• 药材与资源 •

三七休眠调控因子 DOG 基因家族的全基因组鉴定及表达模式

黄 敏^{1,2,3},李朝林^{1,2,3}, 葛 娜^{1,2,3},贾金山^{1,2,3},王清艳^{1,2,3},张金燕^{1,2,3},陈军文^{1,2,3*}

- 1. 云南农业大学 西南中药材种质创新与利用国家地方联合工程研究中心, 云南 昆明 650201
- 2. 云南农业大学 云南省药用植物生物学重点实验室, 云南 昆明 650201

3. 云南农业大学 农学与生物技术学院, 云南 昆明 650201

摘 要:目的 研究三七 Panax notoginseng DOG (PnDOG)基因家族结构特征和表达模式及其在三七种子后熟休眠和萌 发的作用机制。方法 基于三七的全基因组和转录组数据,利用生物信息手段分析 PnDOG 家族的理化性质、基因结构、 系统发育关系、保守结构域、顺式作用元件和表达模式;探讨了外施赤霉素 (gibberellins,GA)和脱落酸 (abscisic acid, ABA)激素对三七种子的影响,以及 PnDOG 基因家族对这些外源激素的响应机制。结果 PnDOG 基因家族包含 16 个成 员,不均匀地分布在 8 条染色体上。PnDOG 基因都含有外显子,编码 216~514 个氨基酸,均为亲水性蛋白,亚细胞定 位预测显示均位于细胞核中。系统进化将 PnDOG 基因分为 3 个亚组,不同亚组成员的基因结构存在差异。共线性分析显 示,串联重复是 PnDOG 基因扩增的主要驱动因素。启动子顺式作用元件分析显示,PnDOG 基因的启动子区含有大量激 素响应、胁迫响应以及少量胚发育响应等元件。基因本体 (gene ontology,GO)和京都基因与基因组百科全书 (Kyoto encyclopedia of genes and genomes, KEGG)分析显示,PnDOG 基因可能在非生物应激和激素诱导中起作用。基因表达分 析和 qRT-PCR 分析显示,PnDOG 基因在三七不同组织中均有表达,并具有明显的组织特异性。部分 PnDOG 基因在三七 种子不同后熟阶段和激素处理下的表达量均存在显著差异。发现 PnDOG1和 PnDOG14 在种子中高表达且受激素强烈诱 导,其表达量随后熟时间的增加逐渐下降,推测 PnDOG1 和 PnDOG14 在种子中高表达且受激素强烈诱 导,其表达量随后熟时间的增加逐渐下降,推测 PnDOG1 和 PnDOG14 是调控三七种子后熟休眠的关键基因。结论 大 多数 PnDOG 基因的高表达可能与三七种子的后熟休眠形成有关,在后熟过程中通过响应激素信号调控种子休眠解除。 关键词:三七;种子休眠;DOG 基因家族;表达模式;外源激素

中图分类号: R286.12 文献标志码: A 文章编号: 0253 - 2670(2025)08 - 2898 - 16 DOI: 10.7501/j.issn.0253-2670.2025.08.024

Genome-wide characterization and expression pattern of dormancy regulator *DOG* gene family of *Panax notoginseng*

HUANG Min^{1, 2, 3}, LI Chaolin^{1, 2, 3}, GE Na^{1, 2, 3}, JIA Jinshan^{1, 2, 3}, WANG Qingyan^{1, 2, 3}, ZHANG Jinyan^{1, 2, 3}, CHEN Junwen^{1, 2, 3}

- 1. National and Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming 650201, China
- 2. Yunnan Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming 650201, China
- 3. College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China

Abstract: Objective To explore the characteristics and expression patterns of the Sanqi (*Panax notoginseng*) *DOG* (*PnDOG*) gene family, along with their regulatory mechanisms during after-ripening dormancy and germination. **Methods** Based on the whole-genome and transcriptome data, the physicochemical properties, gene structure, phylogenetic relationships, conserved structural (CS) domains, cis-acting elements and expression patterns of the PnDOG family were identified using bioinformatics tools. The gibberellins (GA) and abscisic acid (ABA) hormones were applied to *P. notoginseng* seeds to examine the response of *PnDOG* gene family to these exogenous hormones. **Results** *PnDOG* gene family contained 16 members, distributed unevenly on eight chromosomes. All *PnDOG* genes contained exons that encoded proteins ranging from 216 to 514 amino acids. These proteins were

基金项目: 云南省科技重大专项项目(202102AA310048);国家重点研发计划项目(2021YFD1601003);国家自然科学基金项目(81860676);国家自然科学基金项目(32160248)

收稿日期: 2024-12-01

作者简介:黄 敏(1998—),男,硕士研究生,研究方向为药用植物种质资源评价与利用。E-mail:473639957@qq.com *通信作者:陈军文(1976—),男,教授,从事药用植物生理与分子生物学研究。E-mail:cjw31412@163.com

classified as hydrophilic proteins, and subcellular localization predictions indicated that they were all localized in the nucleus. Phylogenetic analysis classified *PnDOG* genes into three distinct subgroups, revealing structural differences among the members of each subgroup. Covariance analysis indicated that tandem repeats were the primary contributors to the amplification of *PnDOG* genes. Analysis of the promoter cis-acting elements revealed that the promoter region of *PnDOG* genes was enriched with hormone-responsive and stress-responsive elements, while containing a smaller number of elements responsive to embryo development. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses showed that *PnDOG* genes might play a role in abiotic stress and hormone induction. Gene expression analysis and qRT-PCR analysis showed that *PnDOG* genes were expressed in different tissueswith obvious tissue specificity. The expression levels of *PnDOG* and *PnDOG14* was highly expressed in seeds of *P. notoginseng*, and induced strongly by hormone treatment. Moreover, their expression gradually decreased with the increase of stratification time, suggesting that *PnDOG1* and *PnDOG14* were hypothesized to be the key genes regulating after-ripening dormancy in *P. notoginseng* seeds. **Conclusion** The results indicate that the elevated expression of most *PnDOG* genes may be associated with seed after-ripening process by responding to hormonal signaling pathways.

Key words: Panax notoginseng (Burk.) F. H. Chen; seed dormancy; DOG gene family; expression pattern; exogenous hormone

种子休眠是某些植物在长期的系统发育过程 中,为抵抗外界不良环境条件在不断发展与进化 中形成的^[1]。根据种子的休眠机制将种子休眠划为 生理休眠、形态休眠、形态生理休眠、物理休眠和 综合休眠^[2-3]。外界环境变化时,种子感知环境信 号并做出应答,从而加深休眠或解除休眠。植物激 素信号在种子休眠解除过程中发挥重要作用^[4-5], 其中脱落酸(abscisic acid, ABA)诱导和维持休 眠状态,而赤霉素(gibberellins, GA)可以解除休 眠^[6-7]。缺乏 *CYP707A1* 和 *CYP707A2* 等 ABA 降 解基因时种子高度休眠^[8]。前人研究多集中于激素 及其信号通路基因协同调控种子休眠维持和解 除。然而目前研究缺乏有关种子休眠直接调控因 子的信息,及这些因子与激素之间的串扰。

DOG1 (delay of germination-1) 基因是 Bentsink 等^[9]在高度休眠的拟南芥 Arabidopsis thaliana Cvi 群体中借助数量性状基因座 (quantitative trait locus, QTL)定位发现并鉴定的。 DOG1 基因的表达水平越高,种子休眠程度越深, 是种子休眠的重要调控因子^[5]。拟南芥中 AtDOG1 不仅诱导低温成熟期种子原生休眠的产生,还参 与高温和长期冷藏层积种子次生休眠的形成^[9-11]。 油菜 Brassica napus L.中 BrDOG1 也参与诱导次 生休眠^[12]。小麦 Triticum aestivum L.中过表达 TaDOG1L4,种子休眠程度加深,RNAi 沉默 TaDOG1L4后,种子休眠水平下降^[13]。莴苣 Lactuca sativa L.中 LsDOG1 通过调节 microRNA(miR172、 miR156)的水平参与种子休眠^[14]。此外,DOG1 基 因作为负调节因子通过 ABA 途径,改变内源激素 平衡进而调节种子休眠^[15]。外源施加 ABA 促进 DOG1 基因的表达,增加种子对 ABA 的敏感性, 从而促进种子休眠^[16-17]。DOG1 基因与种子休眠高 度相关,然而目前关于 DOG 基因家族研究较少, DOG 基因家族的特征、表达模式及其响应外源激 素和调控种子休眠的分子机制尚不完全清楚。

三七 Panax notoginseng (Burk.) F. H. Chen 为 五加科 (Araliaceae) 人参属多年生草本植物,其 干燥根茎属于名贵中药材,临床多用于活血化瘀、 消肿止痛[18]。三七作为药用作物距今已有 400 多 年的种植历史[19]。三七主要在我国西南和华南部 分地区种植,其中云南作为三七的主产区,种植面 积达到 3.4 万 hm^{2[20]}。生产上三七种子是唯一繁殖 材料,三七种子属于形态生理休眠类型,具有明显 后熟特性[21-22]。种子采收时种胚尚未发育完全,需 要经过 60 d 沙层积,完成后熟才能正常萌发^[23]。 三七种子后熟过程中内源激素协同调控三七种子 休眠解除[24]。外源激素处理影响三七种子内源激 素平衡,从而调控休眠解除和种子萌发^[25]。 PnPP2C、PnGA2OX 等基因响应外源激素信号促 进种子休眠的解除[26-27]。前期对种子休眠的研究 主要集中在激素信号调控方面, DOG1 作为种子 休眠调控的关键基因,在三七中的研究依然处于 空白状态。本研究利用生物信息手段鉴定三七 DOG (PnDOG) 基因家族成员,并分析其基因结 构、保守结构域、系统发育关系、染色体定位,并 通过分析 PnDOG 基因在不同组织中的表达模式 及其对外源激素处理的响应,解析 DOG 基因家族 在三七种子休眠中的作用机制,本研究结果为药 用作物三七种子休眠调控及对外界环境的适应性研究提供新的思路。

1 材料与仪器

1.1 植物材料

2023 年于云南省文山市追栗街镇三七种植 基地(23°30'N,104°38'E)采收三年生植株(种 子由果实搓去外果皮获得),经云南农业大学孟 珍贵副教授鉴定为三七 *P. notoginseng* (Burk.) F. H. Chen 的花、根、茎、叶及成熟果实。

1.2 试剂及仪器

SteREO DiscoveryV.12 型电动体视显微镜 (德国蔡司); QuantStudio5 实时荧光定量 PCR 仪 (美国 ThermoFisher Scientific 公司); RNA 提取 试剂盒 (TAKARA MIniBEST Plant RNA Extraction kit)购自广州美基生物科技有限公司; 反转录试剂盒 (Vazyme HiScript III All-in-one RT SuperMix)和 SYBR 酶 (SYBR-Green qPCR Mix) 购自南京诺唯赞生物科技股份有限公司; CuSO4 购自上海易恩化学技术有限公司; ABA 和 GA 购 自上海源叶公司。

2 方法

2.1 试验设计

选取成熟、饱满和大小均一的三年生三七果 实,人工搓去红果皮,经 5% CuSO4 溶液消毒 30 min 后用蒸馏水清洗 2 次, 室内阴干得到洁净种 子[25]。以蒸馏水处理为对照,500 mg/LGA、10 mg/L ABA 溶液浸种处理 24 h (种子-浸种液 1:3)。激 素浸泡后种子用蒸馏水冲洗2次并于室内晾干,取 样置于-80 ℃保存。洁净种子按照种子与无菌河砂 体积比为1:5人工搅拌混合均匀,置于透气良好 的全网状筐内进行室内避光层积。层积湿度约为 25%,温度为(15±5)℃,未层积种子作为后熟 0d的样品, 层积后间隔 10d 取样(获取后熟 10~ 50 d 的种子), 置于-80 ℃保存。将 20 粒三七种子 沿胚纵切,置于电动体视显微镜下观察不同后熟时 期的胚、胚乳发育情况,拍照并测量其长度,计算 胚率(胚率=胚长/胚乳长)。分别选取经沙层积处 理的种子,置于含湿沙的培养皿中,每皿100粒, 每10天记录萌发种子数并计算萌发率(萌发率= 萌发种子数/种子数)。

2.2 *PnDOG* 家族成员全基因组鉴定与系统发育 树构建

Pfam 网站(http://pfam.xfam.org/)下载 DOG1

结构域的 HMM 文件 (PF14144)。以 HMM 文件 作为参考,利用 HMMER3.0 检索三七蛋白序列库 中 DOG 家族成员,参数设置 $E < 1 \times 10^{-5}$ 。获取的 蛋白序列提交在线软件 (https://www.ncbi. nlm.nih.gov/Structure/cdd/wrpsb.cgi)检测其结构域 并保存结构域完整的序列。共获取16个家族成员, 根据其在染色体的位置,由小到大重新命名。利用 在线网站 ProtParam (http://www.expasy.org/tools/ protparam.html/)进行理化性质分析,提交在线软 件(https://wolfpsort.hgc.jp/)进行亚细胞定位预测。 利用 SOPMA 在线工具(https://npsa-prabi.ibcp.fr/) 分析 PnDOG 蛋白的二级结构(包括 α-螺旋、β-折 叠、延伸链及无规则卷曲)。通过 MEGAX 软件, 采用 neighbor-joining 方法构建 PnDOG 家族成员 与拟南芥 DOG 家族成员的系统进化树,参数设置 Bootstrap=1000。进化树结果利用 evolview 线上 程序(https://evolgenius.info//evolview-v2/# login) 进行美化。

2.3 PnDOG 家族成员进化分析

从三七基因组 FASTA 文件与 GFF 文件获取 染色体长度信息与基因起始终止信息。MCScanX 程序获取三七与拟南芥、水稻的共线性基因,提 取具有共线性关系的 *PnDOG* 家族成员,TBtools 进行结果可视化^[28]。

2.4 PnDOG 家族成员蛋白序列保守基序与结构 域分析

MEGA11.0 软件对 PnDOG 基因进行多重序列比对。基于三七基因组注释文件,利用 TBtools 软件分析 PnDOG 家族基因的结构信息。PnDOG 家族成员蛋白序列提交在线软件(https://memesuite.org/meme/)进行保守基序(motif)预测,参数设置 motif=10。蛋白序列提交在线软件(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)获取结构域信息,参数默认,TBtools 进行数据可视化。

2.5 PnDOG 家族成员上游顺式元件预测

截取 *PnDOG* 家族成员上游 2 000 bp 序列提 交顺式元件线上预测平台(http://bioinformatics. psb.ugent.be/webtools/plantcare/html/),利用 Excel 统计结果,TBtools 可视化数据。

2.6 预测和富集分析

利用 Plant TFDB 4.0 (http://planttfdb.cbi.pku. edu.cn/) 用 TF 预测值来识别转录因子。进一步

通过 EggNOG 数据库 [基因进化谱系:非直系同 源群(http://eggnogdb.embl.de/#/app/emapper2)] 进行 *DOG* 家族转录因子预测和家族分析,预测 家族中转录因子的基因数目。利用 KEGG 数据库 (https://www.genome.jp/kegg/),对 *DOG* 家族通 路进行预测。利用 TBtools 软件进行 GO 富集分 析,精确检验设定显著性水平 P 值 \leq 0.05。

2.7 实时荧光定量 PCR (qRT-PCR)分析 *PnDOG* 基因表达模式

使用植物总 RNA 提取试剂盒提取三七不同

组织(根、茎、叶、花、果实、种子)、种子不同 后熟阶段(0、30、50 d)及外源激素处理后三七 种子的总 RNA,测定 RNA 浓度,通过 1%琼脂糖 凝胶电泳进行质量检测,利用反转录试剂盒将 RNA 反转录为 cDNA。使用 Premier 3.0 设计目标 基因的引物,产物大小设定在 70~300 bp^[29],引 物序列见表 1。qRT-PCR 试剂盒使用 SYBR-Green qPCR Mix,以 G6PDH (Gucose-6-Phosphate-Dehydrogenase)和 *Actin* 基因为内参基因,每个样 品 3 次重复,通过 $2^{-\Delta\Delta Ct}$ 法分析 qRT-PCR 的结果。

表 1 qRT-PCR 引物序列 Table 1 Primer sequences for qRT-PCR

基因名称	上游引物(5'→3')	下游引物(5'→3')
PnDOG1	ACGACGTTCTGTCCCTCTTC	CACTCAGACAACTCGTCGGT
PnDOG2	CCCTCGCTTACAGCCTATGG	GGAGTGATCTCCAGTGCTCG
PnDOG3	CAGATGCGGCAGTGTTTGAG	TTCATGAGGTCTGATGGGCG
PnDOG4	GTGTCGCCTCCTAACTACCC	CGTGGACGAGTAGCCCATAG
PnDOG5	ATTAGCCTGCATCCAGTCGG	GCCGCATCAGTTTGACTCAC
PnDOG6	TCTTTGGATCACGGGCTGG	CACAACCGTTCTTGACTCGG
PnDOG7	CAAGCGAAAAGTCCTGGCTC	GATGGTCTACACCCGGCAAT
PnDOG8	GGATTGGCGCAATTCCGTAG	TGTCGTCAAGATACGAGCGG
PnDOG9	AGCTGGAACCTCTTGTGAGC	CAATCCTTGAGCTGCTTGGC
PnDOG10	CAGCTGAACGTTGCTTCCTG	CCAATTGCTGCTCCGTTAGC
PnDOG11	CGCAAGGATTCAAGAGAGCG	CGTGAATCTCGCCGTCAATC
PnDOG12	ATGTGGGAGGACATGTTCGG	GTTAACCAGCCTTGCATCCG
PnDOG13	GGACCAGAAGACACTTCGCA	AGGCGACTGTTCTCCAACTG
PnDOG14	TGGCCAACTACATGGGTCAG	TGAGAGCGCGAAGACGATAG
PnDOG15	GGGAATGTGGAAAACGCCTG	TGCTGCAAGTTGGAAATGCC
PnDOG16	AGGCGAGTCAATGAGCTGAG	TAGTGTGCCAAGACTCCGTC
G_6PDH	GTGCTTCTGGTGATCTTGCC	TTCCTTATCCAGCAGCCGAT
Actin	GATTGATCTTGGCACCGGGA	TGACCAACCCACGACCTTTC

2.8 数据统计与分析

采用 GraphPad Prism 8.0.1 软件作图,所有数据使用 SPSS 26.0 单因素方差分析和 Duncan 多重比较方法进行显著性差异分析, P<0.05 为差异显著。

3 结果与分析

3.1 PnDOG 基因的鉴定与理化性质分析

采取 HMM 和 BLAST 2 种方法初步鉴定 三七基因组中的 DOG 基因家族基因,按照基 因在染色体上位置的先后顺序依次命名为 PnDOG1~PnDOG16。16 个 PnDOG 家族成员 的氨基酸序列和理化性质如表 2 所示,这些基 因编码的蛋白氨基酸数目在 216~514 个,其 中 PnDOG14 和 PnDOG2 的氨基酸数目最多, *PnDOG1* 和 *PnDOG8* 的氨基酸数目最少; PnDOG蛋白的相对分子质量为 24 925.24~56 998.55; 理论等电点为 5.13~9.44, 13 个基因 编码的蛋白理论等电点≥6.88,为酸性蛋白, 3 个基因编码的蛋白>8,为碱性蛋白; PnDOG 蛋白的脂肪系数值介于 68.93~106.99,亲水系 数均小于 0,所有蛋白均为亲水性且结构不稳 定(不稳定系数均值为 51.34)。此外,亚细胞 定位预测发现 16 个 *PnDOG* 基因均定位于细 胞核内。

PnDOG 家族蛋白的二级结构预测分析结果 显示(表 3), *PnDOG* 家族编码的蛋白质二级结 构均含有 α-螺旋、β-转角、延伸链和不规则卷曲 4 种二级结构。所占比例大小依次为 α-螺旋(平

Table 2 Fuystcochemical characteristics of Fubboo genes in F. hologinseng								
登录号	基因名称	氨基酸数目	相对分子质量	等电点	脂肪指数	亲水系数	不稳定系数	亚细胞定位预测
Pno01G004771.t1	PnDOG1	216	24 925.24	5.98	93.47	-0.300	37.36	细胞核
Pno01G007489.t1	PnDOG2	507	55 872.61	8.98	68.93	-0.509	59.35	细胞核
Pno01G008000.t1	PnDOG3	496	55 381.84	6.88	74.62	-0.519	58.48	细胞核
Pno02G007914.t4	PnDOG4	363	41 091.56	6.17	83.66	-0.440	44.03	细胞核
Pno02G013726.t1	PnDOG5	249	27 676.27	9.44	106.99	-0.074	52.06	细胞核
Pno03G004716.t1	PnDOG6	252	29 171.83	6.13	88.93	-0.298	30.50	细胞核
Pno03G004717.t1	PnDOG7	262	30 253.13	5.30	86.37	-0.559	52.15	细胞核
Pno03G005110.t1	PnDOG8	216	24 443.78	6.08	92.13	-0.363	43.71	细胞核
Pno04G003467.t2	PnDOG9	363	41 025.71	8.29	83.06	-0.440	53.99	细胞核
Pno05G003744.t1	PnDOG10	502	55 569.14	6.88	74.72	-0.569	60.85	细胞核
Pno05G010846.t1	PnDOG11	242	28 063.71	5.13	79.46	-0.455	53.54	细胞核
Pno05G015381.t2	PnDOG12	364	41 273.98	6.13	81.57	-0.434	51.52	细胞核
Pno08G014019.t1	PnDOG13	472	51 955.28	6.28	76.50	-0.468	47.68	细胞核
Pno09G000525.t1	PnDOG14	514	56 998.55	6.84	73.68	-0.511	58.75	细胞核
Pno09G000831.t7	PnDOG15	447	49 581.27	7.81	64.49	-0.615	56.99	细胞核
Pno11G000430.t1	PnDOG16	357	39 487.61	9.24	86.50	-0.427	60.49	细胞核

表 2 PnDOG 基因的理化性质

Table 2	Physicochemical	characteristics	of PnDOG	genes in P	nataginseng
	1 II y SICUCIICIIIICAI	unai autur istius	U I I I I I U U U	$2 \cup 1 \cup 3 \cup 1 \cup 1$	noiveinsene

表 3 PnDOG 家族成员的蛋白二级结构预测

 Table 3
 Secondary structure analysis of PnDOG

 family members in P. notoginseng

蛋白名称	α-螺旋/%	β-转角/%	延伸链/%	无规则卷曲/%
PnDOG1	80.09	1.85	3.24	14.81
PnDOG2	53.65	0.79	6.51	39.05
PnDOG3	59.48	1.81	3.02	35.69
PnDOG4	66.12	1.65	4.13	28.10
PnDOG5	73.49	1.20	3.61	21.69
PnDOG6	75.00	1.59	3.17	20.24
PnDOG7	74.81	1.53	3.05	20.61
PnDOG8	70.83	0.93	3.70	24.54
PnDOG9	66.67	0.55	1.65	31.13
PnDOG10	56.18	0.40	3.59	39.84
PnDOG11	77.27	1.65	3.72	17.36
PnDOG12	65.66	0.82	2.20	31.32
PnDOG13	51.69	0.85	5.08	42.37
PnDOG14	52.72	1.36	5.25	40.66
PnDOG15	57.27	0.67	3.80	38.26
PnDOG16	66.11	0.56	3.08	30.25

均 65.44%)、无规则卷曲(平均 29.74%)、延伸 链(平均 3.67%)和β-折叠(平均 1.13%),蛋白 二级结构主要由α-螺旋和不规则卷曲构成,可能 有助于形成蛋白质的特殊结构构象。PnDOG1的 α-螺旋占比(80.09%)和β-转角占比(1.85%)均 高于其他成员,所有成员中无规则卷曲占比最高 的是 PnDOG13 (32.13%), PnDOG2 的延伸链占 比(6.51%)明显高于其他成员。

3.2 PnDOG 基因的染色体定位、共线性分析

同源基因通常具有相似的基因结构和生物 学功能[30],因此基因复制在决定基因功能中起着 不可或缺的作用。16个 PnDOG 基因不均匀地分 布在8条染色体上(图1-A),其中1、3和5号 染色体上均含3个 PnDOG 基因,2和9号染色体 上包含 2 个 PnDOG 基因, 其余 3 条染色体上仅 含1个 PnDOG 基因。PnDOG 家族共有4对片段 重复事件,涉及8个已鉴定的同源基因(图1-B), 表明 PnDOG 基因家族的扩增可能是由基因复制 事件造成的。为了明确 PnDOG 基因的进化关系, 对拟南芥、水稻 Oryza sativa L.进行种间共线性 分析。结果表明(图2),三七与拟南芥共16415 条同源基因对,三七与水稻共6218条同源基因 对。其中三七与拟南芥的 DOG 家族成员的同源 基因对数为12,与水稻的同源基因对数为8,三 七与拟南芥 DOG 同源基因高于三七与水稻 DOG 同源基因。这表明 DOG 家族在双子叶植物的进 化过程中,可能具有较高的保守性。K_a/K_s为一对 蛋白质编码基因的非同义取代率(Ka)相对于同义 取代率(K_s)的百分比,K_a/K_s对物种选择进化具有 重要参考意义。8个同源的 PnDOG 基因 Ka/Ks 为 0.1907~0.3069 [其中第1对的 Ka/Ks 无数值(not a number, NaN)]平均值为 0.257 0 (表 4),所有 复制事件的 Ka/Ks小于 1,表明这些 PnDOG 基因在 讲化过程中经历了纯化选择。

图 1 PnDOG 基因家族染色体分布 (A) 及组内共线性分析 (B) Fig. 1 Chromosome distribution (A) and collinearity relationship (B) of PnDOG gene family

图 2 PnDOG 基因家族种间共线性分析 Fig. 2 Interspecific collinearity analysis of PnDOG gene family

表 4 三七 4 对重复事件 DOG 基因及其 Ka/Ks值

Table 4 Four pairs of repetitive event <i>DOG</i> genes and their <i>K</i> _a / <i>K</i> _s ratio in <i>P. notoginseng</i>						
基因 1	基因 2	K_{a}	$K_{ m s}$	$K_{ m a}/K_{ m s}$		
Pno03G004771.t1	Pno03G004717.t1	0.716 532 27	NaN	NaN		
Pno01G007489.t1	Pno09G000831.t7	0.111 086 31	0.361 924 85	0.306 931 99		
Pno01G008000.t1	Pno09G000525.t1	0.088 642 06	0.464 584 64	0.190 798 53		
Pno02G007914.t4	Pno04G003467.t2	0.076 689 44	0.280 361 51	0.273 537 69		

3.3 PnDOG 基因家族的系统进化分析

下载 5 个已知的拟南芥 DOG 蛋白序列,与 PnDOG 蛋白序列进行合并。采用邻接(neighborjoining, NJ)法构建系统发育树(图 3), PnDOG 基因家族被分为 3 个亚组。I 组仅有 2 个 PnDOG 基因,II、III组包含大多数 PnDOG 基因,II组 PnDOG基因与拟南芥 DOG 家族成员亲缘关系较近。PnDOG 基因可能经历了来自同一祖先基因的 多次基因复制事件,在基因分组后,家族成员之 间发生了不同的分化模式。

图 3 三七、拟南芥 DOG 基因家族系统进化树

Fig. 3 Phylogenetic tree of DOG gene family in P. notoginseng and Arabidopsis thaliana

3.4 *PnDOG* 家族成员 Motif 序列、结构域以及 基因结构分析

分析 PnDOG 基因 (图 4) 的保守结构域和外 显子-内含子结构,发现所有家族成员均含有 DOG 结构域,表明其具有相对保守的进化模式。 在11个基因中还发现了额外的结构域,其中6个 基因含有 bZIP superfamily 结构域、4 个基因含有 bZIP HBP1b-like 结构域, 1 个基因含有 EnvCsuperfamily 结构域。亚组 I 的所有成员仅含 有 DOG 结构域, 亚组III的所有成员都含有 bZIP superfamily 或 bZIP HBP1b-like 结构域, 推测 bZIP 结构域可能赋予 DOG 家族新的功能特性。 PnDOG 基因的外显子-内含子结构显示(图 4), 所有的 PnDOG 基因都含有外显子, 数量 1~13 个; 63.5%的 PnDOG 基因内含子数目超过 7 个, 36.5%的 PnDOG 基因内含子数目小于 2, 其中 PnDOG6、PnDOG7 和 PnDOG11 不含有内含子。 PnDOG 基因中非翻译区的存在较为普遍, 仅 31.25%的 PnDOG 基因不含有非翻译区。同一亚

组内, PnDOG 基因的外显子、内含子、非翻译区 的数量与长度具有较高的相似性。蛋白序列的保 守基序分析发现 16 个 PnDOG 蛋白共预测到 10 个保守基序(图 5、6),且 PnDOG 蛋白保守基序 的数目在不同亚组之间差异较大。PnDOG 家族亚 组I、II的成员保守基序数目均小于4个,亚组III 的成员保守基序数目都在 8 个或 8 个以上。Motif 6存在于16个蛋白中, Motif1存在于15个蛋白 中 (PnDOG5 除外), Motif 2 分布与 Motif 1 相 似, PnDOG5 和 PnDOG8 均不含有 Motif 2。Motif 3、Motif 5、Motif 7~10 仅存在于亚组III的蛋白 中, Motif 4 存在于亚组II和III的部分蛋白中。结 果表明 Motif 1 和 Motif 6 是 DOG1 结构域。而 Motif 3、Motif 7 是 bZIP 结构域(图 5、6)。同 一亚组的成员在基序的类型和数量上相似,但不 同亚组之间的差异较大。

3.5 PnDOG 家族成员顺式元件分析

提取上游 2000 bp 的启动子序列进行顺式元件预测。预测结果显示, PnDOG 家族成员上游顺

黄色方框表示未翻译区域,绿色方框表示编码区域,线条表示内含子。 Yellow boxes indicate untranslated regions, green boxes indicate coded regions, lines indicate introns.

图 4 PnDOG 基因家族成员基因结构 Fig. 4 Gene structures of PnDOG gene family members

式元件以激素响应、防御或胁迫响应元件为主 (图 7): 胁迫响应元件包含厌氧诱导(ARE)、干 旱(MBS)、低温(LTR)、防御与应激(TC-rich repeats)、光响应元件(GT1-motif、G-box、Sp1), 激素响应元件包含脱落酸(ABRE)、茉莉酸 (TGACG-motif、CGTCA-motif)、水杨酸(TCAelement)、赤霉素(P-box、TATC-box、GARE-

PnDOG2

PnDOG15

motif)、生长素(TGA-element)。统计发现,除 PnDOG4外,其余 PnDOG 基因的上游区域都至 少含有1种植物激素响应元件,多个防御和胁迫 响应元件,与胚发育相关的响应元件仅出现在 PnDOG3和 PnDOG5中。这些结果表明,PnDOG 家族成员可能通过响应激素或刺激条件,在植物 的生长发育和胁迫适应中发挥重要作用。

3.6 PnDOG 基因功能富集分析

GO 分析显示 *PnDOG* 基因被富集到生物学 过程、细胞组成和分子功能(图 8)。对显著性水 平最高的前 20 个条目进一步分析发现,细胞组 成类别中,仅富集到与细胞核(GO: 0005634) 相关。而在分子功能类别中,主要与分子结合、 转录活性调控相关:DNA 结合(GO: 0003677)、 蛋白结合(GO: 0005515)、小分子结合(GO: 0036094)、含氮化合物结合(GO: 1901363)、有 机环状化合物结合(GO: 0097159)、DNA 结合 转录因子活性(GO: 0003700)、转录调节剂活性(GO: 0140110)。在生物过程中,主要与生物应答或应激相关:对细菌的反应(GO: 0009617)对其他生物的反应(GO: 0051707)、对外界生物刺激的反应(GO: 0009607)、生物过程涉及生物之间的种间相互作用代谢过程有关(GO: 0004419),其他功能包括核酸调控转录(GO: 0006355),核糖核酸生物合成过程的调控机制(GO: 2001141)、RNA代谢过程的调控(GO: 0051252)、DNA模板转

图 8 PnDOG 基因的 GO 富集分析 Fig. 8 GO enrichment analysis of PnDOG genes

录(GO: 0006351)。KEGG分析表明 PnDOG 基因的功能主要富集在植物信号转导,说明 PnDOG 基因参与信号处理或转导,其中包括植物激素信号转导、环境信息处理、遗传信息处理等(图 9)。此外,保守结构域分析发现,PnDOG 基因家族中第III亚组的成员包含 bZIP 结构域。bZIP TF 被认为是植物发育的明确调控因子,通常对植物激素或环境胁迫有反应。通过 PlantTFDB 4.0 转录因子预测,PnDOG 基因家族第III亚组的成员均为TGACG-Binding(TGA)转录因子。

3.7 PnDOG 家族成员表达模式

为了研究 PnDOG 家族基因在不同组织上的 潜在功能,以 Actin 为内参基因利用 qRT-PCR 技 术分析 PnDOG 家族成员在各组织中的表达模式 (图 10)。结果显示,16 个 PnDOG 基因在根、茎、 叶、花、果实、种子中均有表达,PnDOG 基因具 有组织表达特异性且各成员间的表达水平存在

Fig. 9 KEGG analysis of *PnDOG* genes

差异。其中 7 个成员 (*PnDOG1、PnDOG3、 PnDOG6、PnDOG8、PnDOG10、PnDOG11、 PnDOG14*)在种子中高表达,7 个成员(*PnDOG2、 PnDOG4、PnDOG5、PnDOG7、PnDOG9、 PnDOG15、PnDOG16*)在果实中高表达,1 个成员 (*PnDOG12*)在根中高表达,1 个成员 (*PnDOG13*)在花中高表达。三七种子具有休眠 特性,推测 (*PnDOG1、PnDOG3、PnDOG6、 PnDOG8、PnDOG10、PnDOG11*和*PnDOG14*) 可能与种子的休眠调控有关。

3.8 PnDOG 基因家族在三七种子后熟过程中的 响应模式

PnDOG 基因家族所有基因在种子中均有表达,为了探究 PnDOG 基因是否参与三七种子后熟休眠的调控,对成熟三七种子进行层积处理以及分析 PnDOG 基因在三七种子后熟过程中的表达模式。成熟三七种子的胚率仅为 26.68%,种子不具备萌发的能力。随着后熟时间的增加,胚逐渐发育,30 d 时种子胚率为 54.99%,部分种子出现萌发,50 d 时种子胚率为 74.50%,此时种子的萌发率达到 30%(图 11)。上述结果表明,三七种子的休眠类型属于形态生理休眠,种胚发育不完全,需要经过一段时间的后熟休眠种子才能萌发。

对三七种子不同后熟阶段(0、30、50 d)的 转录组数据分析, PnDOG 基因可分为 2 个簇(图 12),簇 1 的基因包含 PnDOG4、PnDOG5、

PnDOG7、PnDOG8、PnDOG12和PnDOG13,这 6个基因在三七种子整个后熟过程中表达量较低, 转录本每百万映射读取数(transcripts per million, TPM)值低于 7。相对于簇 1,簇 2的基因在种子 后熟前期表达量较高。在三七种子后熟过程中,簇 2的基因呈现出不同的表达趋势。随着后熟时间的 增加,PnDOG3、PnDOG6、PnDOG9、PnDOG11 和PnDOG14等基因的表达量持续下降,PnDOG2 的表达量呈现持续增加,PnDOG1和PnDOG15的 表达量先下降后上升,PnDOG10与PnDOG16的表 达量则是先增加后下降。PnDOG1、PnDOG9、 PnDOG10、PnDOG14 和 PnDOG16 在种子不同后熟 阶段的表达存在显著差异(图 12),表明这些基 因在三七种子后熟过程中发挥着重要作用,是参 与调控三七后熟休眠的重要候选基因。为验证三 七种子 RNA-seq 结果的准确性和可重复性,以 G6PDH 为内参基因对 PnDOG 基因进行 qRT-PCR 验证。qRT-PCR 结果(图 13)表明,大部分 PnDOG 基因的荧光定量测定与转录组测序结果一致,转 录组测序结果准确性较高。

3.9 *PnDOG* 基因响应外源激素处理的表达模式 先前的研究发现 ABA 促进三七种子休眠,

10

8

6

.4

.2

0

30

50

 P_nDOG3

PnDOG10 PnDOG2 PnDOG15 PnDOG11 PnDOG16 PnDOG16 PnDOG16

图 12 三七种子后熟过程中 DOG 基因家族成员表达热图

Fig. 12 Heatmap of expression of DOG gene family

members during after-ripening process of P. notoginseng seeds

PnDOG6 PnDOG9 PnDOG12

PnDOG8

PnD0G) PnD0G4 DOGI PDOGⁿ

不同字母表示不同时期在 P<0.05 水平差异显著。 Letters indicate significant difference during different stages at P < 0.05.

图 11 三七种子后熟过程中的胚率和萌发率

Fig. 11 Embryo rate and germination rate of P. notoginseng seeds during after-ripening process

图 13 PnDOG 家族基因在种子不同后熟阶段的表达分析

GA 解除三七种子休眠^[25]。为了分析 PnDOG 基因 家族对激素处理的响应程度,对三七种子进行外 源激素(GA、ABA)浸泡处理。以 Actin 为内参 基因,采用 qRT-PCR 技术对不同处理下 PnDOG 基因的表达进行分析。结果显示(图 14),相比对 照(CK),GA处理组中8个 PnDOG 基因的表达 出现显著差异,其中7个基因表达出现下调 (PnDOG1、PnDOG3、PnDOG6、PnDOG7、 PnDOG8、PnDOG14、PnDOG16),1个基因 (PnDOG2)表达出现上调。ABA处理组 13个 PnDOG基因表达出现显著差异与对照相比,其中 7个基因(PnDOG1、PnDOG3、PnDOG8、PnDOG9、 PnDOG14、PnDOG15和PnDOG16)表达出现下 调,6个基因(PnDOG6、PnDOG7、PnDOG10、 PnDOG11、PnDOG12和PnDOG13)表达出现上 调。总体而言,PnDOG基因的表达明显受到激素 诱导。表明PnDOG基因家族积极响应激素信号, 可能通过激素信号参与调控三七种子后熟休眠。

不同字母表示不同处理在 P<0.05 水平差异显著。

Different letters indicated that there were significant differences in different treatments at $P \le 0.05$.

图 14 外源 GA 和 ABA 处理三七种子 PnDOG 基因家族成员表达模式

Fig. 14 Expression patterns of *PnDOG* gene family members in *P. notoginseng* seeds after exogenous GA/ABA treatment

4 讨论

4.1 PnDOG 基因启动子区域激素响应元件丰

富,暗示其参与激素信号转导

DOG 基因家族对于调控种子休眠具有重要 意义^[11]。DOG 家族的成员也在不同的植物中得到 鉴定,其中拟南芥 5个^[31]、水稻 12个^[32]、毛竹 24 个^[32]。本研究中使用 HMM 模型和 BLAST 在三 七的基因组数据库中搜索 DOG 基因家族,从而 鉴定出 16个成员。三七中 PnDOG 基因的数量高 于拟南芥,但低于水稻和毛竹。DOG 基因家族成

• 2911 •

员数在不同物种间存在显著差异,可能与物种的 倍性和基因家族的扩展有关。低内含子数量的基 因加速了其转录表达过程,有利于降低转录成本, 使细胞对非生物胁迫做出快速反应[33]。拟南芥 DOG1 基因含有 2 个内含子[34], 莴笋、油菜 DOG1 基因均含 1 个内含子[35]。本研究中仅 36.5%的 PnDOG 基因内含子数目小于 2, 其余 PnDOG 基 因内含子数目大于 7, 暗示 PnDOG 基因可能通 过可变剪切响应应激条件对 PnDOG 基因的转录 调节。顺式作用元件在基因表达中起重要的调控 作用[36]。PnDOG 基因的启动子区域含有胁迫和激 素响应等多种元件,激素响应元件中脱落酸响应 元件(ABRE)数量最多,与 PeDOG 基因相同[32], 暗示 PnDOG 基因可能参与激素信号转导。逆境 响应元件中光响应元件(G-box)数量最多,光照 对种子的休眠萌发起着重要影响作用[37],说明 PnDOG 基因可能响应光信号转导从而调节种子 萌发。DOG1 基因通过调节胚乳帽弱化促进种子 休眠[5]。本研究中,三七种子休眠类型属于形态 生理休眠, 成熟三七种子种胚发育不全导致种子 不具备萌发能力。PnDOG3 和 PnDOG5 中均发现 与胚发育相关的顺式作用元件,表明 PnDOG3 和 PnDOG5可能与三七种子的胚发育相关。bZIPTF通常对植物激素或环境胁迫有反应, 被认为是植 物发育的明确调控因子^[38]。本研究发现 PnDOG 家族第 III 亚组基因均富含 bZIP 结构域,通过转 录因子鉴定和 GO、KEGG 注释进一步分析,这 些基因均可作为 bZIP 转录因子,表明这些基因 可能通过参与激素信号通路,调控植物生长发育 及响应生物胁迫。类似地,毛竹富含 bZIP 结构域 的 PeDOG 基因作为 bZIP 家族的转录因子,参与 激素信号通路,调控植物芽和茎的生长,以及植 物抗病等生物胁迫响应[32]。

4.2 部分 *PnDOG* 基因在种子中高表达,表明其可能参与种子休眠的调控

DOG1 基因主要在种子中表达,与种子休眠存在专一性相关^[31]。拟南芥 AtDOG1 基因在叶、茎、根茎中表达量较低,主要在种子中表达^[9]。 刺萼龙葵 Solanum rostratum SrDOG1 基因在根、茎、叶中的表达显著低于种子^[39]。钻果大蒜芥 Sisymbrium officinale SoDOG1 基因在根、茎、叶、花、种子等组织中均有表达,其中种子的表达量 最高^[40]。毛竹 PeDOG 基因在根、茎、叶、穗中 均有表达,叶的表达量最高,根、茎次之[32]。随 着拟南芥和刺萼龙葵种子的萌发, AtDOG1 和 SrDOG1 的表达量均出现显著下降[35,41]。天女木 兰 Magnolia sieboldii 种子在后熟过程中, MsDOG1 基因表达量先下降后上升,整体呈下降 趋势^[42]。本研究中, PnDOG 基因家族成员在根、 茎、叶、花、果和种子等组织中均有表达, 且具 有明显的组织表达特异性。其中 7 个 PnDOG 基 因在三七不同组织中的表达模式与拟南芥、刺萼 龙葵和钻果大蒜芥一致。三七种子后熟过程中, 5个 PnDOG 基因表达情况与 AtDOG1、SrDOG1 相同,其中 PnDOG1、PnDOG14 基因表达趋势与 天女木兰 MsDOG1 类似, 表明这 2 个基因可能在 三七种子后熟休眠解除中发挥重要作用。此外, DOG1 基因还具有控制早花、耐旱性等多种作用 [14,43]。PnDOG13 和 PnDOG12 分别在三七花和根 中高表达,7个 PnDOG 基因在果实中高表达,表 明 PnDOG 基因家族可能还参与三七其他生理过 程的调节。

4.3 PnDOG 基因积极响应外源激素处理,其可能协同激素调控种子休眠

种子萌发过程中 ABA 对 DOGI 基因的表达 具有正调控作用^[44]。DOG1 基因通过影响 ABA/GA 平衡中 GA 端来调控种子休眠^[10]。拟南 芥中外源 ABA 处理种子后, AtDOG1 基因表达上 调,种子休眠程度加深^[45]。钻果大蒜芥中,ABA 处理种子后,促进 SoDOG1 的表达^[40]。外源激素 处理大豆 Glycine max 种子, ABA 处理后, 3个 GmDOG1L 基因表达上调, 4个 GmDOG1L 基因 表达下调, GA 处理后, 7个 GmDOG1L 基因表 达均下调^[46]。与 GmDOGL 基因响应 GA 处理, 表达均出现下调不同,三七种子外源 GA 处理后, 仅 8 个 PnDOG 基因响应 GA 处理, 其中 7 个 PnDOG 基因表达出现下调,1个 PnDOG 基因表 达出现上调。可能是激素处理的浓度不同或 GmDOGL 基因家族对激素响应特征未完整阐述。 经 ABA 处理后,三七6个 PnDOG 基因表达出现 上调,7个 PnDOG 基因表达出现下调。响应 ABA 上调的 PnDOG 基因可能与拟南芥和钻果大蒜芥 DOG1 基因具有相同的功能,下调的 PnDOG 基 因可能受到 ABA 的负向调控。先前研究发现 DOG1 基因与 ABA 在种子休眠调控中协同发挥 功能[10]。这些结果表明 PnDOG 基因家族积极响 应外源激素处理,其可能通过调节种子对 ABA 的 敏感性改变激素间的平衡,进而参与调控种子的 休眠与萌发。

本研究从三七基因组中鉴定到 16 个 PnDOG 基因,这些基因不均匀地分布在8条染色体上。 PnDOG 基因都含有外显子,编码 216~514 个氨 基酸,均为亲水性蛋白,亚细胞定位预测显示均 位于细胞核中。系统进化将 PnDOG 基因分为 3 个亚组,不同亚组成员的基因结构存在差异。大 多数的 PnDOG 基因家族成员启动子上游含有丰 富的激素响应元件,可能与其快速响应激素诱导 相关。PnDOG 基因家族成员具有组织表达特异 性,大多数 PnDOG 基因在种子中的高表达可能 与种子的后熟休眠形成有关,他们在种子后熟过 程中可能通过响应激素信号参与调控休眠解除, 其中 PnDOG1 和 PnDOG14 可能是三七种子后熟 休眠调控的关键 PnDOG 基因。本研究对 PnDOG 基因家族特征和表达模式进行了初步探究,然而 PnDOG 基因响应激素调控种子休眠的分子作用 机制有待未来的进一步验证,从而阐明 PnDOG 基因家族在三七种子中的具体功能。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- [1] 付婷婷,程红焱,宋松泉.种子休眠的研究进展[J]. 植物学报, 2009, 44(5): 629-641.
- [2] Nikolaeva M G. Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century) [J]. *Bot J*, 2001, 86: 13-36.
- [3] Baskin J M, Baskin C C. A classification system for seed dormancy [J]. Seed Sci Res, 2004, 14(1): 1-16.
- [4] Footitt S, Huang Z Y, Clay H A, et al. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes [J]. Plant J, 2013, 74(6): 1003-1015.
- [5] Graeber K, Linkies A, Steinbrecher T, et al. DELAY OF GERMINATION 1 mediates a conserved coatdormancy mechanism for the temperature- and gibberellin-dependent control of seed germination [J]. Proc Natl Acad Sci USA, 2014, 111(34): E3571-E3580.
- [6] Guan S X, Li Y S, Zeng W Q, et al. A gibberellin, abscisic acid, and delay of germination 1 interaction network regulates critical developmental transitions in model plant Arabidopsis thaliana-a review [J]. Appl Ecol Env Res, 2021, 19(6): 4699-4720.

- [7] Nelson S K, Kanno Y, Seo M, et al. Seed dormancy loss from dry after-ripening is associated with increasing gibberellin hormone levels in Arabidopsis thaliana [J]. Front Plant Sci, 2023, 14: 1145414.
- [8] Okamoto M, Kuwahara A, Seo M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8'hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis [J]. Plant Physiol, 2006, 141(1): 97-107.
- [9] Bentsink L, Jowett J, Hanhart C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis [J]. Proc Natl Acad Sci USA, 2006, 103(45): 17042-17047.
- [10] Nakabayashi K, Bartsch M, Xiang Y, et al. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds [J]. Plant Cell, 2012, 24(7): 2826-2838.
- [11] Murphey M, Kovach K, Elnacash T, et al. DOG1-imposed dormancy mediates germination responses to temperature cues [J]. Environ Exp Bot, 2015, 112: 33-43.
- [12] Née G, Obeng-Hinneh E, Sarvari P, et al. Secondary dormancy in Brassica napusis correlated with enhanced BnaDOG1 transcript levels [J]. Seed Sci Res, 2015, 25(2): 221-229.
- [13] Ashikawa I, Mori M, Nakamura S, et al. A transgenic approach to controlling wheat seed dormancy level by using Triticeae DOG1-like genes [J]. Transgenic Res, 2014, 23(4): 621-629.
- [14] Huo H Q, Wei S H, Bradford K J. DELAY OF GERMINATION1 (DOG1) regulates both seed dormancy and flowering time through microRNA pathways [J]. Proc Natl Acad Sci USA, 2016, 113(15): E2199-206.
- [15] Carrillo-Barral N, Rodríguez-Gacio M D C, Matilla A J. Delay of germination-1 (DOG1): A key to understanding seed dormancy [J]. *Plants*, 2020, 9(4): 480.
- [16] Finch-Savage W E, Footitt S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments [J]. J Exp Bot, 2017, 68(4): 843-856.
- [17] Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy [J]. Annu Rev Plant Biol, 2008, 59: 387-415.
- [18] Zhao W, Han L, Li T, Lee J, Zhao Y. Effects of steaming process on rare saponins and efficacy of *Panax ginseng*, *Panax notoginseng* and *Panax quinquefolium* [J]. *Chin Herb Med*, 2024, 16(4): 521-528.
- [19] 杨崇仁. 三七的历史与起源 [J]. 现代中药研究与 实践, 2015, 29(6): 83-86.
- [20] 佚名. 云南省中药材产业发展报告 [J]. 云南农业,

2018(9): 30-34.

- [21] 李磊,孙雪婷,张广辉,等.脱水速率对顽拗性三 七种子脱水敏感性和抗氧化酶活性的影响 [J].种 子,2014,33(12):1-5.
- [22] 杨凯,李磊,龙光强,等.顽拗性三七种子后熟过 程超微结构和抗氧化酶变化 [J]. 广西植物, 2016, 36(12): 1519-1525.
- [23] 段承俐,杨莉,萧凤回.三七种胚形态发育的解剖 观察 [J]. 种子,2010,29(1):1-3.
- [24] 杨凯,杨景煌,刘绍伟,等.三七种子后熟过程种 胚发育和 6 种内源激素的动态变化 [J].中药材, 2018,41(3):519-523.
- [25] 葛娜,杨玲,陈军文.不同浓度赤霉素和脱落酸对 顽拗性三七种子后熟种胚发育和内源激素的影响 [J].应用与环境生物学报,2020,26(3):574-581.
- [26] Yang K, Yang L, Fan W, et al. Illumina-based transcriptomic analysis on recalcitrant seeds of *Panax* notoginseng for the dormancy release during the afterripening process [J]. *Physiol Plant*, 2019, 167(4): 597-612.
- [27] Ge N, Jia J S, Yang L, et al. Exogenous gibberellic acid shortening after-ripening process and promoting seed germination in a medicinal plant Panax notoginseng [J]. BMC Plant Biol, 2023, 23(1): 67.
- [28] Chen C J, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202.
- [29] Untergasser A, Cutcutache I, Koressaar T, et al. Primer3: New capabilities and interfaces [J]. Nucleic Acids Res, 2012, 40(15): e115.
- [30] Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions [J]. Proc Natl Acad Sci USA, 2000, 97(21): 11632-11637.
- [31] Sall K, Dekkers B J W, Nonogaki M, et al. DELAY OF GERMINATION 1-LIKE 4 acts as an inducer of seed reserve accumulation [J]. Plant J, 2019, 100(1): 7-19.
- [32] Zhang Z J, Yu P Y, Huang B, et al. Genome-wide identification and expression characterization of the DoG gene family of moso bamboo (Phyllostachys edulis) [J]. BMC Genomics, 2022, 23(1): 357.
- [33] Jeffares D C, Penkett C J, Bähler J. Rapidly regulated genes are intron poor [J]. *Trends Genet*, 2008, 24(8): 375-378.
- [34] Nakabayashi K, Bartsch M, Ding J, *et al.* Seed dormancy in *Arabidopsis* requires self-binding ability of DOG1 protein and the presence of multiple isoforms

generated by alternative splicing [J]. *PLoS Genet*, 2015, 11(12): e1005737.

- [35] Graeber K, Linkies A, Müller K, et al. Cross-species approaches to seed dormancy and germination: Conservation and biodiversity of ABA-regulated mechanisms and the Brassicaceae DOG1 genes [J]. Plant Mol Biol, 2010, 73(1/2): 67-87.
- [36] Kong F L, Wang J, Cheng L, et al. Genome-wide analysis of the mitogen-activated protein kinase gene family in Solanum lycopersicum [J]. Gene, 2012, 499(1): 108-120.
- [37] Finch-Savage W E, Leubner-Metzger G. Seed dormancy and the control of germination [J]. New Phytol, 2006, 171(3): 501-523.
- [38] Hwang I, Jung H J, Park J I, et al. Transcriptome analysis of newly classified bZIP transcription factors of *Brassica* rapa in cold stress response [J]. *Genomics*, 2014, 104(3): 194-202.
- [39] Chen Z X, Wang X G, Huang H J, et al. Cloning and expression analysis of delay of *Germination 1* gene in buffalobur (*Solanum rostratum* Dunal) [J]. Pak J Bot, 2023, 55(4): 1383-1388.
- [40] Carrillo-Barral N, Matilla A J, García-Ramas C, et al. ABA-stimulated SoDOG1 expression is after-ripening inhibited during early imbibition of germinating Sisymbrium officinale seeds [J]. Physiol Plant, 2015, 155(4): 457-471.
- [41] 王新果. 刺萼龙葵延迟萌发基因 DOG1 的克隆及表达特性研究 [D]. 北京: 中国农业科学院, 2017.
- [42] 关士鑫. 天女木兰 MsDOG1 基因在种子休眠中的功能及其作用机制 [D]. 沈阳: 沈阳农业大学, 2022.
- [43] Yatusevich R, Fedak H, Ciesielski A, et al. Antisense transcription represses Arabidopsis seed dormancy QTL DOG1 to regulate drought tolerance [J]. EMBO Rep, 2017, 18(12): 2186-2196.
- [44] Teng S, Rognoni S, Bentsink L, et al. The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABAmediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression [J]. Plant J, 2008, 55(3): 372-381.
- [45] Dekkers B J W, Bentsink L. Regulation of seed dormancy by abscisic acid and DELAY OF GERMINATION 1 [J]. Seed Sci Res, 2015, 25(2): 82-98.
- [46] Yang Y Z, Zheng C, Chandrasekaran U, et al. Identification and bioinformatic analysis of the *GmDOG1-like* family in soybean and investigation of their expression in response to gibberellic acid and abscisic acid [J]. *Plants*, 2020, 9(8): 937.

[责任编辑 时圣明]