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Glycyrrhiza uralensis is frequently used in traditional Chinese medicine. This plant 
contains a large amount of effective constituents, including triterpenoids and 
flavonoids. Among them, glycyrrhizin is believed to be the marker compound to 
evaluate the quality of G. uralensis based on Chinese Pharmacopoeia. Many studies 
showed that glycyrrhizin possesses various pharmacological activities, such as 
antibacterial, antiviral, antitumor, anti-inflammatory, and immune-stimulating 
activities. In this paper, we summarized the cloning, characterization, expression, and 
polymorphism analysis of several functional genes involved in glycyrrhizin biosynthesis 
in G. uralensis. 
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1.    Introduction 

 
Glycyrrhiza uralensis Fisch. (Gancao in Chinese) is 

widely used in Chinese herbal compound prescriptions (Zeng 
et al, 1988; Pharmacopoeia Committee of P. R. China, 2010). 
Among its various natural active components, glycyrrhizin, 
one of the triterpenoids derived from the roots and rhizomes 
of G. uralensis, is believed to be the major bioactive 
compound to characterize the quality of this Chinese herb 
based on Chinese Pharmacopoeia. Many studies have 
reported that glycyrrhizin possesses various biological 
activities, such as antibacterial (Long et al, 2013; Yoshida et 
al, 2010), antiviral (Huang et al, 2012; Wang et al, 2013; 
Baltinar et al, 2012), antitumor (Sun et al, 2010; Park et al, 
2009; Zhang et al, 2011), anti-inflammatory (Wu et al, 2011; 
Chandrasekaran et al, 2011), renoprotective (Yu et al, 2010) 

and immune-stimulating activities (Kim et al, 2013; Li et al, 
2012). Although the pharmacological activities of glycyrrhizin 
have been extensively researched, its biosynthesis remains poorly 
understood. Up to date, it is commonly believed that glycyrrhizin 
is biosynthesized through mevalonic acid (MVA) pathway, which 
is controlled and regulated by many enzymes (Figure 1).  

In recent years, the reports about functional genes 
involved in glycyrrhizin biosynthesis concentrated mainly on 
the following genes, 3-hydroxy-3-methyliuglutary CoA 
reductase (HMGR) gene, which encodes the first rate-limiting 
enzyme involved in MVA pathway, squalene synthase (SQS) 
gene and beta-amyrin synthase (β-AS) gene, which encode 
enzymes playing the important roles in the early stages of 
triterpene skeleton formation, and cytochrome P450 mono- 
oxygenase genes, which encode enzymes involved in the 
multiple oxidations at positions C-11 and C-30, and glycosylation 
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Figure 1  Biosynthetic pathway of glycyrrhizin 

AACT: acetyl-CoA C-acetyltransferase; HMGS: hydroxymethylglutaryl-CoA synthase; HMGR: 3-hydroxy-3-methylglutaryl-CoA reductase; MK: 
mevalonate kinase; MPK: mevalonate phosphate kinase; MVA: mevalonate; MVAPP: mevalonate pyrophosphate; MPD: mevalonate 
pyrophosphate decarboxylase; IPP: isopentenyl pyrophosphate; IPI: isopentenyl pyrophosphate isomerase; FPPS: farnesyl pyrophosphate synthase; 
FPP: farnesyl pyrophosphate; SQS: squalene synthase; SE: squalene epoxidase; CAS: cycloartenol synthase; LUS: lupeol synthase 
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of the C-3 hydroxyl group leading from β-amyrin to 
glycyrrhizin. In this paper, the cloning, characterization, 
expression, and polymorphism analysis of the above 
functional genes involved in glycyrrhizin biosynthesis were 
summarized combining with our own experimental 
experiences. And we hope this work can provide a basis for 
further studies concerned with exploring the biosynthesis of 
glycyrrhizin in vitro and strengthening the efficacy of G. 
uralensis by means of improved glycyrrhizin content. 
 
2.    HMGR gene 

 
HMGR is believed to be the first rate-limiting enzyme 

involved in glycyrrhizin biosynthesis (Harker et al, 2003; 
Aquil et al, 2009; Friesen and Rodwell, 2004; Yang et al, 
1991). It catalyzes HMG-CoA and NADPH into MVA, which 
is an irreversible reaction. Many reports (Chappell and Nable. 
1987; Schaller et al, 1995; Dai et al, 2001) have shown that 
the accumulation of terpene increased significantly with the 
increasing of the content of HMGR gene. 

In our previous studies, rapid-amplification of cDNA 
ends (RACE) was used to clone the cDNA of HMGR from G. 
uralensis. A 1842 bp full-length cDNA sequence (GenBank 
accession number: GQ845405) was obtained, including an 
ORF of 1722 bp (between 39 and 1760 bp) that encoded a 
573-residue protein, a 38 bp 5′-UTR and an 82 bp 3′-UTR. It 
was subcloned into disarmed vector, introduced to E. coli 
BL21 cells and expressed. SDS-PAGE analysis demonstrated 
the appearance of a 6 × 104 Da recombinant protein, which 
was absent from the equivalent fractions of negative control. 
In the following enzymatic reaction, both TLC and GC-MS 
analyses demonstrated that a new product, mevalonolactone 
(MVL) was produced, while it was not present in the negative 
control (Liu et al, 2013a).  

In the further studies, the polymorphisms of HMGR 
gene sequence and amino acid sequence in G. uralensis 
were analyzed (Liu et al, 2012a; 2012b). It was found that 
single nucleotide polymorphism (SNP), insertion deletion 
length polymorphism (InDel) and heterozygosity were 
present in HMGR gene sequence. The SNPs appeared at 17 
different sites, including 72, 81, 99, 185, 432, 465, 500, 
544, 669, 685, 792, 900, 1008, 1089, 1389, 1509, and 1709 
bp, and the insertion of GTGGCG appeared between 
74−79 bp. The heterozygosity of G/A, C/T, A/G, and T/C 
was determined at 432, 465, 792, and 1089 bp, separately. 
In its amino acid sequence there were two kinds of 
variation, L/V variation (-HSL and -HSV) and GA 
insertion variation (GALLV and GALSV). The amino acid 
sequences of type -HSL were mutated to histidine (H), 
serine (S), and leucine (L), and the amino acid sequences 
of type -HSV were mutated to H, S, and valine (V) at 62, 
167, and 229 amino acid residue sites, respectively. In type 
GALLV, glycine (G) and alanine (A) were inserted at the 
25−26 sites, in addition, the 62, 167, and 229 sites were 
mutated to L, L, and V. While in the type GALSV, amino 
acid was mutated to S at 167 sites, and other mutation sites 
were same compared with type GALLV. -HSL mutant was 

only present in group with a low content of glycyrrhizin, 
while GALSV mutant was only present in group with a 
high content of glycyrrhizin. After a catalytic efficiency 
test, it showed that the catalytic efficiency of GA insertion 
variation was significantly higher than L/V variation. This 
conclusion was in accord with the content of glycyrrhizin 
in G. uralensis. 
 
3.    SQS gene 

 
SQS is situated in a branch point from farnesyl 

diphosphate (FPP) to triterpenoids or other products in the 
MVA pathway and may be an up-regulator for triterpene 
skeleton formation (Lu et al, 2008; Lee et al, 2004; Seo et al, 
2005). SQS gene belongs to a multigene family with two 
kinds of SQS gene found in Arabidopsis thaliana (Mirjalili et 
al, 2011; Kribii et al, 1997), Glycyrrhiza glabra (Hayashi et al, 
2003), and several other plants. 

Two cDNA sequences, SQS1 and SQS2, have been 
cloned from G. uralensis (Liu et al, 2013b). A 1241 bp 
full-length cDNA sequence (GenBank accession number: 
AM182329) of SQS1 gene encoding a 413-residue protein 
and a 1239 bp full-length cDNA sequence (GenBank 
accession number: AM182330) of SQS2 gene encoding a 
412-residue protein were obtained respectively. These two 
SQS gene sequences cloned from G. uralensis have a 98% 
similarity with the two SQS gene sequences cloned from G. 
glabra by Hayashi (Hayashi et al, 2003). They were 
subcloned and transformed into E. coli BL21 competent 
cells and expressed. SDS-PAGE analysis demonstrated that 
the presence of a 6.7 × 104 Da recombinant protein, which 
was absent from the negative control. In the following 
enzymatic reaction, both TLC and GC-MS analyses 
demonstrated that a new product, squalene, was produced, 
while it was not present in the negative control (Liu et al, 
2012c). 

In the further studies, the polymorphism of G. uralensis 
SQS gene sequence and amino acid sequence were analyzed. 
It showed that SNP, InDel, nonsense mutation, and alternative 
splicing (AS) were present in SQS1 gene sequence. There 
were many SNPs in SQS1 gene cDNA sequences, including 
A/G transition at 98, 250, 425, 426, 689, 922, and 984 bp sites, 
C/T transition at 23, 385, 495, 502, 1052, 1117, 1118, and 
1231 bp sites, C/G transversion at 1121 bp site, T/G 
transversion at 606 bp site, A/T transversion at 314, 374, and 
1159 bp sites, A/G transversion at 98 and 718 bp sites, and 
A/G transversion at 63, 520, and 898 bp sites. In a few SQS1 
gene cDNA sequences, 3 basic groups (GGA) were deleted at 
738–740 bp sites, which resulted in the deletion of one amino 
acid residue. The AS in SQS1 gene cDNA sequences included 
intron retention (a 15 bp fragment inserted between 
1036–1051 bp) and exon skipping (a 76 bp fragment deleted 
between 329–404 bp). While for SQS2 gene sequences, there 
was only one kind of polymorphism, SNP, including C/T 
transition at 396, 513, 660, and 1210 bp sites, C/G transition 
at 741 bp site, and A/T transversion at 1177 bp site. In the 
amino acid sequence of SQS1, the substitutions of 17 amino 
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acids were found at the sites of 8, 33, 84, 105, 125, 129, 142, 
146, 168, 230, 240, 308, 328, 351, 373, 374, and 387. The 
conservative substitution was 47.06%, and non-conservative 
substitution was 52.94%, which demonstrated that more 
than half of the mutation influenced the structure and 
function of SQS1. In the amino acid sequence of SQS2, the 
substitutions of five amino acid residues were found at the 
sites of 174, 247, 330, 393, and 404. The conservative 
substitution was 40%, and non-conservative substitution 
was 60%, which also demonstrated that more than half of 
the mutation influenced the structure and function of SQS2. 
The catalytic efficiency of different SQS protein was quite 
different. 
 
4.    β‐AS gene 

 
β-AS is situated in a branch point to catalyze 2, 

3-oxidosqualene into β-amyrin, which also plays an important 
role for triterpene skeleton formation (Hayashi et al, 2011; 
Wang et al, 2011).  

A 2289 bp full-length cDNA sequence (GenBank 
accession number: FJ627179) of β-AS encoding a 762-residue 
protein was obtained from G. uralensis. In the further study 
(Chen et al, 2013) a 4109 bp full-length DNA sequence of 
β-AS was obtained from G. uralensis. Compared to the β-AS 
cDNA sequence, the 14 extrons and 13 introns were 
determined. The β-AS gene was subcloned and introduced 
into Saccharomyces cerevisiae competent cells and expressed. 
SDS-PAGE analysis demonstrated the appearance of an 8.7 × 
104 Da recombinant protein, which was absent from the 
negative control. In the following enzymatic reaction, both 
TLC and GC-MS analyses demonstrated that a new product, 
β-amyrin, was produced, while it was not present in the 
negative control, which proved that the β-AS gene we 
obtained had a normal catalytic activity. 

In the further studies, the polymorphism of β-AS gene 
sequence and amino acid sequence was analyzed. It was 
found that SNP in 94 bp site was a missense mutation, and 
SNP in 254 bp site was a same sense mutation. The catalytic 
efficiency of different β-amyrin synthase encoded by different 
β-AS variants was obviously different. The β-AS variant with 
an A in 94 bp and a T in 254 bp had the highest catalytic 
efficiency. 

The temporal and spatial specificity of β-AS gene 
expression in G. uralensis had also been studied (Liu and Liu, 
2012). The spatial specificity experiment showed that β-AS 
did not express in the above ground part of G. uralensis, while 
in the underground part, the expression of root tip was higher 
than rootstock. This conclusion is accord with the distribution 
of glycyrrhizin content level in G. uralensis. And the temporal 
specificity experiment showed that the expression of G. 
uralensis β-AS could be divided into four stages. From 
December to February, the expression of β-AS was lower than 
the detection level; from March to May, β-AS began to 
express; from May to September, the expression of β-AS kept 
a high level; and in October and November, the expression of 
β-AS began to decrease. 

5.    Cytochrome P450 monooxygenase gene 
 
Hikaru et al reported the cytochrome P450 mono- 

oxygenase involved in glycyrrhizin biosynthesis (Hikaru et al, 
2008; 2011). Two cytochrome P450 monooxygenase genes, 
CYP88D6 and CYP72A154, have been successfully 
identified. In vitro enzymatic activity assays showed that 
CYP88D6 catalyzed the sequential two-step oxidation of 
β-amyrin at C-11 to form 11-oxo-β-amyrin, which was a 
possible biosynthetic intermediate between β-amyrin and 
glycyrrhizin. CYP72A154 was responsible for three 
sequential oxidation steps at C-30 in the glycyrrhizin pathway. 
Both CYP88D6 and CYP72A154 expressed in the roots only, 
but not in the leaves or stems, which is consistent with the 
accumulation pattern of glycyrrhizin in plant. Two additional 
CYP72A subfamily members were also identified, 
CYP72A153 (60.0% identity with CYP72A154) and 
CYP72A155 (50.9% identity with CYP72A154), however, 
neither of them showed detectable activity. 

 
6.    Discussion 

 
G. uralensis is one of the most widely used Chinese 

herbs for its effects of nourishing qi, tonifying spleen and 
stomach, relieving coughing and eliminating phlegm. The 
market demand for G. uralensis is very huge in China. 
However, due to recent years’ excessive consumption, wild 
resources of G. uralensis are becoming endangered. The 
Chinese government has imposed the restrictions on the 
collection of wild G. uralensis plants. As a result, cultivation 
has become the main source of G. uralensis supply. However, 
the degradation of quality and low content of glycyrrhizin are 
widely present in the cultivar of G. uralensis. Consequently 
improving the quality of cultivar becomes the key issue of the 
sustainable development. Through modifying the triterpen 
biosynthesis pathway which leads to the formation of 
glycyrrhizin, it is possible to find an effective approach to 
increase the accumulation of glycyrrhizin in G. uralensis plants 
(Jin et al, 2010). 

Up to date, the metabolic pathway of glycyrrhizin shows 
that many enzymes play essential roles in this procedure. Based 
on the central dogma, functional gene polymorphisms may 
result in amino acid polymorphisms, and ultimately affect the 
enzyme catalytic efficiency. The abundant gene polymorphisms 
of HMGR, SQS, and β-AS may influence the catalytic functions 
of their encoded enzymes. It has been found that the catalytic 
efficiency of GA insertion variation was significantly higher 
than L/V variation. More than half of the mutation influenced 
the structure and function of SQS1 and SQS2 gene. The β-AS 
variant with an A in 94 bp and a T in 254 bp had the highest 
catalytic efficiency. It is known that the tiny mutation of 
functional gene possibly influence the encoding enzyme in 
quality and quantity. Therefore, the clear understanding of 
functional genes involved in glycyrrhizin biosynthesis is very 
significant for revealing the molecular mechanism of glycyrrhizin 
formation. We hope this work can provide a basis for improving 
the quality of G. uralensis cultivars. 
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