15-dihydrophyllochrysine 相反的绝对构型结构 (2β,15β)。

综上所述,确定化合物 I 的结构为 14β-hydrox-vviroallosecurinine,为一新化合物。

References:

- [1] Editorial Board of China Herbal, State Administration of Traditional Chinese Medicine, China. China Herbal (中华本草) [M]. Vol 4. Shanghai: Shanghai Scientific and Technical Publishers, 1999.
- [2] Rognan D, Boulanger T, Hoffmann R, et al. Structure and molecular modeling of GABAA receptor antagonists [J]. J Med Chem, 1992, 35(11): 1969-1977.

- [3] Lajjs N H, Guan O B, Sargent M V, et al. Viroallosecurinine and ent-phyllanthidine from the leaves of Breynia coronata [J]. Aust J Chem, 1992, 45(11): 1893-1897.
- [4] Arbain D, Birkbeck A A, Byrne L T, et al. The alkaloids of Margaritaria indica. Part 2. The structures of 4-epiphyllanthine, margaritarine and the structural revision of securinol A [J]. J Chem Soc Perkin Trans 1, 1991 (8): 1863-1869.
- [5] Beutler J A, Livant P. ¹³C-NMR assignments of the securinine alkaloids [J]. J Nat Prod., 1984, 47 (4): 677-681.
- [6] Arbain D, Byrne L T, Cannon J R, et al. The alkaloids of Margaritaria indica (Euphorbiaceae). The crystal structure and absolute configuration of the hydrobromide of (+)-15αmethoxy-14, 15-dihydrophyllochrysine [J]. Aust J Chem, 1990, 43 (2): 439-445.

绿升麻中具有抗肿瘤活性的三萜类化合物

范云双1,姚 智2,滕 杰3,潘 勤4,张富赓1,段宏泉3**

(1. 天津大学 药学院,天津 300072; 2. 天津医科大学 基础医学院,天津 300070; 3. 天津医科大学 药学院, 天津 300070; 4. 天津中新药业集团股份有限公司 研究开发中心,天津 300457)

关键词:绿升麻;环菠萝蜜烷型三萜类化合物;抗肿瘤活性

中图分类号:R284.1 文献标识码:A 文章编号:0253-2670(2007)02-0167-04

Triterpenoids from Actaea asiatica with antitumor activity

FAN Yun-shuang¹, YAO Zhi², TENG Jie³, PAN Qin⁴, ZHANG Fu-geng¹, DUAN Hong-quan³

College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, China;
School of Basic Medical College, Tianjin Medical University, Tianjin 300070, China;
School of Pharmacy,

Tianjin Medical University, Tianjin 300070, China; 4. R & D Center of Tianjin Zhongxin

Pharmaceutical Group Co., Ltd., Tianjin 300457, China)

Abstract: Objective To isolate and elucidate the antitumor constituents from the rhizoma of Actaea asiatica. Methods Chemical constituents were isolated by repeated column chromatography (Toyopearl HW-40C and HPLC) and their structures were elucidated on the basis of spectral data analysis. Results Seven cycloartane triterpeniods were isolated and identified to be 25-anhydrocimigenol-3-O-β-D-xylopyranoside (I), 25-O-acetyl cimicigenol-3-O-β-D-xylopyranoside (I), cimigenol-3-O-β-D-xylopyranoside (I), cimigenol-3-O-β-D-xylopyranoside (I), 24-O-acetyl shengmanol-3-O-β-D-xylopyranoside (23R, 24R) (V), 24-O-acetyl isodahurinol-3-O-β-D-xylopyranoside

收稿日期:2006-06-12

基金项目:天津医科大学科研基金资助(2004xk32)

^{*} 通讯作者 段宏泉 Tel:(022)23542838 E-mail:duanhq@tijmu.edu.cn

noside (\mathbb{M}), respectively. Conclusion Compounds I – \mathbb{M} are isolated from A. asiatica for the first time. Compounds I and I show significant inhibitory effects on HeLa and L929 cell lines of mice at the concentration of 30 μ g/mL.

Key words: Actaea asiatica Hara; cycloartane triterpenoids; antitumor activity

绿升麻为土家族传统药物,应用历史悠久,为毛 茛科植物类叶升麻 Actaea asiatica Hara 的根茎,主 要分布在我国的东北及内蒙古、河北、山西、陕西、甘 肃、青海、湖北、四川、云南、西藏东部。绿升麻味辛、 微苦,性平,具有散风热,祛风湿,透疹,解毒的作用。 湖北省鄂西地区土家族民间主要用于治疗风热头 痛、咽喉肿痛、风湿疼痛、风疹块、麻疹不透、百日咳、 子宫脱垂、犬咬伤等[1.2]。 文献曾报道从该植物中分 离鉴定了两个环菠萝蜜烷型三萜 26-deoxycimicifugoside 和 cimiaceroside[3]。笔者从石油醚和醋酸 乙酯提取物中分离得到7个菠萝蜜烷型三萜类化合 物,通过各种有机波谱解析鉴定了其化学结构,分别 为 25-脱水升麻醇-3-O-β-D-木糖苷(25-anhydrocimigenol-3-O-β-D-xylopyranoside, I), 25-Z 酰 升 麻 醇-3-O-β-D-木 糖 苷 (25-O-acetyl cimicigenol-3-O-β-D-xylopyranoside, I)、升麻醇-3-Oα-L-阿拉伯糖苷 (cimigenol-3-O-α-L-arabinopyranoside, II)、升麻醇-3-O-β-D-木糖苷(cimigenol-3-O-β-D-xylopyranoside, N)、3'-乙酰升麻醇-3-O-β-D-木糖苷(3'-O-acetyl cimigenol-3-O-β-D-xylopyranoside, V)、24-乙酰升麻醇-3-O-β-D-木糖苷[24-O-acetylshengmanol-3-O-β-D-xylopyranoside (23R, 24R), VI], 24-O-acetyl isodahurinol-3-O- β -D-xylopyranoside (W)。以上化合物均为首次从绿 升麻中分离得到,抗癌药理实验显示化合物 Ⅰ~Ⅵ 均具有不同程度的细胞毒作用,其中,化合物 [和]

1 仪器、材料及药材

核磁共振仪:Bruker AVANCE 300 instrument (TMS 内标)。制备高效液相色谱仪:日本分光公司 (JASCO),PU—1580(泵),RI—1530 和 UV—1575 (检测器)。制备色谱柱:YMC-Pack ODS-A SH-343-5(20 mm×250 mm)(YMC),Econosphere silica (22 mm×250 mm,10µm)(Alltech)。液质联用色谱仪:Alliance 2695,Quattro Micro TM ESI (Waters);Toyopearl HW — 40C (Tosoh,凝胶渗透色谱)。柱色谱和薄层色谱用硅胶均系青岛海洋化工厂生产,所用试剂均为分析纯。

在质量浓度 30 μg/mL 下对宫颈癌细胞(HeLa)和

小鼠成纤维细胞(L929)具有较强细胞毒作用。

绿升麻 A. asiatica Hara 采自湖北省鹤峰县, 由中南民族大学生命科学院万定荣教授鉴定,标本 (D20040901)存放于天津医科大学药学院。

2 提取和分离

绿升麻 2.6 kg,粉碎后用 95%乙醇加热回流提取 3 次,每次 6 h。提取液减压浓缩至浸膏 600 g,浸膏加水混悬后,分别用石油醚、醋酸乙酯、正丁醇进行萃取,得石油醚提取物 41 g,醋酸乙酯提取物 210 g,正丁醇提取物 31 g。石油醚提取物经硅胶柱色谱、凝胶渗透色谱、制备高压液相色谱分离得到化合物 I (25 mg)和 I (27.3 mg),醋酸乙酯提取物经硅胶柱色谱分离、制备高效液相色谱纯化得到化合物 II (6.3 mg)、№ (200 mg)、№ (8.0 mg)、№ (50 mg)、№ (15.5 mg)。

3 结构鉴定

化合物 I:白色无定形粉末。ESI-MS m/z:603 [M+H]+(分子式C₃₅H₅₄O₈)。¹H-NMR (CDCl₃)δ: 0.38,0.63(各 1H,d,J=4.1 Hz,H-19),0.86(3H,s),0.90(3H,d,J=6.4 Hz,H-21),0.95(3H,s),0.99(3H,s),1.10(3H,s),1.71(3H,s,CH₃-27),3.22(1H,dd,J=11.4,4.4 Hz,H-3),3.94(1H,brs,H-24),4.06(1H,s,H-15),4.25(1H,brd,J=8.7 Hz,H-23),4.43(1H,d,J=6.0 Hz,H-1′),4.87,5.01(各 1H,brs,H-26)。¹³C-NMR数据见表1。以上光谱数据与文献报道^[4]的数据基本一致,因此鉴定化合物为 25-脱水升麻醇-3-O-P-D-木糖苷。

化合物 I:白色无定形粉末。ESI-MS m/z:663 [M+H]+(分子式C₃₇H₅₈O₁₀)。¹H-NMR(CDCl₃)δ:0.33,0.62(各 1H,d,J=3.9 Hz,H-19),0.84(3H,s),0.88(3H,d,J=6.6 Hz,H-21),0.94(3H,s),0.98(3H,s),1.08(3H,s),1.41(3H,s),1.46(3H,s),2.02(3H,s,Ac),2.66(1H,d,J=8.4 Hz,OH-15),3.22(1H,dd,J=11.5,4.0 Hz,H-3),3.88(1H,br s,H-24),3.92(1H,d,J=8.4 Hz,H-15),4.38(1H,br d,J=9.1 Hz,H-23),4.46(1H,d,J=7.2 Hz,H-1′)。¹³C-NMR数据见表 1。以上光谱数据与文献报道^[5]的数据基本一致,因此鉴定化合物为25-乙酰升麻醇-3-O-D-木糖苷。

化合物 II: 白色无定形粉末。ESI-MS m/z: 621

 $[M+H]^+$ (分子式 $C_{35}H_{56}O_{9}$)。 1H -NMR (Pyr.) δ : 0. 28, 0. 52(各 1H, d, J=3. 6 Hz, H-19), 0. 87(3H, d, J=6. 4 Hz, H-21), 1. 05(3H, s), 1. 17(3H, s), 1. 20(3H, s), 1. 30(3H, s), 1. 46(3H, s), 1. 49(3H, s), 3. 50(1H, dd, J=11. 5, 4. 0 Hz, H-3), 3. 78(1H, br s, H-24), 4. 34(1H, s, H-15), 4. 77(1H, br d, J=8. 8 Hz, H-23), 4. 81(1H, d, J=7.1 Hz, H-1')。 13 C-NMR数据见表 1。以上光谱数据与文献报道 $^{[6]}$ 的数据基本一致,因此鉴定化合物为升麻醇-3-O- α -L-阿拉伯糖苷。

化合物 N:白色无定形粉末。ESI-MS m/z:621 [M+H]+(分子式 $C_{35}H_{56}O_{9}$)。 1 H-NMR (Pyr.) δ :0.27,0.51(各 1H,d,J=3.8 Hz,H-19),0.87(3H,d,J=6.4 Hz,H-21),1.08(3H,s),1.17(3H,s),1.20(3H,s),1.30(3H,s),1.48(3H,s),1.50(3H,s),3.50(1H,dd,J=12.1,4.0 Hz,H-3),3.79(1H,br s,H-24),4.26(1H,s,H-15),4.77(1H,br d,J=8.8 Hz,H-23),4.88(1H,d,J=7.4 Hz,H-1′)。 13 C-NMR数据见表 1。以上光谱数据与文献报道[^{7]}的数据基本一致,因此鉴定化合物为升麻醇-3-O- β -D-木糖苷。

化合物 V:白色无定形粉末。ESI-MS m/z:663 [M+H]+(分子式 $C_{37}H_{58}O_{10}$)。 1 H-NMR (Pyr.) δ : 0.30,0.52(各 1H,d,J=3.9 Hz,H-19),0.87(3H,d,J=6.4 Hz,H-21),1.03(3H,s),1.12(3H,s),1.20(3H,s),1.28(3H,s),1.49(3H,s),1.51(3H,s),1.99(3H,s,Ac),3.47(1H,dd,J=11.5,4.2 Hz,H-3),3.79(1H,br s,H-24),4.26(1H,s,H-15),4.78(1H,br d,J=8.8 Hz,H-23),4.87(1H,d,J=7.5 Hz,H-1′),5.76(1H,t,J=9.2 Hz,H-3′)。 13 C-NMR数据见表 1。以上光谱数据与文献报道[18 的数据基本一致,因此鉴定化合物为 3′-乙酰升麻醇-3-O- β -D-木糖苷。

化合物 W:白色无定形粉末。ESI-MS m/z:681 [M+H]+(分子式C₃₇H₆₀O₁₁)。¹H-NMR (Pyr.)δ:0.27,0.54(各 1H,d,J=3.9 Hz,H-19),1.00(3H,d,J=5.4 Hz,H-21),1.05(3H,s),1.27(3H,s),1.28(3H,s),1.32(3H,s),1.48(3H,s),1.50(3H,s),2.04(3H,s,Ac),3.51(1H,dd,J=11.5,4.0 Hz,H-3),4.19(1H,s,H-15),4.89(1H,d,J=7.3 Hz,H-1'),5.65(1H,d,J=8.0 Hz,H-24)。 13 C-NMR数据见表 1。以上光谱数据与文献报道[^{7]}的数据基本一致,因此鉴定化合物为 24-乙酰升麻醇-3-O- β -D-木糖苷。

表 1 化合物 I ~VII的13C-NMR数据

., Table 1 13C-NMR Data of compounds I - VII

	_						
No.	Ι *	Ι *	П * *	N * *	V * *	VI * *	VI * *
1	31.9	32.0	32.9	32.9	32.8	32.8	32.9
2	29.0	29.1	30.4	30.5	30.5	30.5	30.2
3	89.2	89.4	89.1	89.0	89.2	88.9	88.8
4	40.6	40.8	41.8	41.8	41.8	41.7	41.8
5	47.1	47.2	48.1	48.1	48.0	48.0	47.8
6	20.6	20.8	21.5	21.8	21.5	21.5	21.2
7	25.8	25.9	26.9	26.8	26.8	27.2	26.0
8	48.0	48.1	49.0	49.0	49.0	49.5	44.0
9	19.7	19.8	20.6	20.5	20.5	20.6	20.4
10	26.2	26.3	27.2	27.1	27.1	28. 1	27.5
11	26.0	26.1	26.8	26.9	26.8	26.9	26.2
12	33.5	33.6	34.6	34.6	34.5	34.5	31.4
13	41.5	41.8	42.4	42.4	42.3	42.6	40.4
14	46.8	47.0	47.8	47.8	47.8	47.2	55.4
15	79.5	79.5	80.6	80.6	80.6	83.3	214.3
16	111.6	111.6	112.5	112.4	112.2	103.5	84.7
17	59.2	58.8	60.1	60.1	60.0	60.9	52.7
18	19.1	19.2	20.0	20.0	20.0	20.8	20.7
19	30.7	30.8	31.3	31.3	31.3	31.1	31.4
20	23.4	23.6	24.6	24.5	24.5	27.1	33.6
21	18.9	19.1	20.0	19.9	19.9	22.1	21.3
22	37.7	37.7	38.7	38.5	38.6	34.6	38.7
23	74.8	71.7	72.4	72.3	72.3	75.1	79.4
24	86.4	86.3	90.6	90.6	90.6	82.9	80.2
25	144.4	82.5	71.4	71.3	71.4	71.6	72.5
26	113.4	21.7	25.9	25.9	25.8	26.1	27.2
27	17.6	23.0	26.2	26.2	26.0	29.4	28.7
28	10.9	11.0	12.2	12.2	12.2	12.2	18.0
29	25.2	25.6	27.5	27.6	27.6	26.0	26.1
30	14.8	15.1	15.9	15.8	15.8	15.8	15.8
1'	104.8	104.5	107.5	107.8	107.6	107.9	108.0
2'	72.3	72.4	73.4	75.7	73.5	76.0	76.0
3′	74.3	74.0	75.0	78.8	79.7	79.0	79.0
4′	69.4	69.7	69.7	71.6	69.6	71.6	71.7
5′	64.0	63.8	66.8	67.5	67.2	67.5	67.5
CO		170.3			170.7	171.7	171.5
CH_3		22.4			21.6	21.5	21.4

* CDCl₃, * * Pyr

化合物 W: 白色无定形粉末。ESI-MS m/z: 663 $[M+H]^+$ (分子式 $C_{37}H_{58}O_{10}$)。 1H -NMR (Pyr.) $\delta:$ 0. 27,0. 46(各 1H,d,J=4. 2 Hz,H-19),0. 93(3H,d,J=6. 2 Hz,H-21),1. 00(3H,s),1. 02(3H,s),1. 15(3H,s),1. 30(3H,s),1. 61(3H,s),2. 18(3H,s,Ac),3. 77(1H,dd,J=11. 4,4. 0 Hz,H-3),3. 79(1H,d,J=12. 5 Hz,H-16),4. 21(1H,H,H-23),4. 87(1H,d,J=7. 1 Hz,H-1'),5. 33(1H,d,J=2. 2 Hz,H-24)。 13 C-NMR数据见表1。以上光谱数据与文献报道 $^{[6]}$ 的数据基本一致,因此鉴定化合物为 24-acetylisodahurinol-3-O- $\beta-D$ -xylopyranoide。

4 体外抗癌活性实验

仪器、试剂和操作步骤详见本研究组的前期报

道[9],结果见表 2。

表 2 化合物 I ~ VII对 HeLa 和 L929 细胞生长的 抑制作用(n=6)

Table 2 Inhibition of compounds I - VI on HeLa and L929 cell growth (n=6)

化合物	抑制率/%							
	Н	eLa	L929					
-	30 μg/mL	10 μg/mL	30 μg/mL	10 μg/mL				
1	74.0	23. 1	81.0	10.9				
1	79.3	15.2	96.6	-2.9				
П	19.9	-3.0	2.4	-7. 5				
IV	18.4	11.5	14.7	11.9				
V	22.2	-2.9	74.5	53.2				
VI	7.3	-0.8	58. 5	15.3				
VI	29.8	-0. 3	78.1	25.1				

5 结果与讨论

环菠萝蜜烷型三萜类化合物 I ~ WI 首次从绿升麻植物中分离得到。抗癌药理实验显示化合物 I ~ WI 均具有不同程度的细胞毒作用,其中,化合物 I 和 I 在质量浓度 30 μg/mL 时对宫颈癌细胞(HeLa)和小鼠成纤维细胞(L929)具有较强细胞毒作用。从表 2 可以看到,化合物对不同的细胞株可能存在选择性。因此,在以后的研究中,应增加多种细胞株,以探讨其细胞毒选择性。而且,继续深入进行绿升麻中三萜皂苷类成分研究,积累化合物库,并进行衍生化,探讨其内在的药效关系,为进一步研究和开发利用绿升麻这一民族医药提供依据。

References:

- [1] Wan D R. Plant medicine commonly used in Tujia Nationality, Hubei Province (Ranunculaceae) [J]. *J Chin Med Mater* (中药材), 1990, 13(3): 13-15.
- [2] Editorial Board of China Herbal, State Administration of Traditional Chinese Medicine, China. China Herbal (中华本草)[M]. Shanghai; Shanghai Scientific and Technical Publishers, 1999.
- [3] Kusano A, Takahira M, Shibano M, et al. Studies on the constituents of Cimicifuga species. XXVI. Twelve new cyclolanostanol glycoside from the underground part of Cimicifuga simplex Wormsk [J]. Chem Pharm Bull, 1999, 47 (4): 511-516.
- [4] Pan R L, Chen D H, Si J Y, et al. Studies on the triterpenoid constituents from the aerial part of Cimicifuga foetida L. [J]. Acta Pharm Sin (药学学报), 2002, 37(2): 117-120.
- [5] Li C J, Chen D H, Xiao P G, et al. Studies on the chemical constituents from Cimicifuga dahurica [J]. Acta Pharm Sin (药学学报), 1993, 28(10): 777-781.
- [6] Shao Y, Harris A, Wang M F, et al. Triterpene glycosides from Cimicifuga reemosa [J]. J Nat Prod, 2000, 63(7): 905-910.
- [7] Shao Y, Harris A, Wang M F, et al. Studies on new triterpenoid constituents from the rhizoma of Cimicifuga foetida [J]. China J Chin Mater Med (中国中药杂志), 2003, 28
- [8] Zhang Q W, Ye W C, Che C T, et al. A new cycloartane saponin from Cimicifuga acerina [J]. J Asian Nat Prod Res, 1999, 2(1): 45-49.
- [9] Zhang F G, Hu R J, Zhang S Y, et al. Anticancer activity of diterpenes from Vernica sibirica in vitro [J]. Chin Tradit Herb Drugs (中草药), 2005, 36(10): 1520-1523.

胆木生物碱成分研究

宣伟东1,2,市 俊2,陈海生1*

(1. 第二军医大学药学院 天然药物化学教研室,上海 200433; 2. 解放军第 411 医院 南京军区药学专科中心,上海 200434)

摘 要:目的 研究胆木 Nauclea officinalis 的生物碱成分。方法 95%乙醇提取胆木带皮茎枝的化学成分,采用反复硅胶柱色谱、Sephadex LH20 凝胶柱色谱和 C-18 反相硅胶柱色谱分离纯化,通过光谱分析鉴定化合物的结构。结果 从醋酸乙酯部位分离得到 11 个成分,其中 9 个为吲哚类生物碱,2 个喹啉酮类生物碱,分别鉴定为:牛眼马钱托林碱(angustoline, I)、19-乙氧基牛眼马钱托林碱(19-O-ethylangustoline, II)、3-S-3,4-二氢牛眼马钱托林碱(3-S-3,4-dihydroangustoline, II)、3-R-3,4-二氢牛眼马钱托林碱(3-R-3,4-dihydroangustoline, II)、naucleamide A(V)、异长春花苷内酰胺(strictosamide, VI)、喜果苷(vincosamide, VI)、6'-异乙酰基长春花苷内酰胺(6'-acetyl-strictosamide, VI)、2'-异乙酰基长春花苷内酰胺(2'-acetyl-strictosamide, II)、短小蛇根草苷(pumiloside, X)、3-表短小蛇根草苷(3-epi-pumiloside, XI)。结论 化合物 I ~ XI 均为首次从该植物中分离得到。

关键词:乌檀属;胆木;吲哚类生物碱

中图分类号:R284.1

文献标识码:A

文章编号:0253-2670(2007)02-0170-04

收稿日期:2006-06-12

作者简介:宣传东(1971-),男(汉族),浙江诸暨人,2005 年毕业于第二军医大学药学院,获博士学位。现在解放军第 411 医院南京军区 药学专科中心工作,主要从事天然产物化学方面的研究。 Tel/Fax;(021)65280289 E-mail;wdxuan@hotmail.com *通讯作者 陈海生 Tel/Fax;(021)25074439 E-mail;haishengc@hotmail.com