又据 13 CNM R及 DEPT谱,确定化合物 13 的结构为 槲皮素 $^{-3}$ -O 新橙皮糖苷。

化合物V: 白色粉末, mp 117 °C~ 118 °C (MeO H) MW: 182 分子式 Co HoOb IR vms cm⁻¹: 3 000, 2 980, 2 962, 2 918, 1 682 (C=O), 2 640, 1 585 (C=O), 1 050, 1 460, 1 420, 1 344, 1 300, 1 282, 1 230, 1 180, 1 127, 1 102, 1 020, 758, 624, MS m/z 182 (M⁺), 167 (M⁺ - CH₃), 139, 121 ¹ HNM R ô 3. 92 (6H, s, O CH⋈ 2), 7. 03 (1H, d, ⋤8 Hz, H-5), 7. 61 (1H, dd, J= 2, 8 Hz, H-6), 7. 72 (1H, dd, J= 2 Hz, H-2),结合¹³ CNM R数据与文献¹¬対照其 IR,¹ HN M R,确定化合物V 的结构为 3, 4二甲氧基苯甲酸 (3, 4-dimethoxy1 Benzoic acid)即藜芦酸 (veratric acid).

4 讨论

金莲花的复方制剂——金莲花冲剂作为抗病毒

性感冒药,临床疗效甚好。为了扩大药源,我们对其同属植物短瓣金莲花进行了初步研究,在体内体外抗病毒试验中,我们只观察了其对呼吸道核胞病毒的抑制作用,未见明显效果,但并不能就此说明金莲花无抗病毒活性。我们将继续观察金莲花对其他感冒病毒的作用,并加以深入研究。

参考文献

- 1 中国科学院中国植物志编委会、中国植物志、北京:科技出版 社、1979 27,85
- 2 金玉兰,李景道,张永鹤,等.延边医学院学报,1992,15(1):37
- 3 康少文,于永芳,王 沛,等.中草药,1984,15(6):7
- 4 中国科学院上海药物研究所植物化学研究室,黄酮体化合物鉴定手册,北京:科学出版社,1981:643
- 5 姚新生主编.天然药物化学.第二版.北京:人民卫生出版社, 1992 221
- 6 William S, Christine A, Harbr
ne JB, et al. Phytochem, 1971, $10(5):\,1059$
- 7 Sadtler Research Laboratories I N C. Sadtler Standard N M R Spectra. 1972 2194

(1999-12-21收稿)

黄山药化学成分的研究

长春中医学院新药研究中心 (130021) 董 梅 * 王本 $祥^*$ * 沈阳药科大学天然药物研究室 吴 立军

黄山药 Dioscorea panthaica Prain et Burkill为 我国特有的薯蓣科薯蓣属植物,主要分布于云南、贵州、四川、湖南等地区,根茎含薯蓣皂苷元 $1.7\% \sim 2.3\%$,生药能祛风除湿,清热解毒,可治胃病、风湿性心脏病、风湿性关节炎、跌打损伤、牛马炭疽病 1.5% 我们对其甾体皂苷类成分进行分离,通过硅胶柱色谱及 HPLC分离鉴定了 5个化合物: progenin(I), progenin(II),薯蓣皂苷 (dioscin, III),纤细皂苷 (gracillin, IV),pseudoproto-dioscin(V),其中I \sim IV 为已知化合物,V系首次从该植物中分得。

1 仪器和材料

熔点仪用 Yanoco MP-53显微熔点测定仪(温度未校正);红外光谱用 Shimadzu IR-27G型红外光谱仪;核磁共振谱用 Bruker ARX-300型光谱仪, GDN为溶剂; HPLC用 Shimadzu LC-8A高效液相色谱仪; HPLC柱用 phenomenex Cs 250 mm×10.00 mm;检测器用 Shimadzu SPD-6AV UV-VIS

检测器, 208 nm; 薄层色谱用硅胶 $H(10-40 \mu \text{ m})$, 柱色谱用硅胶 (200-300 B)均为青岛海洋化工厂生产。色谱用试剂均为分析纯 药材购自四川省; 薯蓣皂苷元 (dio sgeni n)购自 Sigma公司。

2 提取和分离

将黄山药的根茎 10 kg用 95% 乙醇加热回流提取 2次,提取液浓缩后,加水 10 L溶解,除去不溶物,水溶液浓缩得浸膏 500 g 取其中 50 g进行硅胶柱色谱,氯仿 甲醇梯度洗脱(9: 1~3:1),重结晶之后得到单体化合物 No. 25~29,I (15 mg), No. 30~34,II (19 mg), No. 37~41,III (50 mg), No. 48~50,IV (25 mg) 将 No. 66~72部分经 HPLC分离,60%甲醇洗脱,得化合物V (66 mg)

3 鉴定

化合物I:无色针晶(丙酮), mp 230°~ 231°、, IR^{MBr}_{max} cm⁻¹: 3 350(OH), 980, 915, 895, 865 (915 < 895, 示为 25R螺甾烷);化合物I (5 mg)加

^{*} 董 梅 女,1996年7月毕业于山东医科大学药学系,获理学学士学位。现于沈阳药科大学攻读药物化学博士学位,主要从事(1)天然药物活性成分的提取分离及结构鉴定的研究 (2)天然产物的体内、体外代谢研究 (3)天然产物的生物活性筛选、构效关系的研究 (4)天然抗肿瘤药物诱导肿瘤细胞凋亡的细胞内信号转导机制的研究。 ** 联系人

入 2 mol / L盐酸 (50% 乙醇配制) 10 mL,加热回流 2 h,冷却后过滤,经薄层显示与薯蓣皂苷元标准品 Rf 值一致 13 CNM R谱数据 (表 1)与 progeninlI 文献报道值一致 12 。

化合物II: 无色针晶 (丙酮), mp 239 [℃]~ 242 [℃], IR^{LRP}_{max} cm⁻¹: 3 600 ~ 3 200(OH), 980, 918, 900, 865(918 < 900, 25 R螺甾烷); 化合物II 按I 法酸水解,薄层显示与薯蓣皂苷元标准品 Rf值相同 ¹³ CN − M R谱数据 (见表 1)与 progeninIII的文献报道值一致 [³]。

化合物III: 无色针晶 (甲醇 乙酸乙酯), mp 276 [°]C~ 278 [°]C, IR ^{KBr}_{max} cm ⁻¹: 3 350 (0 H), 970, 910 < 892, 860 (25 R,螺甾烷), 化合物III按I 法酸水解,薄层显示与薯蓣皂苷元标准品 Rf值相同 ¹³ CNM R谱数据 (见表 1)与 dios cin的文献报道值一致 ^[4]。

化合物IV: 无色针晶 (甲醇 乙酸乙酯), mp 290 $^{\circ}$ C~ 291 $^{\circ}$ C , IR $^{\circ}$ MBr cm $^{-1}$: 3 350 (O H) , 970, 910 < 890, 855(25 R,螺甾烷). 化合物IV按I 法酸水解 ,薄层显示与薯蓣皂苷元标准品 Rf值相同 13 CNM R谱数据 (见表 1)与 gracillin的文献报道值一致 $^{[5]}$.

化合物V:白色粉末(甲醇 乙酸乙酯), mp 174 $^{\circ}$ C~ 176 $^{\circ}$ C, IR_{max}^{KBr} cm $^{-1}$: 3 470 $^{\circ}$ 3 280 (OH), 2 950, 1 380, 1 070 化合物V 按I 法酸水解,薄层显示与薯蓣皂苷元标准品 Rf值相同 13 CNM R谱数据 (见表 1)与 pseudoproto-discin 的文献报道值一致 16 .

表 1 化合物I~V的¹³CNMR谱数据

No·	I	II	III	IV	V
aglycone					
1	37. 4	37. 5	37. 5	37. 5	37. 6
2	30. 2	30. 2	30. 2	30. 1	30. 3
3	78. 2	78. 3	78. 8	78. 7	78. 7
4	39. 3	39. 0	39. 0	38. 7	39. 1
5	140. 9	140. 9	140.8	140.8	140. 9
6	121. 7	121. 8	121.8	121.9	121.9
7	32. 2	32. 3	32. 3	32.3	32.5
8	31. 6	31. 7	31. 7	31. 7	31. 6
9	50. 3	50. 3	50. 3	50. 3	50. 4
10	37. 0	37. 2	37. 2	37. 2	37. 2
11	21. 1	21. 1	21. 1	21. 1	21. 4
12	39. 9	39. 9	39. 9	39. 9	39. 8
13	40. 5	40. 5	40. 5	40. 5	43. 5
14	56. 6	56. 6	56. 7	56. 7	55. 2
15	32. 2	31. 8	31. 9	31. 8	34. 6
16	81. 1	81. 1	81. 1	81. 1	84. 6
17	62. 9	62. 7	62. 9	62. 9	64. 6
18	16. 4	16. 4	16. 3	16. 4	16. 2
19	19. 4	19. 4	19. 4	19. 4	19. 5
18	16. 4	16. 4	16. 3	16. 4	16. 2

续表 1

沃 化 1					
No.	I	II	III	IV	V
20	41.9	42. 0	42. 0	42. 0	103. 7
21	15.0	15.0	15. 0	15. 0	11. 9
22	109. 3	109. 3	109. 3	109. 3	152. 5
23	32. 2	32. 2	32. 2	32. 2	33. 6
24	29. 2	29. 3	29. 3	29. 3	23. 8
25	30.6	30.6	30. 6	30. 6	31. 6
26	66. 9	66. 9	66. 9	66. 9	75. 0
27	17. 3	17. 3	17. 3	17. 3	17. 4
Sugar					
glc(inner)					
1	102. 7	100. 4	100. 3	100. 0	100. 4
2	75. 6	79. 7	78. 1	77. 0	78. 1
3	76. 7	77. 9	76. 9	89. 6	76. 9
4	78. 2	71.8	78. 0	69. 6	78. 8
5	77. 2	77. 9	77. 8	77. 7	77. 8
6	61. 5	62. 9	61. 4	62. 5	61. 6
rha(1→ 4)					
1	102. 5		103. 0		102. 9
2	72. 9		72. 6		72. 6
3	72. 7		72. 9		72. 8
4	74. 0		74. 2		73. 9
5	70. 4		70. 5		70. 5
6	18. 6		18. 6		18. 7
rha(1→ 2)		102 1	102.0	102.2	102.0
1		102. 1	102. 0	102. 3	102. 0
2 3		72. 6 72. 9	72. 6	72. 5 72. 8	72. 6
3 4		72. 9 74. 2	72. 8 73. 9	74. 2	72. 9 74. 2
5		69. 5	69. 5	69. 6	69. 6
6		18. 7	18. 5	18. 7	18. 5
glc(+→ 3)		16. /	16. 3	10. /	10. 3
1				104. 6	
2				75. 0	
3				78. 5	
4				71. 5	
5				77. 9	
6				62. 5	
26-glc				02.5	
1					104. 9
2					75. 2
3					78. 5
4					71. 8
5					77. 9
6					62. 9

参考文献

- 1 中科院昆明植物所编著.云南植物志(第三卷).北京:科学出版社,1983 717
- Espejo O, Uavot J C. Jung H, et al. Phytochemistry, 1982, 21
 (2): 413
- 3 Watanabe Y, Sanoda S, Ida J, et al. Chem Pharm Bull, 1983, 31(10): 3486
- 4 李伯刚,唐易芳,时金花.植物学报,1986,28(4):409
- 5 Hirai Y, Sanoda S, Ida Y, et al. Chem Pharm Bull, 1986, 34 82
- Liang Z Z, Aquino R, Simone F D, et al. Planta Medica, 1988, 54(4): 344
- 7 Aquino R, Simone F D, Phytochemistry, 1985, 24(11): 2479

(1999-11-23收稿)