

图 1 化合物 I 的结构及其关键的 HMBC(H ➤ C)和 NOE谱

Fig. 1 Structure and key-HMBC (H→ C) and NOE of compound I

References

- Gonzalez M C, Sentandreu M A, Rao K S, et al. Prenylated benzopyran derivatives from two *Polyalthia* species [J]. *Phytochemistry*, 1996, 43 1361–1364.
- [2] Hao X J, Yang X S, Zhang Z, et al. Clerodane diterpenes from Polyalthia cheliensis [J]. Phytochemistry, 1995, 39 447–448.
- [3] Jossang A, Leboeuf M, Cave A, et al. Alcaloides des annonacees, L: Alcaloides des Polyalthia cauliflora [J]. J Nat Prod, 1984, 47: 504-513.

- [4] Wu Y C, Duh C Y, Wang S K, et al. Two new natural azafluorene alkaloids and a cytotoxic apophine alkaloid from Polyalthia longifloria [J]. J Nat Prod, 1990, 53 1327-1331.
- [5] Zheng X C, Yang R Z, Xu R S, et al. Plagionicin A with C₅-O H, a new monotrahydrofuran acetog enin [J]. Acta Bot Sin (植物学报), 1994, 36 557-560.
- [6] Zhao G X, Jun J H, Smith D L, et al. Cytotoxic clerodane diterpenes from Polyalthia longifloria [J]. Planta Med, 1991, 57: 380-383.
- [7] Jolad S D, Hoffmann J J, Schram K H, et al. Uvaricin, a new antitumor agent from Uvaria acuminata (Annonaceaea)
 [J]. J Org Chem, 1982, 47: 3151–3153.
- [8] Fang X P, Riesere M J, Gu Z M, et al. Annonaceous acetogenins an updated review [J]. Phytochem Anal, 1993(4): 27-48.
- [9] Institutum Botanicum Kunmingense Academiae Sinicae Edita. Flora Yunnanica (云南植物志) [M]. Tomus 5. Beijing Science Press, 1991.
- [10] Ohmoto T, Ikeda K, Nomuru S, et al. Studies on the sesquiterpenes from Ambrosia elatior Linne [J]. Chem Pharm Bull, 1987, 35 2272-2279.

甘遂中巨大戟萜醇型二萜酯类化学成分的研究

潘 勤^{1,2}, 闵知大^{1*}

(1. 中国药科大学,江苏南京 210038, 2. 天津药物研究院,天津 300193)

摘 要:目的 分离鉴定甘遂 Euphorbia kansui 中巨大戟萜醇 (ingenol)型二 萜酯类化学成分。方法 运用波谱技术,尤其是 2DN M R技术 (¹H-¹ HCO SY, HSQC, HM BC和 NOESY 实验)进行结构鉴定。结果 分离得到 6个巨大 戟萜醇型二萜酯,确定了其中两个主要化合物的结构,分别为巨大戟萜醇 $-3-2'_E$, $4'_Z$ 癸二烯酯 -20-乙酸酯 [$3-O-(2' E, 4'_Z$ чecadienoyl) -20-O-acetylingenol](I) 和甘遂大戟萜酯 C(kansuiphorin C)(II) 结论 首次报道了I 的全 部 NM R数据和II 的碳谱数据,并利用多种 2DNM R技术对I 和II 的全部 NM R数据进行了归属。 关键词:甘遂;二萜;化学成分

中图分类号: R284.1 文献标识码: A 文章编号: 0253-2670(2003)06-0489-04

Studies on ingenol-type diterpene esters in root tuber of Euphorbia kansui

PAN $Qin^{1,2}$, MIN Zhi-da¹

(1. China Pharmaceutical University, Nanjing 210038, China; 2. Tianjin Institute

of Pharmaceutical Research, Tianjin 300193, China)

Abstract Object A study on the ingenol-type diterpene esters of *Euphorbia kansui* T. N. Liou ex T. P. Wang. Methods Their structures were elucidated by spectral analysis, especially 2DNM R (¹ H-¹ HCOSY, HSQC, HMBC and NOESY). **Results** Six ingenol-type diterpene esters were isolated successfully, two of them were identified as 3-O-(2'E, 4'Z-decadienoyl)-2O-O-acetylingenol (I) and kansuiphorin C (II). Conclusion NMR data of compound I and ¹³ CNMR data of compound II were first reported. On the basis of variety of 2DNMR experiments, NMR data of compound I and II were well as-

* 收稿日期: 2002-12-21

作者简介: 潘 勤(1970-),男,安徽安庆人,天津药物研究院副研究员,现在中国药科大学攻读博士学位,主要研究方向为活性天然产物化学与新药开发。 Tel (022)23006959 E-mail: ginpan022@ sina.com

° 490°

signed.

Key words the root tuber of Euphorbia kansui T. N. Liou ex T. P. Wang; diterpene; constituents

甘遂为大戟科大戟属植物甘遂 Euphorbia kansui T. N. Liou ex T. P. Wang 的块根, 主产于山 西、陕西等地,有泻水逐饮、破积通便之功,常配伍用 于治疗重症水肿 腹水等 甘遂为有毒中药、历版《中 华人民共和国药典》均有收载 甘遂的化学成分研究 表明,其主要有效成分为二萜酯类成分,且活性多 样,尤其是巨大戟萜醇(ingenol)型二萜酯类有显著 的抗癌、抗病毒活性等^[1~7]。因此有必要进一步对甘 遂中二萜类成分进行研究,以期对甘遂药材的质量 进行合理有效的控制,从而阐明其药效的作用机制 我们对山西产甘遂药材的化学成分进行了系统研 究,从中分离得到 6个巨大戟萜醇型二萜酯,在与文 献对照的基础上采用波谱技术,尤其是 2DNMR技 术,确定了其中两个主要化合物的结构,分别为巨大 戟萜醇-3-2'E,4'Z癸二烯酯-20-乙酸酯 [3-O-(2'E, 4[']Z-decadienoyl)-20-O-acetylingenol](I)和甘遂 大戟萜酯 C(kansuiphorin C)(II),首次报道了I 的 全部 NMR数据,并利用多种 2DNMR技术对I 和 II 的全部 NM R数据进行了归属。

1 仪器和试剂

核磁共振使用 Bruker Avance AV400型和 Bruker DRX500型超导傅里叶变换核磁共振谱仪, 5 mm BBI和超低温 TBI探头, CDCb(Aldrich公司 产)为溶剂, TMS为内标;质谱采用 Bruker APEX-II 型傅里叶变换离子回旋共振质谱仪(FT-ICRMS);红外光谱采用 PE931型红外分光光度计, 紫外采用岛津 UV 1600A测定; SP8800型 HPLC系 统, SP100紫外检测器和 Alltech 2000型蒸发光散 射检测器(ELSD)。柱色谱用硅胶为青岛海洋化工 厂生产,高效硅胶薄层色谱板和高效 C-18反相高效 薄层色谱板为美国 Alltech公司生产。

甘遂药材采收自山西运城,由运城市中药材公 司提供。

2 提取和分离

甘遂药材 20 kg,95% 乙醇回流提取,提取液减 压浓缩得浸膏,浸膏以水溶解,用石油醚 乙酸乙酯和 正丁醇依次萃取,回收石油醚部分得到 280 g提取 物 将该提取物经硅胶柱色谱分离,用石油醚-乙酸乙 酯梯度洗脱,含巨大戟萜醇型二萜部分以石油醚 丙 酮 环己烷 乙酸乙酯系统反复进行低压柱层析,得巨 大戟萜醇型活性二萜酯 I ~ VI,其中III~ VI仍在鉴 定中。将化合物I和II以 HPLC-ELSD法(65%甲 醇-水系统, Hypersil C-8色谱柱)检测纯度,均大于 98%。

3 鉴定

化合物 [: 无色油状物,质谱测定相对分子质量 为 540(C_{32} H⁴⁴ O⁷), UV λ_{max}^{MeOH} (lge): 264 nm (3.88), IR v^{KBr}_{max} cm⁻¹: 3 480, 1 720, 1 630 碳谱 DEPT 和 HSQC谱显示由 8个 C, 12个 CH, 6个 CH 和 6个 CH3组成, ¹HNMR与 3-O-(2'E, 4'Z-decadienoyl) ingenol^[5]的相似,但在 C-20位及其附近区域质子的 化学位移存在差异,提示1可能为 20位取代的巨大 载萜醇型二萜 质谱显示 I 的相对分子质量较 3-0-(2'E,4'Z-decadienoyl) ingenol^[5]多 58,同时I 的质 谱可见 m /z 503(M+ Na- CHB COOH),提示有乙 酰基取代。碳谱和氢谱(表 1)显示I 含 2,4癸二烯 酸取代,癸二烯酸的烯键顺反异构判断多依靠对 $J_{2',3'}$ 和 $J_{4',5}$ 值的大小进行^[1,7],但由于 H-4裂分复 杂,又常与二萜母环的 H-7位重叠,准确计算 J4,5 较困难。而利用烯键顺反异构体相邻质子间 NOE 现象的差异,可以简单而准确地对 2,4 癸二烯酸取 代的顺反异构进行判断。 I 的 NOESY(表 1)显示 H-2'与 H-3'无 NOE,而 H-4'与 H-5'存在 NOE,表 明 H-2与 H-3反式相关, H-4与 H-5顺式相关,即 癸二烯酸为 2E, 4Z-构型。巨大戟萜醇型二萜的有氧 取代多在 3,5,13,20位,分别以 H-3,5,13,20为观 察氢检查1 的异核远程相关 HMBC谱(表 1),结果 H-3, 20分别与 2, 4癸二烯酸取代基的 1位和乙酰 基相关,表明2,4-癸二烯酸取代和乙酰基取代分别 在二萜母环的 3和 20位。根据¹H-¹HCOSY, HSOC, HM BC, NO ESY 结果以及与 3-O-(2'E, 4'Z-decadienoyl)-20-O-acetylingenol^[7]对照核磁数据,对I 的 NMR数据进行归属 (表 1),同时确定化合物I 为巨大戟萜醇--3--2'E,4'Z 癸二烯酯--20-乙酸酯 [3-O-(2'E, 4'Z-decadienoyl)-20-O-acetylingenol](图 1)。

化合物II:无色油状物,质谱测定相对分子质量 为 478(C₂9 H₄O₆)。IR^{v^{KBr}}_{max} cm⁻¹: 3 500, 1 720, 1 610 氢谱与化合物I 近似,提示也为巨大戟萜醇型二萜, 同时较I 缺少了癸二烯酸取代基基团,多了一组苯 甲酰取代信息(表 2),进一步与 kansuiphorin C^[2]对 表 1 化合物 I 的核磁共振数据 (¹HNMR 400 MHz, ¹³CNMR 100 MHz, CDCl₃, TMS)

Table 1	NMR spectral data	a of compound [(¹ HNMR 400 MH z,	^b CNMR 100 MHz,	CDCb,	TM S)
---------	-------------------	-----------------	-------------------------------	----------------------------	-------	-------

碳位	¹ HNMR	¹³ CNM R	HSQC /DEPT	¹ H- ¹ HCOSY	HM BC	NOESY
1	5.99 br. s	132.14	СН	H–19	C-2, 3, 4, 10, 19	H-18, 19
2	-	136.14	С	-	-	-
3	5. 57 _s	82.70	СН		C-1, 2, 4, 5, 10, 18, $1'$	H-5, 19
4	-	85.05	С		-	-
5	3. 83 s	74.52	СН		С-3, 6, 7, 20	Н–3
6	-	136.06	С	-	-	-
7	6. 05 m	129.00	СН	н-8, 20	С-5, 9, 14, 20	н–20
8	4. 06 m	43.59	СН	H–7, 14	C-6, 7, 9, 14, 17, 20	H–11, 12a, 16
9	-	206. 22	С	-	-	-
10	-	71.99	С	-	-	-
11	2. 47 m	38.56	СН	H-12b, 18	C-12	H-8, 12 _a , 18
12a	2. 21 m	31.35	CH2	H-12b, 13	C-11, 13, 16, 18	-11, 12b
12b	1. 74 m	31.35	CH ₂	H–12a	C-11, 13, 16, 18	H–12a
13	0. 66 m	23.26	СН	H–12a /b, 14	С-8, 16, 17	H-14, 16, 18
14	0. 90 m	23.05	СН	н-8, 13	C-7, 15, 16, 17	н-8, 13
15	-	23.99	С	-	-	-
16	1. 00 s	28.47	CH ₃		C-13, 14, 17	Н-8
17	1. 02 s	15.47	CH ₃		C-13, 14, 16	
18	0. 95 d	17.25	CH_3	H-11	C-10, 11, 12	H-13, 14
19	1. 74 br. s	15.56	CH3	H–1	C-1, 2, 3	
20a	4. 68 d (12. 4)	66.70	CH ₂	H–7, 20b	C-5, 6, 7, Ac	H–7, 20b
20b	4. 43 d (12. 4)	66.70	CH ₂	H–7, 20a	C-5, 6, 7, Ac	H–7, 20a
Bz-1'	-	167.66	С	-	-	-
2'	5. 89 d (14. 8)	120.09	СН	H–3′, 4′	C-1', 3', 4'	
3'	7. 61 dd (14.8, 1.6)	141.04	СН	H-2', 4', 5'	C-1', 2', 4', 5'	H-4′
4'	6. 09 m	126.00	СН	H-2', 3', 5'	C-2', 3', 5', 6'	H–5′
5'	5. 85 m	142.87	СН	H-3', 4', 6'	C-3', 4', 6', 7'	H-4'
6'	2. 25 m	28.26	CH ₂	H–5′, 7′	C-4', 5', 7', 8'	H–3′, 5′
7'	1. 37	28.95	CH ₂	H–6′, 8′		
8'	1. 22 m	31.17	CH ₂	H–7′, 9′		
9'	1. 25 m	22.42	CH2	H-8', 10'	C-7', 8', 10'	
10^{\prime}	0. 84 t (10. 4)	13.95	CH ₃	H–9′	C-7', 8', 9'	
A c-1"	-	171.01	С	-	-	-
2″	1. 99 s	21.02	CH ₃		С–20, Ас	
4, 5–0H	3. 52 br. s	-	-			

照氢谱,完全一致 由于 kansuiphorin C与 kansuiphorin D为同分异构体,结构上仅仅是 C-3和 C-5位取代互换,且 kansuiphorin C可在放置中自然 部分转变为 kansuiphorin D,二者的氢谱仅是在乙 酰基取代上相差 ∂_0 . 12¹²¹,不易准确判断,但利用 HM BC,以 H-3为观察氢检查化合物II 的异核远程 相关情况(表 2),可见 H-3与乙酰基远程相关,不与 苯甲酰基远程相关,再以乙酰基的甲基为观察氢,可 见其仅与 H-3远程相关,从而确证乙酰基取代在 C-3位,与 kansuiphorin C的结构(图 1)一致 根据化 合物 I 和其他类似二萜的碳谱规律,利用¹H-¹HCOSY, HSQC, HM BC实验,对II 的碳谱进行合 理归属,结果见表 2

致谢:核磁由天津药物研究院中药现代研究部 核磁室程英莹助理工程师和北京微量化学研究所涂 光中研究员代测,质谱由中国科学院化学研究所国 家质谱中心辛斌副研究员代测。

References

 Wu T S, Lin Y M, Haruna M, et al. Antitumor agents, 119. Kansuiphorins A and B, two novel antileukemic diterpene esters from Euphorbia kansui [J]. J Nat Prod, 1991, 54(3): 823-829.

表 2 化合物II 的核磁共振数据 (¹HNMR 500 MHz,¹³CNMR 125 MHz, CDCl₃, TMS)

Table 2	NMR spectral data	of compound II	$(^{1}$ HNMR 500 MH z,	¹⁵ CNMR 125 MHz,	CDCb,	TMS
---------	-------------------	----------------	------------------------	-----------------------------	-------	-----

碳位	¹ HN M R	¹³ CNM R	HSQC/DEPT	¹ H ^{_1} HCOSY	HM BC
1	6. 13 d (1. 2)	132.54	СН	H–19	C-2, 3, 4, 9, 10, 19
2	-	135. 48	С	-	_
3	5.06 br s	82.87	СН		C-1, Ac
4	-	86. 03	С		-
5	5. 52 br. s	78.03	СН		
6	-	134. 52	С	-	-
7	6.05 m	126.18	СН	н-8, 20	C-5, 6, 8, 9, 14, 20
8	4.27 br. d (10.8)	43. 47	СН	H–7, 14, 20	C-6, 7, 9, 13, 14
9	-	206.05	С	-	-
10	-	72.04	С	-	-
11	2.54 m	38. 53	СН	H-12b, 18	C-4, 9, 10, 12, 13, 14, 18
12a	2.35 dd (9.8, 2.9)	31.07	CH2	H–12b, 13	C-9, 10, 11, 13, 14, 15, 18
12b	1.74 m	31.07	CH_2	H–12a, 13	C-9, 10, 11, 13, 14, 15, 18
13	0.69 m	23. 01	СН	H-12a/b, 14	C-7, 8, 11, 14, 15, 16, 17
14	0.94 d d (11.8, 8.3)	23. 23	СН	н-8, 13	C-7, 8, 9, 11, 12, 13, 16, 17
15	-	24. 27	С	-	-
16	1.06 s	28.38	CH ₃		C-13, 14, 15, 17
17	1.12 s	15. 55	CH_3		C-12, 13, 14, 15, 16
18	1.00 d (7.2)	16.92	CH ₃	H-11	C-1, 10, 11, 13
19	1.76 d (1.0)	15. 32	CH3	H–1	C-1, 2, 3
20	1.55 s	21. 25	CH ₃		C-5, 6, 7,, 9
Bz-CO-	-	166.34	С	-	-
1^{\prime}	-	129. 21	С	-	-
2', 6'	8.14 d (7.6)	130. 04	СН	H-3', 4', 5'	C-1', 3', 4', 5', Bz-CO-
3', 5'	7.46 t (7.6)	128. 39	СН	H-2', 4', 5', 6'	C-1', 2', 4', 6', Bz-CO-
4'	7.58 t (7.6)	133. 35	СН	H-2', 3', 5', 6'	C-1', 2', 3', 5', 6'
Ac-CO	-	172. 28	С	-	-
CH ₃	2.03 s	20.96	CH ₃		С-3, Ас-СО-
4-0 H	3.35 br. s	-	-		

[2] Pan D J, Hu C Q, Chang J J, et al. Kansuiphor in-C and D, cytotoxic diterpenes from Euphorbia kansui [J]. Phytochemistry, 1991, 30(3): 1018-1020.

- [3] Uemura D, Ohwaki H, Hirata Y. Isolation and structures of 20-deoxying enol new diterpene, derivatives and ingenol derivative obtained from "kansui" [J]. *Tetra Lett*, 1974, 29 2527–2528.
- [4] Uemura D, Hirata Y. New diterpene, 13-oxyingenol, derivative isolated from *Euphorbia kansui* Liou [J]. *Tetra Lett*, 1974, 29 2529-2532.
- [5] Matsumoto T, Cyong J C, Haruki Y. Stimulatory effects of ingenols from *Euphorbia kansui* on the expression of macrophage Fc receptor [J]. *Planta Med*, 1992, 58 255-258.
- [6] Zheng W F, Cui Z, Zhu Q. Cytotoxicity and antiviral activity of the compounds from *Euphorbia kansui* [J]. *Planta Med*, 1998, 64 754–756.
- [7] Wang L Y, Wang N L, Yao X S, et al. Diterpenes from the roots of Euphorbia kansui and their in vitro effects on the cell division of Xenopus [J]. J Nat Prod, 2002, 65 1246–1251.

