・综述・

# 甘遂烷型三萜的研究进展

张 耀, 汪 俊松, 孔令 义<sup>\*</sup>
 (中国药科大学 天然药物化学教研室, 江苏 南京 210009)

摘 要:甘遂烷型三萜是一类具有四环体系三萜类型的化合物,在植物分布中比较罕见,是一类数量较少的三萜类 化合物。为了进一步研究甘遂烷型三萜,通过查阅有关甘遂烷型这一类化合物的文献,对该类三萜的植物分布、化 学结构分类及典型核磁共振碳谱数据进行综述。 关键词:甘遂烷型三萜:四环三萜:植物分布

中图分类号: R284 文献标识码: A 文章编号: 0253-2670(2010) 10 1733-07

# Advances in studies on tirucallane type triterpenoids

ZHANG Yao, WANG Jun song, KONG Ling yi

(Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China) **Key words:** tirucallane-type triter penoids; tetracyclic triter penoids; plant distributions

甘遂烷型三萜是一类具有四环体系的三萜类化合物(图 1),母核结构有 5 个角甲基,分别是 18α、28α、19<sup>6</sup>、29<sup>β</sup> 和 30<sup>6</sup>; C 17 边链为α 构型; C 20 甲基呈<sup>β</sup> 构型; 环 A 和环 B, 环 C 和环 D 分别呈反式稠合,这是甘遂烷型区别于大戟烷 型、达玛烷型和羊毛脂烷型等四环三萜的典型结构特征。这 一类化合物由于母核上含氧取代都比较少,而且四环母核体 系结构比较固定,变化较少,呈刚性结构,故该类型的化合物 极性比较小,唯一可变的就是 C 17 边链,可以成环、成长链、 降碳、甲基可以氧化成醛或羧酸等。本文综述了到目前为止 甘遂烷型三萜类化合物的植物分布、化学结构及核磁规律等 研究概况,为进一步研究甘遂烷型三萜提供理论基础。

1 植物分布

甘遂烷型三萜广泛分布于楝科、芸香科和苦木科等在植物分类生源上相近的科属中,特别是楝科中的樫木属和鹧鸪花属植物中甘遂烷型三萜化合物最多(表 1),这对研究植物化学分类学也具有重大的意义,并且在生源合成上甘遂烷型三萜等原柠檬苦素是形成四降三萜的前体物质。从分离的部位来看,该类化合物主要从植物的茎皮中分离得到。

2 结构分类

对于甘遂烷型化合物的结构分类,由于其母核变化不大,可以从其 G-17 边链的变化加以区分。甘遂烷型三萜 G-17 边链的变化可以分为以下几类:成环、成链,降碳和其他类等。

2.1 成环类甘遂烷型三萜:该类三萜可以按成环的大小分为四氢呋喃环、四氢吡喃环及七元氧环等。

2.1.1 四氢呋喃环: 甘遂烷型三萜侧链形成的呋喃环由 C-





Fig. 1 Nucleus structure of tirucallane type triterpenoids 21 和 C-23 通过氧原子形成一个醚键, C-21 一般有取代基取 代,末端有4个碳链连接在C-23,这一类原柠檬苦素化合物 是侧链成环结构中数目最多的一类。Yuan 等[12] 从非洲楝 Khayasenegalensis (Desr) A. Juss 中分离得到 2 个互为 差向异构体, C-21为正丁氧基的甘遂烷型三萜(1、2)。 Hisham 等<sup>[10]</sup> 从樫木属植物 Dysoxylum malabaricum Bedd 中分离到 C-21 为 cr 乙氧基的 三萜 3, 该化合物 的差 向异构 体(4)由 Chen 等<sup>[14]</sup> 从红椿(原变种) Toona ciliata Roem. var ciliata 中分离得到。Xie 等[3] 从四季米仔兰 Aglaia duperreana Pierre 中分离到 G3为αOH, G21为α、βOMe 的三萜 5 和 6。Liang 等<sup>[3]</sup> 从 Aucoumea klaineana Pierre 中 分离得到 C<sub>24</sub>-C<sub>25</sub> 成双键的化合物 7~10, 而 Kamperdick 等<sup>[34]</sup> 从 Luv unga sarmentosa (Bl) Kurz 分离到 C-3 为 β-OH, G 21 位为一对差向异构体(6:4) 的化合物 11。值得一 提的是, Huang 等<sup>[35]</sup> 从无患子 Sapindus mukorossi Gaertn 中分离得到的 5 个 C-3 连有 2~3 个糖的甘遂 烷型三萜皂 苷

①收稿日期: 2010-04 09 作者符介: 光 耀 思 浙江省上唐市人 硕士研究

作者简介:张 耀,男,浙江省上虞市人,硕士研究生,研究方向为中药化学成分研究及新药开发。 E-mail: zhang1984yao@ yahoo. com. cn

<sup>\*</sup> 通讯作者 孔令义 Tel: (025) 83271405 Fax: (025) 85301528 E-mail: cpu\_lykong@ 126. com

· 1734 ·

sapinmusaponins F~ J (12~16),并且连在母核上的是β-D-葡萄糖,接在糖上面的都是 œ L-鼠李糖,此 5 个甘遂烷型三 萜皂苷均显示出抗血小板聚集活性,对乳酸脱氢酶引起的血 小板胀裂没有显著的细胞毒活性,同时对12-0十四酰佛波 醇(TPA)诱导的 Epstein Barr 病毒早期抗原(EBVEV)有中 等强度的抑制活性。化合物 1~16 的结构式见图 2。

表1 甘遂烷型三萜化合物的植物分布

Table 1 Plant distributions of tirucallane type triterpenoids

| 科名           | 种名                                             | 部位     | 科名              | 种名                                      | 部位    |
|--------------|------------------------------------------------|--------|-----------------|-----------------------------------------|-------|
| 棟科 M eliaœae | $A p hanamix i s p ol y stach y a^{[1]}$       | 果实     |                 | W. piscidia <sup>[19]</sup>             | 叶子    |
|              | A glaia and amanica <sup>[2]</sup>             | 叶子     |                 | Xy locarpus moluccensis[20]             | 种子    |
|              | A. duperreana <sup>[3]</sup>                   | 花      | 芸香科 Rutaceae    | $Paramigny a m on op hyll a^{[21]}$     | 果实    |
|              | A. $leucophylla^{[4]}$                         | 茎皮     |                 | Phell odendron chinense <sup>[22]</sup> | 果实    |
|              | $A moora  dasy clada^{[5]}$                    | 皮部     |                 | P. chinense var. glabrius culum[23]     | 皮部    |
|              | Azad irachta indica <sup>[6]</sup>             |        | 苦木科             | A ilanthus $excelsa^{[24]}$             | 根皮    |
|              | Cedrela odorata <sup>[7]</sup>                 | 心材     | Sim aroub aceae | Simarouba amara <sup>[25]</sup>         | 皮部    |
|              | Dy sox y lum macr ant hum [8]                  | 皮      |                 | $Simabamultiflora^{[26]}$               |       |
|              | D hain an ense [9]                             | 皮      | 大戟科             | $Euphorbia kansui^{[27]}$               | 根     |
|              | D mal abaricum <sup>[10]</sup>                 |        | Euphorbiaceae   | E. $mi  cr  actin  a^{[28]}$            | 根     |
|              | $Entandrophragma$ ang $olense^{[11]}$          |        |                 | E. retusa <sup>[29]</sup>               |       |
|              | Khaya senegal ensis <sup>[12]</sup>            | 皮      | 漆树科             | Oz or oa insi gnis [30]                 | 根皮    |
|              | Melia toosendan <sup>[13]</sup>                | 茎皮     | Anacardiaceae   |                                         |       |
|              | Toona ci liate var. ci li at e <sup>[14]</sup> | 枝叶     | 三柱草科            | Juliania adstringens <sup>[31]</sup>    | 皮部    |
|              | Trichilia connaroides <sup>[15]</sup>          | 根皮     | Julianiaceae    |                                         |       |
|              | T. schom burgk $ii^{[16]}$                     | 皮部     | 红树科             | Cassipourea lanceolata <sup>[32]</sup>  | 叶子和果实 |
|              | T. $hispida^{[17]}$                            | 叶子     | Rhizophoraceae  |                                         |       |
|              | Walsura piscidia <sup>[18]</sup>               | 叶,果实和皮 |                 |                                         |       |



OH

1 R.=O: R.=a-butoxy  $2 R_1 = 0; R_2 = \beta$ -butoxy 3 R,=O; R,=a-OEt 4 R,=O; R,=β-OEt 5 R<sub>1</sub>=α-OH, β-H; R<sub>2</sub>=α-OMe 6 R<sub>1</sub>=α-OH, β-H; R<sub>2</sub>=β-OMe



7 R<sub>1</sub>=O; R<sub>2</sub>=α-OH, β-H 8 R,=R,=O 9 R<sub>1</sub>= $\alpha$ -OH,  $\beta$ -H; R<sub>2</sub>= $\alpha$ -OH,  $\beta$ -H 10 R<sub>1</sub>=α-OH, β-H; R<sub>2</sub>=O 11 R<sub>1</sub>=β-OH, α-H; R<sub>2</sub>=OH, H



12 R<sub>1</sub>=Glc<sub>2</sub>-Rha; R<sub>2</sub>=β-OMe 13 R<sub>1</sub>=Glc<sub>6</sub>-Rha; R<sub>2</sub>=α-OMe 14 R<sub>1</sub>=Glc<sub>2</sub>-Rha; R<sub>2</sub>=α-OMe 15 R<sub>1</sub>=Glc<sup>2-</sup><sub>6</sub>-Rha; R<sub>2</sub>= $\beta$ -OMe 16 R<sub>1</sub>=Glc<sup>2</sup><sub>6</sub>-Rha; R<sub>2</sub>= $\alpha$ -OMe

# 图 2 边链呈四氢呋喃环甘遂烷型三萜

# Fig. 2 Tirucallane type triterpenoids with side chain containing tetrahydrofuran ring

2.1.2 四氢吡喃环:甘遂烷型三萜的 C-17 边链 C-21 和 C-24 通过氧原子形成一个六元吡喃环并在 C-24 连有叉丙基。 含该侧链的甘遂烷型三萜分离得不多,主要集中在达玛烷型 三萜。Jolad 等<sup>[36]</sup> 从鹧鸪花属植物 Trichilia hisp ida Perr ning (Ined)中分离得到 sapeline A(17)、bourjotinolone A (18)和 bourjotinolone A monoacetate(19)。Inada 等<sup>15]</sup>从 Trichilia connaroides (Wight et Arm.) Bentv. 中分离得到 lipo 3 episapelin A(20).

2.1.3 七元氧环:甘遂烷型三萜的 C-17 边链 C-21 和 C-25 通过氧原子形成一个七元氧环, G 25 连有 2 个角甲基, G 23 和 G-24 分别有含氧取代。Jolad 等<sup>[36]</sup>从 Trichilia hispida 中分离得到 sapeline B(21 和 hispidone(22) 均为侧链含七元 氧环的化合物,对2个化合物结构修饰得到3个产物 hispi done diacetate(23)、sapeline B acetonide (24)和 3 dehydrosa

peline B acetonide (25)。化合物 17~25 的结构式见图 3。 2.2 成链类甘遂烷型三萜:甘遂烷型化合物 G17 成链是该 类化合物中数量最多,结构变化最大,含氧取代基最复杂,也 是目前分离得到最多的一类。Wu 等<sup>[20]</sup> 从红树林植物 Xylocarpus moluccensis 中分离得到 moluccensins P(26), C-3 和 G 24 为 2 个 酮羰基的 化合物。Xu 等<sup>[28]</sup> 从 大戟 科植 物甘 青 大戟 Euphorbia micractina Boiss 的根中分离得到 C-3 为导 OH,并在侧链上连有过氧基的甘遂烷型三萜(27~33),其中 化合物 28 用 CD 谱确定了绝对构型, 令人遗憾的是该 7 个化 合物对 A2780 卵巢癌细胞株、蛋白酪氨酸磷酸酶 1B (PTP1B)和HIV复制这3个细胞实验均没有显示出活性。 Sang 等<sup>[37]</sup> 从楝属植物川楝 Melia toosendan Sieb et Zucc 中 分离得到 C-21 呈羧基碳, C-3 位为差向异构体的 2 个化合物 34 和 35, 二者对 3 种肿瘤细胞株均无活性(IC50 > 10<sup>µ</sup>mol/L)。



# 图 3 边链呈四氢吡喃环和七元氧环的甘遂烷型三萜

Fig. 3 Tirucallane type triterpenoids with side chain containing tetrahydropyran and heptacyclic ring Haba 等<sup>[29]</sup> 从大戟科植物 Euphoria retusa Forsk 中分离得 到 C-3 为一不饱和 C<sub>10</sub> 脂肪酸取代的甘遂烷型三萜(36)。 Grosvenor 等<sup>[25]</sup>从苦木科植物 Simarouba amara Aubl 中分 离得到化合物 37~39, 其中 39 是 C 5 为 β O H, Δ<sup>8(9</sup> 的三 萜。同样 Wang 等<sup>[27]</sup> 在大戟科植物甘遂 Eup horbia kansui L 中分离得到1个甘遂烷型三萜表甘遂酮(epi-kansenone, 40)。Ukiya 等<sup>[38]</sup>从 Helianthus annuus L. 中分离到 6 个 C-3和 G4 裂环,并且 G19 甲基重排的甘遂烷型三萜化合物 (41~46),该类型的化合物经药理实验测试对 EBV- EA 的抑 制率在 97%~ 100%。

Liu 等<sup>[39]</sup>从 Dysoxylum variabile Harms 中分离得到 8 个甘遂烷型三萜 dyvariabilins A~ H(47~54),其中化合物 48~50的 C-7和 C-8 形成一个环氧基,这也是楝科植物所含 化学成分容易氧化、裂环的一个化学依据。值得关注的是, 化合物 47 在酸性溶液中侧链结构极其不稳定,容易形成甘 遂烷型半合成中间体;化合物 48~50 显示出对 KB 细胞微弱 的细胞毒活性。Jolad 等[17] 从 Trichilia hisp ida 中分离得到 边链含氧取代较高的甘遂烷型三萜类化合物(55~60)。Liu 等<sup>[30]</sup> 从漆树科植物 Ozoroa insignis Del (Heeria insignis Del) 中分离得到 8 个 C-21 为甲基氧化成羧酸或羧酸甲酯的 化合物 61~68、并且双键位置在 C 8 和 C 9 位。 C 21 甲基被 氧化的甘遂烷型化合物 69~73 由 Orisadipe 等[11] 从非洲楝 属植物 Entandrophragma angolense(Welw.) C DC 的叶 子中分离得到,其中化合物 70~73 的 A 环 C 3 和 C 4 发生 裂解,C-3 碳氧化成羧酸。此外,从 Juliania adstringens 中 分离得到甘遂烷型 C-27 末端甲基氧化成羧酸的甘遂烷型三 萜(74~80)<sup>[3]]</sup>。罗晓东等<sup>[9]</sup>从楝科坚木属海南樫木 Dysoxylum hainanense Merr. 中分离得到含 38-0H 的化合物 81~ 86。在樫木属中以甘遂烷型类三萜化合物居多, Mohamad 等<sup>[8]</sup> 从 Dysoxylum macranthum C DC 中分离得到化合物 87~98,其中化合物88、89、95和97对KB细胞显示出中等 强度的活性(IC<sub>50</sub>为 5.6、5.0、8.3、1.0<sup>µ</sup>g/mL)。Benosman 等[4] 从米仔兰属植物 Aglaia leucop hylla King 茎皮中分离 到含甲氧基的甘遂烷型三萜(99)。Kumar 等<sup>[21]</sup> 从 Paramignya monophylla 的果实中分离得到化合物 100~103。Li ang 等<sup>[33]</sup>从 Aucoumea klaineana 中分离到了甘遂烷型三萜 104~105。化合物 26~105 的结构式见图 4。

2.3 降碳类甘遂烷型三萜:甘遂烷型化合物中通常能失去4个 碳的边链,许多具有呋喃环含氧取代很高的复杂柠檬苦素类型 化合物的前体物质就是甘遂烷型三萜,本文主要是针对前体柠 檬苦素类原型化合物进行综试,不涉及母核结构高度氧化和结 构复杂的四降三萜。Wu 等<sup>20</sup>从Xylocarpus moluccensis 中分离 到一个末端为 $\alpha$ ,  $\beta$  不饱和羧基的  $C_{27}$  甘遂烷型三萜(106)。 Chen 等<sup>[14]</sup>从 Toona ciliata 中也分离得到一个降 3 个碳的链状 化合物 107。Liu 等<sup>30</sup>从 Ozoroa insignis 分离得到化合物 108. 该化合物的 G 21 甲基氧化成羧酸酯,并且末端是个醛基。Yang 等<sup>[40]</sup> 从Amoora dasy clada (How et T. Chen) C. Y. Wu 中分离 到降 4 个碳的化合物 109 和 110. 化合物的 C 21 和 C 23 通过一 个氧原子形成四氢呋喃环, 而 G 23 为一羰基, 可能跟降掉的碳 链有关。化合物 106~110 的结构式见图 5。

2.4 其他类: Sang 等[37] 从楝科植物川楝中分离到一个 C30 类型的原柠檬苦素(111),该化合物的最大结构特征是 C-17 边链形成了一个五元的碳环,是迄今为止分离得到的 C-17 边链中第一个具有五元碳环结构的甘遂烷型三萜,而该化合 物的侧链是如何环合成碳环有待进一步的生源推测。Schun 等[41] 从 Gyrinops walla Gaertn 中分离得到一个母核为 32 个碳的化合物 112, 该化合物比正常的三萜多了一个烯碳和 末端甲基。化合物 111 和 112 的结构式见图 6。

3 甘遂烷型化合物<sup>13</sup> C NMR 规律

甘遂烷型三萜的四环母核体系比较固定,G3位可变化 为羰基、 $\alpha$ -OH 和  $\beta$ -OH: 双键存在位置为  $\Delta^{7(8)}$ 、 $\Delta^{8(9)}$ 和 △<sup>7(8,9(1)</sup>; 侧链变化主要是形成 C-21 位的差向异构体以及含 氢取代情况的不同。下面主要对甘遂烷型三萜类化合物的 典型碳信号进行归纳。

G3为羰基的化合物,其碳信号一般在 $\delta_c 216 \sim 217(s)$ ; G 3为 $\alpha$ -OH 的化合物,其碳信号一般在 $\delta_c$ 76~77(d);而如 果  $C 3 \beta^{\beta} OH$  的化合物, 其碳 信号 比  $\alpha OH$  的化合物处于 低场,一般在 \delta c 78~ 80(d)。





图 6 其他类甘遂烷型三萜 Fig. 6 Other tirucallane type triterpenoid

112

111

端, 双键碳周围没有取代基取代则两个碳的化学位移相差很小, 一般 G 9 比 G 8 位于低场, G 8 位季碳信号一般在  $\delta_c 133 \sim 134(s)$ , 而 G 9 位季碳信号一般在  $\delta_c 134 \sim 135(s)^{[30]}$ ; 如果有 G 7 羰基取代, 则 G 7 位季碳信号一般在  $\delta_c 138 \sim 140(s)$ , 而 C 8 位季碳信号急剧向低场位移一般在  $\delta_c 163 \sim 167(s)^{[28]}$ ; 如果 有 G 9 羰基取代, 则 G 7 位季碳信号一般在  $\delta_c 163 \sim 167(s)^{[28]}$ ; 如果 有 G 9 羰基取代, 则 G 7 位季碳信号一般在  $\delta_c 163 \sim 167(s)^{[28]}$ ; 如果 6 8 位季碳信号位移一般在  $\delta_c 155 \sim 157(s)^{[31]}$ 。

侧链如果成四氢呋喃环,则 C-21 位常会被甲氧基、乙氧 基或正丁氧基等取代,且  $\alpha$  取代比  $\beta$  取代位于低场, C-21  $\alpha$  OR 碳信号的化学位移一般在  $\delta_c$  109 ± 0. 5(d), 而 C-21  $\beta$  OR 碳 信 号的化学位移一般处在相对较高场  $\delta_c$  105 ± 0. 5(d)<sup>[3,12]</sup>。

侧链上的双键碳信号也比较典型,在四氢呋喃环 C-23 位上的4个碳链的双键  $\Delta^{24(25)}$ , C-24 次甲基碳信号一般在  $\delta_c 126 \sim 129(d)$ , C-25 季碳信号一般在 $\delta_c 134 \sim 136(s)$ 。如果 C-23为羰基、 $\Delta^{24(25)}$ ,则其 C-23 季碳信号一般在  $\delta_c 198 \sim 202$  (s), C-24 次甲基碳信号一般在  $\delta_c 122 \sim 125$ (d), C-25 季碳信 号一般在  $\delta_c 154 \sim 157$ (s); 如果 C-23 为羧基、 $\Delta^{24(25)}$ ,则其 C-23 次甲基碳信号一般在  $\delta_c 67 \sim 68$ (d), C-24 次甲基碳信号一 般在  $\delta_c 128 \sim 129$ (d), C-25 季碳信号一般在  $\delta_c 134 \sim 136$ (s)<sup>[8,1]</sup>。

侧链上的含氧取代碳信号的数据归属 $^{[9,14,39]}$ 见图 7, 一般成三元氧环的化合物碳信号在 $\delta_c$  58~68, 而直接有羟基取代的碳信号一般在 $\delta_c$  70~80。



#### 图 7 甘遂烷型三萜侧链含氧取代的碳化学位移

### Fig. 7 Carbon chemical shifts of oxygen substitute in side chain of tirucallane type triterpenoids

### 4 结语

甘遂烷型三萜是一类柠檬苦素的前体物质,药理研究显 示该类化合物对 KB 细胞显示出一定的活性,但对其他类型 的肿瘤细胞只有微弱的活性或无活性。文献资料显示甘遂 烷型三萜具有极显著的昆虫拒食活性,故可以开发成植物源 的农药,这也是目前人类崇尚自然的不二选择,将给研究类 似甘遂烷型三萜带来极大的机遇。本文综述了甘遂烷型三 萜类化合物的植物分布和化学结构分类,以期为将来从事该 类化合物的研究提供基础。从目前对甘遂烷型三萜化合物 的研究来看,该类化合物的分离数量还是有限,用单体化合 物进行昆虫拒食活性的报道更少。因此,研究该类化合物的 构效关系,对将来真正地开发新植物源农药具有重大的社会 意义。

# 参考文献:

- Kundu A B, Ray S, Chatterjee A. Aphananin, a triterpene for Aphanamix is polystachy a [J]. Phytochemistry, 1985, 24(9): 2123 2125
- Puripattanavong J, Weber S, Brecht V, et al. Phytochemical investigation of A glaia and amanica [J]. Planta Med, 2000, 66(8): 740 745
- [3] Xie B J, Yang S P, Chen H D, et al. Agladupols A E, triterpenoids from A glaia duper reana [J]. J Nat Prod , 2007, 70 (9): 1532 1535
- [4] Benosman A, Richomme P, Sevenet T, et al. Tirucallane triterpenes from the stem bark of A glaia leucophylla [J]. Phytochemistry, 1995, 40(5): 1485 1487.
- [5] Yang S M, Ma Y B, Luo X D, etal. Two new tetranortriterpenoids from A moor adasyclada [J]. Chin Chem Lett, 2004,

15(10): 11871190

- [6] Siddiqui S, Siddiqui B S, Faizi S, et al. Tetracyclic triterpe noids and their derivatives from Azadirachta indica [J]. J Nat Prod, 1988, 51(1): 30-43
- [7] Campos A M, Oliveira F S, Machado M I L, et al. Triterpenes from Cedrela odorata [J]. Phytochemistry, 1991, 30 (4): 1225 1229
- [8] Mohamad K, Martin M T, Litaudon M, et al. Tirucallane triterpenes from Dysoxy lum macranthum [J]. Phytochemistry, 1999, 52(8): 1461-1468
- [9] Luo X D, Wu S H, Ma Y B, et al. Tirucallane triterpenoids from Dysoxy lum hainanense [J]. Phytochemistry, 2000, 54 (8): 801-805.
- [10] Hisham A, Ajitha Bai M D, JayaKumar G, et al. Triterpe noids from Dysoxylum malabaricum [J]. Phytochemistry, 2001, 56(4): 331-334
- [11] Orisadipe A T, Adesomoju A A, D Ambrosio M, et al. Tirucallane triterpenes from the leaf extract of Entandrophragma angolense [J]. Phytochemistry, 2005, 66(19): 2324 2328
  [12] Yuan T, Zhang C R, Yang S P, et al. Limonoids and Triter-
- [12] Yuan T, Zhang C R, Yang S P, et al. Limonoids and Triterpenoids from K haya senegalensis [J]. J Nat Prod, 2010, 73 (4): 669 674.
- [13] Zhang Y, Tang C P, Ke C Q, et al. Limonoids and triterper noids from the stem bark of Melia toosendan [J]. J Nat Prod, 2010, 73(4): 664-668
- [14] Chen H D, Yang S P, Wu Y, et al. Terpenoids from Toona ciliate [J]. J Nat Prod, 2009, 72(4): 685 689.
- [15] Inada A, Konishi M, Murata H, et al. Structures of a new limonoid and a new triterpenoid derivative from pericarps of *Trichilia connaroides* [J]. J Nat Prod, 1994, 57(10): 1446 1449
- [16] Tinto W F, Jagessar P K, Ketwaru P, et al. Considents of Trichilia schomburgkii [J]. J Nat Prod, 1991, 54(4): 972 977.
- [17] Jolad S D, Hoffmann J J, Schram K H, et al. Constituents of Trichilia hispida (Meliaceae) 4 Hispidols A and B, two

new tiru callane triterpenoids [J]. J Org Chem, 1981, 46 (20): 4085 4088

- [18] Purushothaman K K, Duraiswamy K, Connolly D, et al. Triterpenoids from Walsura piscidia [J]. Phytochemistry, 1985, 24(10): 2349-2354
- Govindachari T R, Krishna Kumari G N, Suresh G, et al. [19] Triterpenoids from Walsura piscidia [J]. Phytochemistry, 1995, 39(1): 167-170
- [20] Wu J, Yang S X, Li M Y, et al. Limonoids and tirucallane derivatives from the seeds of a krishna man grove, Xylocarpus moluccensis [J]. J Nat Prod, 2010, 73(4): 644-649
- Kumar V. Nivaz N M M. Wickramaratne D B M. et al. [21] Tirucallane derivatives from Paramigny a monophylla fruits [J]. Phytochemistry, 1991, 30(4): 1231-1233
- Gray A I, Bhandari P, Waterman P G. New protolimonoids [22] fromt he fruits of Phellod endron chinense [J]. Phytochemistry, 1988, 27(6): 1805-1808
- [23] Yan C, Wang Y, Du H, et al. A new triter penoid from the fruits of Phellodendron chinense var glabriusculum Schneid [J]. Chin J Chem, 2008, 26(7): 1343-1345.
- Sherman M M, Borris R P, Ogura M, et al. 3S, 24S, 25 [24] Trihydroxytirucalt 7 ene from Ailanthus excelsa [J]. Phytochemistry, 1980, 19(7): 1499 1501
- [25] Grosvenor S N J, Mascoll K, McLean S, et al. Tirucallane, apotirucallane, and octanorapotiru callane triterpen se of Simarouba amara [J]. J Nat Prod, 2006, 69(9): 1315-1318
- [26] Arisawa M, Fujita A, Morita N, et al. Triterpenes from Simaba multiflora [J]. Phytochemistry, 1987, 26(12): 3301-3303
- [27] Wang LY, Wang NL, Yao XS, et al. Euphane and tirucallane triter penes from the roots of Euphorbia kansui and their in vitro effects on the cell division of x enopus [J]. J Nat Prod, 2003, 66(5): 630-633
- [28] XuWD, ZhuCG, ChengW, et al. Chemical constituents of the roots of Euphorbia micractina [J]. J Nat Prod, 2009, 72(9): 1620 1626
- [29] Haba H, Lavaud C, Magid A A, et al. Diterpenoids and trit erpenoids from Euphorbia retusa [J]. J Nat Prod., 2009, 72 (7): 1258 1264

- Liu Y H, Abreu P. Tirucallane triterpenes from the roots of [ 30] Ozoroa insignis [J]. Phytochemistry, 2006, 67 (13): 1309-1315
- [31] Makino M, Motegi T, Fujimoto Y. Tirucal lne type triterpe nes from Juliania adstringens [J]. Phytochemistry, 2004, 65(7): 891-896
- [ 32] Hou Y, Cao S, Brodie P J, et al. Euphane triterpenoids of *Cassip our ea lanceolata* from the Madagascar rainforest [J]. Phytochemistry, 2010, 71(5-6): 669-674
- [33] Liang G Y, Gray A I, Waterman P G. Tirucallane and olear ane triterpenes from the resin of Aucoumea klaineana [J]. Phytochemistry, 1988, 27(7): 2283-2286
- [34] Kamperdick C, Lien T P, Adam G, et al. Apotirucallane and tiru cal lan e triterpenoids from Luvunga sarmentosa [J]. J Nat Prod, 2003, 66(5): 675-678
- [35] Huang H C, Tsai W J, Morris-Natschke S L, et al. Sapirmusaponins FJ, bioactive tirucallane type saponins from the galls of Sapindus mukorossi [J]. J Nat Prod, 2006, 69(5): 763-767.
- Jolad S D, Hoffmann J J, Cole J R, et al. Constituents of [ 36] Trichilia hispida (Meliaceae) 2. A new triterpenoid, hispir done, and bour jot in olone A [ J]. J Org Chem, 1980, 45(15): 3132-3135
- Sang Y S, Zhou C Y, Lu A J, et al. Protolimonoids from [37]  ${\it M\ elia\ toosend\ an\ [\ J]}. \ \ J\ N\ at\ P\ rod\ ,\ \ 2009,\ \ 72(\ 5):\ \ 917\ 920$
- Ukiya M, Akihisa T, Tokuda H, et al. Sunpollenol and five [38] other rearranged 3, 4 seco-tirucallane type triterpenoids from sunflower pollen and their inhibitory effects on epstein barr virus activation [J]. J Nat Prod., 2003, 66(11): 1476-1479.
- [ 39] Liu H, Heilmann J, Rali T, et al. New tiru callane type trit erpenes from Dysoxy lum variabile [J]. J Nat Prod, 2001, 64(2): 159 163
- [ 40] Yang S M, Ma Y B, Luo X D, et al. Two new tetranortriterpenoids from A moor a dasyclada [J]. Chin Chem Lett, 2004, 15(10): 11871190
- [41] Schun Y, Cordell G A, Cox P J, et al. Wallenone, a C32 trit erpenoid from the leaves of Gyrinops walla [J]. Phytochemir stry, 1986, 25(3): 753-755

# 天然产物中蛋白酪氨酸激酶抑制剂的研究进展

朱文君,杨国红\*,林梦感,王奇巍,杨义芳\* (上海医药工业研究院中药研究室,上海 200040)

要:蛋白酪氨酸激酶作为抗肿瘤药物的靶点,在肿瘤的治疗中具有重要意义。天然产物中蛋白酪氨酸激酶抑 摘 制剂的寻找越来越受关注。就近年来文献报道的天然产物中蛋白酪氨酸激酶抑制剂按其结构类型加以综述,其结 构类型包括酚类、醌类、生物碱、甾醇等,其中酚类数量较多,尤其是含有多个羟基的芳环加一个侧链的化合物,同 时,一些比较有特点的海洋类化合物也显示了较好活性。

关键词: 天然产物: 蛋白酪氨酸激酶抑制剂: 抗肿瘤

中图分类号: R284 文章编号: 0253-2670(2010) 101739 06 文献标识码: A

# Advances in studies on protein tyrosine kinases inhibitors from natural products

ZHU Werrjun, YANG Guorhong, LIN Meng gan, WANG Qrwei, YANG Yrfang (Department of Chinese Materia Medica, Shanghai Institute of Pharmaceutical Industry, Shanghai 200040, China) Key words: natural products; protein tyrosine kinases (PTKs) inhibitors; antitumor

①收稿日期: 2010-01-12

有。 基金项目:国家自然科学基金资助项目(30901852);国家"重大新药创制"科技重大专项资助项目(2009ZX0930F007) 作者简介:朱文君,女,硕士研究生,研究方向为天然产物活性成分研究。