to 
advance the studies of modern medicinal plants and so 
help us to understand how bioactive compounds are 
produced and improving the quality of medicinal 
materials. Understanding of medicinal evolutional 
relationship and new methods for the authentication and 
quality control of the medicinal plants may also be 
benefited. However, the generation of "omics" data for 
medicinal plants is still in the beginning stages 
compared with other biomedical and agricultural areas, 
leading to an urgent need to develop more genomic 
resources of medicinal plants. We expect that there will 
be a rapid development of functional genomic 
approaches for studying traditional and herbal medicine 
in the future.   
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