基于 HPLC-DAD-MS
的柴胡皂苷 A 的体外生物转化研究

于蓓蓓 1,2, 王亮 1,4, 尹利顺 4, 孙蓉 1,3*
1. 山东省中医药研究院，山东 济南 250014
2. 山东省中医药管理局 中药化学重点学科，山东 济南 250014
3. 山东省中医药管理局中药药理重点学科，山东 济南 250014
4. 山东中医药大学，山东 济南 250014

摘要：目的 对柴胡皂苷 A 进行体外生物转化，分析其体外代谢产物。方法 在人工胃液模拟胃酸环境下，将药物在大鼠肠内容物模拟肠道环境中，分别进行柴胡皂苷 A 的体外生物转化，采用 HPLC-DAD-MS
方法，分析鉴定代谢产物。结果 在人工胃液中，柴胡皂苷 A 可转化为柴胡皂苷 b 1, 柴胡皂苷 g, 在肠道菌群环境下，柴胡皂苷 A 可先转化为柴胡次皂苷 F，进一步转化为柴胡皂苷元 F。结论 模拟体内环境，柴胡皂苷 A 可转化为次生苷和苷元，采用 HPLC-DAD-MS
可以指认并鉴定其产物。柴胡皂苷 A 的药物分布与浓度反映其体内过程，应同时考察其次生代谢产物。

关键词：柴胡皂苷 A；生物转化；HPLC-DAD-MS；人工胃液；肠道菌群；柴胡皂苷 b 1；柴胡皂苷 g；柴胡次皂苷 F；柴胡皂苷元 F

中图分类号：R285.5 文献标志码：A 文章编号：0253 - 2670(2017)02 - 0333 - 06
DOI: 10.7501/j.issn.0253-2670.2017.02.019

Research on biotransformation of saikosaponin A in vitro based on HPLC-DAD-MS

YU Bei-bei1,2, WANG Liang1,4, YIN Li-shun4, SUN Rong1,3
1. Shandong Academy of Chinese Medicine, Jinan 250014, China
2. Key Discipline of Traditional Chinese Medicine Chemistry of Shandong Administration of Traditional Chinese Medicine, Jinan 250014, China
3. Key Discipline of Traditional Chinese Medicine Pharmacology of Shandong Administration of Traditional Chinese Medicine, Jinan 250014, China
4. Shandong University of Traditional Chinese Medicine, Jinan 250014, China

Abstract: Objective To study the biotransformation of saikosaponin A in vitro and analyze its metabolites. Methods Saikosaponin A was incubated in artificial gastric juice and intestinal contents of rats in anaerobic conditions, respectively, and the metabolites were analyzed and identified by HPLC-DAD-MS. Results By incubation of saikosaponin A in artificial gastric juice, saikosaponin b 1 and g were detected in the reaction mixture. By the anaerobic incubation of saikosaponin A with intestinal flora, prosaikogenin F was soon detected, but it was further converted to saikogenin F. Conclusion Saikosaponin A can be transformed to secondary glycosides and glycosides in artificial gastrointestinal environment. And the products can be identified by HPLC-DAD-MS. The distribution and concentration of saikosaponin A in vivo can not reflect its fate fully, and the metabolites should be considered simultaneously.

Key words: saikosaponin A; biotransformation; HPLC-DAD-MS; artificial gastric juice; intestinal flora; saikosaponin b 1; saikosaponin g; prosaikogenin F; saikogenin F

柴胡为伞形科植物柴胡 Bupleurum chinense DC. 或狭叶柴胡 Bupleurum scorzonerifolium Willd. 的干燥根，始载于《神农本草经》，列为上品；具有疏解退热、疏肝解郁、升降阳气之功效1-2。文献报道柴胡皂苷是柴胡主要化学指标和生物活性成分，现代药理研究表明，柴胡皂苷具有解热、镇静、抗?
炎、免疫调节、抗病毒、抗肝纤维化、抗肿瘤、止痛、抗炎、抗菌、保肝、抗炎等药理作用[5]。柴胡皂苷 A 是活性最强的柴胡皂苷类成分之一，但其结构不稳定。水解可使其结构发生变化[6]，口服生物利用度较低，在体内主要以代谢产物的形式存在[5a-b，其转化成的次生苷及苷元同样具有生物活性，如柴胡皂苷 b1 抑制 Na+、K+-ATP 酶的活性明显高于柴胡皂苷 A，但亦有活性减弱的情况存在[7]。本实验模拟药物口服后体内环境，研究柴胡皂苷 A 在人工胃液及肠道菌群作用下的生物转化，采用 HPLC-DAD-MS 法分析代谢产物，探讨其形成过程，为柴胡的物质基础及制剂研究提供依据。

1 仪器与材料

1200 系列高效液相色谱系统（美国安捷伦公司）；6320 离子阱质谱检测器（美国安捷伦公司）；BP211D 型电子天平（德国赛多利斯集团）；Simplicity 纯水仪（美国密理博公司）；LDZX-40KBS 立式压力蒸气灭菌器（上海申安医疗设备厂）；THZ-82B 气浴恒温振荡器（江苏金坛市医疗仪器厂）；VS-1300-U 型洁净工作台（苏州安泰空调技术有限公司）。

SD 雄性大鼠，体重约 200 ～ 250 g，购自山东大学实验动物中心，合格证，许可证号 SCXK(鲁)20130004。

柴胡皂苷 A（中国食品药品检定研究院，质量分数 ≥98%，批号 MUST-11052402）；柴胡皂苷 b1（成都曼斯特生物科技有限公司，质量分数 ≥98.5%，批号 MUST-13091109）。

日本三菱 MGC AnaeroPack 系列厌氧培养袋、厌氧气体袋及氧气指示剂；乙腈（Fisher Scientific）；厌氧培养液组成：37.5 mL A 液（0.78% KH2PO4）和 37.5 mL B 液（0.47% KH2PO4，1.18% NaCl，1.2% (NH4)2SO4，0.12% CaCl2，0.25% MgSO4·7H2O，混匀，再加入 0.5 g L-半胱氨酸，2 mL 25% L-抗坏血酸，50 mL 8% Na2CO3，牛肉膏 1 g，蛋白胨 1 g，营养琼脂 1 g，加蒸馏水至 1 L，最后调 pH 7.5～8.0[8]；人工胃液按《中国药典》2015 年版配制。

2 方法与结果

2.1 柴胡皂苷的 HPLC-DAD-MS 检测条件

2.1.1 色谱条件[1] 色谱柱为 Thermo ODS-2 hypercil（250 mm×4.6 mm，5 μm）；流动相为乙腈（A）-水（B）；梯度洗脱：0 ～ 50 min，25% ～ 90% A；50 ～ 55 min，90% A；柱温 25 ℃；体积流量 1 mL/min；检测波长 210 nm；进样量 10 μL。

2.1.2 质谱条件[10-11] 电喷雾离子源（ESI）；正负离子交替扫描；扫描级数 5 级；扫描范围 m/z 50 ～ 2 200；喷雾气压力 241.325 kPa（35 psi）；干燥气温度 350 ℃；干燥气体积流量 9 L/min；毛细管电压 4 000 V，分流比 4：1。

2.1.3 对照品溶液的配制 精密称取柴胡皂苷 A 和柴胡皂苷 b1 适量，以甲醇溶解并定容，0.45 μm 滤膜滤过，即得柴胡皂苷 A 和柴胡皂苷 b1 的混合对照品溶液。在上述条件下对照品溶液见图 1。

2.2 柴胡皂苷 A 在人工胃液中的转化

2.2.1 转化反应及产物处理 精密称取柴胡皂苷 A 1.0 mg，与 10 mL 人工胃液充分混合，用移液管分装于 0、1、2、3、4、5 号试管中，每管 1.5 mL，置 37 ℃恒温振荡器中。分别在 0、20、40、60、120、180 min 时间点各取 1 只试管，用 0.2 mol/L NaOH 调节 pH 值至 7.0，终止反应。样品液减压蒸干，用甲醇定容至 2 mL 量瓶中，0.45 μm 滤膜滤过，即得不同时间点的人工胃液转化产物样品液，同时做空白对照

2.2.2 转化产物分析与鉴定 采用“2.1”项下条件进行 HPLC-DAD-MS 检测分析，柴胡皂苷 A 在人工胃液中的转化产物 HPLC 图及总离子流图见图 2，转化产物在正、负离子模式下的碎片离子图见表 1。

峰 1：保留时间（tR）与柴胡皂苷 A 对照品一致，UV 全波长扫描给出 λmax 204 nm，MS2 裂解碎片离子均与对照品柴胡皂苷 A 一致，确定为反应底物原型柴胡皂苷 A。

峰 2：tR 为 19.525 min，与对照品柴胡皂苷 b1
图 2 柴胡皂苷 A 在人工胃液中转化产物 HPLC-DAD-MS² 谱图

Fig. 2 HPLC-DAD-MS² of transformation products of saikosaponin A in artificial gastric juice

一致，UV 全波长扫描给定 λ_max 242、252、261 nm，提示为异环共轭双烯结构[12]，MS² 裂解碎片离子与对照品柴胡皂苷 A 相似，但负离子模式下 MS² 给出 423.3 [M−gln−fuc−OH−CH₂OH]⁻，提示其苷元结构中含-CH₂OH，可能为柴胡皂苷 A 13,28-环氧醚键开环所形成的 28-CH₂OH 结构。因此，确定其为柴胡皂苷 b₁。

峰 3：t_R 为 18.925 min，UV 全波长扫描给定 λ_max 281 nm，提示为同环共轭双烯结构[12]，MS² 裂解碎片离子与对照品柴胡皂苷 A 相似，而其在负离子模式下 MS² 亦给出 423.3 [M−gln−fuc−OH−CH₂OH]⁻，提示其苷元结构中含-CH₂OH，可能为柴胡皂苷 A 13,28-环氧醚键开环所形成的 28-CH₂OH 结构。通过与文献中数据[13]比对，推测其为柴胡皂苷 g。

由此可见，柴胡皂苷 A 在人工胃液的酸性条件下，13,28-环氧醚键开环形成 28-CH₂OH 结构，得柴胡皂苷 b₁，再经双键重排得同环共轭双烯结构，即柴胡皂苷 g（图 3）。HPLC 外标法计算各时间点柴胡皂苷 A 和 b₁ 的量及转化率，发现柴胡皂苷 A 经与人工胃液共温孵，转化率随时间推移越来越高，见图 4。3 h 之后，柴胡皂苷 A 转化率达 70%；其中，59.2%转化为柴胡皂苷 b₁。

表 1 柴胡皂苷 A 及其在人工胃液中的转化产物的 HPLC-DAD-MS 数据

<table>
<thead>
<tr>
<th>峰号</th>
<th>t_R/min</th>
<th>UV λ_max/nm</th>
<th>碎片离子（正离子模式）</th>
<th>MS²</th>
<th>MS³</th>
<th>MS⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17.534</td>
<td>204</td>
<td>763.6 [M−H₂O+H]⁺, 601.6 [M−H₂O−gln+437.4 [M−2H₂O−gln−fuc+H]⁺</td>
<td>419.3 [M−3H₂O−gln−fuc+H]⁺</td>
<td>455.5 [M−H₂O−gln−fuc+H]⁺</td>
<td>419.3 [M−H₂O−gln−fuc+H]⁺</td>
</tr>
<tr>
<td>2</td>
<td>19.525</td>
<td>242, 252, 261</td>
<td>745.6 [M−H₂O+H]⁺, 601.6 [M−H₂O−gln+419.4 [M−3H₂O−gln−fuc+H]⁺</td>
<td>401.5 [M−4H₂O−gln−fuc+H]⁺</td>
<td>437.5 [M−2H₂O−gln−fuc+H]⁺</td>
<td>419.4 [M−3H₂O−gln−fuc+H]⁺</td>
</tr>
<tr>
<td>3</td>
<td>18.925</td>
<td>281</td>
<td>691.6 [M−H₂O−gln−fuc+H]⁺, 455.5 [M−H₂O−gln−fuc+H]⁺</td>
<td>419.3 [M−3H₂O−gln−fuc+H]⁺</td>
<td>401.5 [M−4H₂O−gln−fuc+H]⁺</td>
<td>437.5 [M−2H₂O−gln−fuc+H]⁺</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>峰号</th>
<th>MS³</th>
<th>MS⁵</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>799.5 [M−H]⁻</td>
<td>617.3 [M−gln]⁻</td>
</tr>
<tr>
<td>2</td>
<td>799.5 [M−H]⁻</td>
<td>617.3 [M−gln]⁻</td>
</tr>
<tr>
<td>3</td>
<td>799.5 [M−H]⁻</td>
<td>617.3 [M−gln]⁻</td>
</tr>
</tbody>
</table>

图 3 柴胡皂苷 A 在人工胃液中的转化产物

Fig. 3 Degraded products of saikosaponin A in artificial gastric juice
2.3 大鼠肠道菌群对柴胡皂苷 A 的转化影响
2.3.1 转化反应与产物处理 剪断大鼠，两端结扎后取下盲肠，取盲肠内容物约 5 g，加入 200 mL 大鼠
氨培养液中（含 10 mg 柴胡皂苷 A），期间通入氮气，玻璃棒搅匀后得肠菌转化液，用移液管分装（每
瓶 25 mL），分别置于厌氧培养袋中，加入氢氧气氛袋及氮气指示剂，封口，37 ℃厌氧状态下恒温振
荡。分别于 0、4、8、16、24 h 取出，用 10 mL 乙酸盐液 2 次，10 mL 盐酸盐液 2 次，萃取液合并
浓缩，用甲醇定容于 2 mL 量瓶中，0.45 μm 滤膜滤过，即为肠菌转化产物样品。同时做空白实验。
2.3.2 转化产物分析与鉴定 采用“2.1”项目条件下对肠道转化产物样品进行 HPLC-DAD-MS 检测分
析，HPLC 图请图 5 所示，总离子流图见图 6。转化产物在正、负离子模式下的碎片离子见表 2。将
峰 4 和 5 的 HPLC-DAD-MS 数据与文献报道[14-16] 比对，确定峰 4 为柴胡次皂苷 F，峰 5 为柴胡皂苷
元 F。

通过计算不同时点肠道液中柴胡皂苷 A 的量，与 0 时肠道液中柴胡皂苷 A 的量比较，得其转
化率。可见柴胡皂苷 A 与大鼠肠道内容物在厌氧状态下温孵，4 h 后其转化率达 90%，16 h 后转化
液中已检测不到柴胡皂苷 A。温孵 4 h 后反应液中检测到柴胡次皂苷 F，其量随时间延长而减少。温
孵 8 h 后反应液中检测到柴胡皂苷元 F，其量随时间延长而提高。具体见图 7 和 8。由此可知，
在厌氧状态下，柴胡皂苷 A 在肠菌液中发生水解反应，先脱去一分子葡萄糖，转化为柴胡次皂苷 F，
继续脱去一分子岩藻糖，最终转化为柴胡皂苷元 F。
3 讨论

柴胡是一味常用中药，柴胡皂苷 A 为柴胡药材中主要的皂苷类成分，本研究模拟体内环境对柴胡
皂苷 A 的转化过程进行研究，采用 HPLC-DAD-MS 方法对不同时间点反应产物进行分析，结合文献报
道推测反应产物结构。发现在胃酸环境下，柴胡皂苷 A 可迅速转化为柴胡皂苷 b1 和柴胡皂苷 g2。在肠
道菌群环境下，柴胡皂苷 A 可先转化为柴胡皂苷 F，进一步转化为柴胡皂苷元 F。因此，体内柴胡皂苷
A 的药物分布与浓度不能全面地反映其体内过程，应同时考察其转化产物。

柴胡皂苷 A 为五环三萜类皂苷。其苷元结构中 13、28 位之间的氧醚环不稳定，尤其在胃中酸性环
境下易发生开裂。在肠道菌的作用下，糖苷键发生水解反应，生成去掉一个或几个糖基的次生苷或苷
元。这是三萜皂苷肠道代谢的特征性反应，如甘草酸水解成 3-葡萄糖酸甘草次酸和甘草次酸[17]，
毛冬青皂苷 ilexaponin A1 转化为 ilexogenin A[8]，七叶树皂苷 Ia 水解为 21β-O- 巴豆酰基原七叶树苷苷
元和原-七叶树苷苷元[18]等，为肠道菌群所含酶水解酶系所起的作用。

转化生成的次生苷和苷元同样具有一定的生物活性，构效关系表明，柴胡皂苷的功效与柴胡皂苷
苷元配基糖基数的多少以及苷元的结构有关[6-7]。柴胡皂苷结构极不稳定，其生物利用度较低，在体
内主要以代谢产物的形式存在。因此，其在体内代谢情况直接影响药效，结合柴胡皂苷体内发挥药效
及毒性的物质基础研究，可以通过制备或给药方式的改变而起到增效减毒的作用。

传统中药以口服给药为主，用药后体内除了中药中所含原型成分外，还有大量代谢产物的存在，
这些吸收入血并随血液循环分布于各组织的化学成分才是中药发挥药效的直接物质基础，因此，
要揭示中药体内物质基础，代谢及代谢产物研究是不可或缺的一环。通过体外转化与体内药物代谢动
力学研究相结合，明确药物的代谢过程，才能阐明柴胡皂苷发挥药效的真正物质基础，从而得到更加
科学有效地应用。

参考文献
[3] 黄伟, 孙巍, 柴胡皂苷类成分化学与药理和毒理
作用研究进展 [J]. 中药药理与临床, 2010, 26(3):
71-74.
[4] 李军, 姜华, 张延萍, 等. 柴胡水煎液中柴胡皂苷
A 和 D 的溶出与转化差异 [J]. 中国药学杂志, 2014,
49(19): 1692-1696.
administration of saikosaponin-D increases corticosterone-releasing factor mRNA levels in the rat
[6] 王一飞, 邢光, 王广基, 等. 柴胡皂苷类物质体内代谢
[7] Hiai S, Yakooyama H. The effect of saikosaponin upon corticosterone secretion and affectation by hexadecanol
[8] 周秋丽, 张志强, 柴胡皂苷和甘草甜素抑制 Na+,
K+-ATP 酶活性的构效关系 [J]. 药学学报, 1996,
31(7): 496-501.
[9] 邱光, 李美芬, 林朝辉, 等. 大鼠能内脏对毛冬青皂
苷 ilexaponin A1 的代谢转化 [J]. 中药药学学报, 2011,
[10] 许望, 田瑞宽, 宋瑞, 等. 柴胡醋制前后柴胡皂苷
A、b1, c、d 的 LC-MS/MS 法测定及比较 [J]. 中药药
[11] 王益林, 王思敏. HPLC-MS/MS 测定小柴胡颗粒中柴
胡皂苷 A 与柴胡皂苷 d 的含量 [J]. 安徽医药, 2015,

