黄连-厚朴配伍抑制 PI3K/Akt 信号通路改善 TNBS 诱导的大鼠溃疡性结肠 炎研究

杨显娟1, 付 尹1, 王佳俊1, 王 建1*, 肖琳萱1, 徐 卓1, 王立映1, 龚道银2

1. 成都中医药大学药学院,四川 成都 611137

2. 成都中医药大学附属医院,四川 成都 610075

摘 要:目的 研究黄连-厚朴配伍对溃疡性结肠炎(ulcerative colitis, UC)大鼠及磷脂酰肌醇-3-激酶(phosphatidylinositol-3kinase, PI3K)/蛋白激酶 B(protein kinase B, Akt) 信号通路的调控作用。方法 利用高通量基因表达数据库获取 UC 基因 表达谱数据,并综合生物信息学分析,预测黄连-厚朴治疗 UC 的潜在机制。采用 2,4,6-三硝基苯磺酸(TNBS)/乙醇法建立 UC 大鼠模型, SD 大鼠随机分为对照组、模型组、黄连(2 g/kg)组、厚朴(2 g/kg)组、黄连-厚朴配伍(4 g/kg)组和柳 氮磺胺吡啶(0.4 g/kg)组,每组8只。造模24h后,各给药组ig相应药物,1次/d,连续6d,采用试剂盒检测各组大鼠血 清中白细胞介素-1β(interleukin-1β, IL-1β)、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α, TNF-α)水平和髓过氧化物酶 (myeloperoxidase, MPO)活性; 计算并评价各组大鼠结肠质量/长度、脾脏指数和肠黏膜损伤指数(colon macroscopic damage index, CMDI)评分;采用苏木素-伊红(HE)染色法观察各组大鼠结肠组织病理变化并进行病理损伤评分;采用免疫组化 法检测各组大鼠结肠组织 PI3K、Akt 和剪切型半胱氨酸蛋白酶-3(cleaved Caspase-3)表达情况;采用 Western blotting 法检 测各组大鼠结肠组织磷酸化 Akt (p-Akt)、B 淋巴细胞瘤 2 (B-cell lymphoma 2, Bcl-2) 和 cleaved Caspase-3 蛋白表达情况。 结果 生物信息学预测显示,黄连-厚朴抗 UC 的潜在靶点有 49 个,可能与调控生物过程及过氧化物酶体增殖物活化受体 (peroxisome proliferator-activated receptor, PPAR)信号通路、核因子 κB(nuclear factor-κB, NF-κB)信号通路和 PI3K/Akt 信号通路等有关。实验验证结果显示,与模型组比较,各给药组大鼠血清中 IL-1β、IL-6、TNF-α 水平和 MPO 活性显著降低 (P<0.01);结肠质量/长度、脾脏指数、CMDI 评分、结肠组织病理损伤评分均显著降低(P<0.01);结肠组织 PI3K、Akt 和 cleaved Caspase-3 阳性表达显著减少(P<0.01);结肠组织中 p-Akt/Akt、cleaved Caspase-3 蛋白表达水平显著降低(P<0.01), Bcl-2 蛋白表达水平显著升高(P<0.01),其中黄连-厚朴配伍组疗效最佳。结论 黄连、厚朴及其配伍能够有效缓解 TNBS 诱 导的 UC,其作用机制可能与抑制 PI3K/Akt 通路相关,且黄连-厚朴配伍疗效最佳,体现了中药"相使"增效的配伍关系。 关键词:溃疡性结肠炎;黄连;厚朴;配伍;炎性细胞因子;PI3K/Akt 信号通路 中图分类号: R285.5 文献标志码: A 文章编号: 0253 - 2670(2021)15 - 4587 - 11 DOI: 10.7501/j.issn.0253-2670.2021.15.017

Effect of *Coptidis Rhizoma-Magnoliae Officinalis Cortex* on TNBS-induced ulcerative colitis in rats by inhibiting PI3K/Akt signaling pathway

YANG Xian-juan¹, FU Yin¹, WANG Jia-jun¹, WANG Jian¹, XIAO Lin-xuan¹, XU Zhuo¹, WANG Li-ying¹, GONG Dao-yin²

1. College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

2. Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China

Abstract: Objective To study the effect of Huanglian (*Coptidis Rhizoma*)-Houpo (*Magnoliae Officinalis Cortex*) on regulation of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in rats with ulcerative colitis (UC). **Methods** The potential mechanism of *Coptidis Rhizoma-Magnoliae Officinalis Cortex* on treating UC was predicted based on UC gene expression profile data obtained from high-throughput gene expression database combined with comprehensive bioinformatics analysis. UC rats

收稿日期: 2021-04-09

基金项目:成都中医药大学中药"性-效-用"理论与实践创新团队(CXTD2018004);成都中医药大学西南特色中药资源重点实验室开放研究 基金资助项目(2020XSGG025)

作者简介:杨显娟,硕士,从事中药药性理论与应用研究。E-mail: yangxianjuan@stu.cdutcm.edu.cn

^{*}通信作者: 王 建,教授,博士生导师,从事中药药性理论及应用研究。E-mail: jianwang08@163.com

model was established by 2,4,6-trinitrobenzene sulfonic acid (TNBS)/ethanol method. SD rats were randomly divided into control group, model group, Coptidis Rhizoma (2 g/kg) group, Magnoliae Officinalis Cortex (2 g/kg) group, Coptidis Rhizoma-Magnoliae Officinalis Cortex (4 g/kg) group and sulfasalazine (0.4 g/kg) group, with eight rats in each group. The rats in each administration group were ig corresponding drugs 24 h after modeling, once a day for 6 d. Levels of interleukin-1β (IL-1β), IL-6, tumor necrosis factor- α (TNF- α) and myeloperoxidase (MPO) activity in serum of rats in each group were detected by kits; Colon mass/length, spleen index and colon macroscopic damage index (CMDI) were calculated and evaluated; Hematoxylin-eosin (HE) staining method was used to investigate the pathological changes and pathological damage scores of colon tissue in rats; Immunohistochemical method was used to detect PI3K, Akt and cleaved Caspase-3 expression in colon of rats; Western blotting was used to detect expressions of phosphorylated Akt (p-Akt), B-cell lymphoma 2 (Bcl-2) and cleaved Caspase-3 in colon of rats. Results Bioinformatics predictions showed that there were 49 potential targets of Coptidis Rhizoma-Magnoliae Officinalis Cortex on UC, which may be related to the regulation of biological processes and pathways such as peroxisome proliferator-activated receptor (PPAR) signaling pathway, nuclear factor-κB (NF-κB) signaling pathway and PI3K/Akt signaling pathway. Experimental validation results showed that compared with model group, IL-1 β , IL-6, TNF- α levels and MPO activity in serum of rats in each administration group were significantly reduced (P < 0.01); Colon mass/length, spleen index, CMDI score, and colon tissue pathological damage score of rats were significantly reduced (P < 0.01); Positive expressions of PI3K, Akt and cleaved Caspase-3 in colon tissue was significantly reduced (P < 0.01); Expressions of p-Akt/Akt and cleaved Caspase-3 in colon were significantly reduced (P < 0.01), Bcl-2 expression was significantly increased (P < 0.01), and Coptidis Rhizoma-Magnoliae Officinalis Cortex had the best curative effect. Conclusion Coptidis Rhizoma, Magnoliae Officinalis Cortex and their compatibility can effectively alleviate TNBS-induced UC, of which mechanism may be related to the inhibition of PI3K/Akt pathway, and Coptidis Rhizoma-Magnoliae Officinalis Cortex has the best effect, which reflects the compatibility of traditional Chinese medicines with "combination".

Key words: ulcerative colitis; *Coptidis Rhizoma*; *Magnoliae Officinalis Cortex*; compatibility; inflammatory cytokines; PI3K/Akt signaling pathway

溃疡性结肠炎(ulcerative colitis, UC)是一种 炎症性肠病,发病部位仅限于结肠和直肠,病因尚 不明确^[1]。据统计,全球 UC 总患病率为 0.4%^[2-4]。 黄连、厚朴为2种传统的中草药,具有抗菌、抗氧 化、止泻和消炎的作用,临床常将2药配伍联用, 厚朴制约黄连苦寒药性,二者又可协同增效,且安 全性更高。现代药理学研究表明, 黄连的主要活性 成分小檗碱对 UC 具有抗炎、调节免疫、保护肠黏 膜屏障和维持肠道菌群平衡的作用[5-6]; 厚朴的主要 活性成分厚朴酚对 UC 也具有较好的保护作用[7]。本 课题组前期研究发现,黄连、厚朴单独或配伍使用 对 UC 均具有保护作用^[8]。本研究采用生物信息学分 析技术预测黄连-厚朴活性成分与活动性 UC 之间复 杂的网络关系,系统性地评估黄连与厚朴治疗 UC 的生物学过程和可能调控的信号通路,并结合实验 验证,为阐明黄连-厚朴配伍的作用机制提供依据。

1 方法

1.1 网络药理学分析

1.1.1 靶点预测 从GEO 数据库(https://www.ncbi. nlm.nih.gov/geo/)^[9]下载 GSE75214 基因表达谱数 据,以 *P*<0.05 且|log₂FC|≥1 为标准,筛选差异基 因,其中 log₂FC≥1 代表上调的差异表达基因,

log₂FC≤-1代表下调的差异表达基因。

通过中医药系统药理学平台(TCMSP, https://tcmspw.com/tcmsp.php)^[10]收集黄连、厚朴的 活性成分,根据口服利用度(oral bioavailability, OB)≥30%且类药性(drug likeness, DL)≥0.15 筛选活性成分,同时利用 SwissTargetPrediction 数据 库(http://www.swisstargetprediction.ch/)^[11]预测活 性成分的作用靶点。

1.1.2 蛋白质-蛋白质相互作用(protein-protein interaction, PPI)网络的构建和功能富集分析 利用R语言将黄连-厚朴活性成分靶点与UC特异性差异基因取交集,绘制韦恩图,采用STRING数据库(https://string-db.org)^[12]构建 PPI 网络。采用CytoScape 软件^[13]对交集靶点进行基因本体(gene ontology, GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集分析。

1.2 实验验证

1.2.1 动物 SPF级 SD 大鼠 48 只,雌雄各半,8 周龄,体质量(220±20)g,购自成都达硕实验动物有限公司,动物合格证号 SCXK(川)2020-030。动物于成都中医药大学实验动物中心适应性饲养

5 d,温度(25.0±0.5)℃、湿度 50%,通风良好, 保持明暗交替,自由进食饮水。动物实验经成都中 医药大学实验动物临床委员会批准(批准号 TCM-2016-312)。

1.2.2 药材 黄连、厚朴购自成都荷花池中药材市场,经成都中医药大学李敏教授鉴定分别为黄连 Coptis chinensis Franch.的干燥根茎、厚朴 Magnolia officinalis Rehd. et Wils.的干燥干皮、枝皮及根皮。 采用高效液相色谱法(HPLC)测得黄连中小檗碱 质量分数为7.44%(以盐酸小檗碱计),厚朴中厚朴 酚与和厚朴酚的总质量分数为3.19%,均符合《中 国药典》2020年版规定。

1.2.3 药品与试剂 2,4,6-三硝基苯磺酸(TNBS, 批号 P2297) 购自美国 Sigma 公司;柳氮磺胺吡啶 肠溶片(批号09180709, 0.25 g/片)购自上海信宜 天平药业有限公司; 白细胞介素-1 β (interleukin-1 β , IL-1β) 检测试剂盒(批号 YX-091201R)、IL-6 检 测试剂盒(批号 YX-091221R)、肿瘤坏死因子-α (tumor necrosis factor-a, TNF-a) 检测试剂盒(批 号 YX-201406R)、髓过氧化物酶(myeloperoxidase, MPO) 检测试剂盒(批号 YX-131615R) 购自上海 优选生物科技有限公司; BCA 蛋白定量试剂盒(批 号 202001) 购自北京索莱宝科技有限公司; β-actin 抗体(批号 T0022) 购自美国 Affinity 公司;蛋白 激酶 B (protein kinase B, Akt) 抗体 (批号 4685S)、 剪切型半胱氨酸蛋白酶-3(cleaved Caspase-3)抗体 (批号 9661S) 购自美国 CST 公司; 磷酸化 Akt (p-Akt) 抗体(批号 AB38449)、磷脂酰肌醇-3-激 酶 (phosphatidylinositol-3-kinase, PI3K) 抗体 (批 号 AB182651) 购自英国 Abcam 公司; B 淋巴细胞 瘤 2(B-cell lymphoma 2, Bcl-2)抗体(批号 109683) 购自美国 GeneTex 公司; HRP 标记的山羊抗兔 IgG 抗体(批号 143146) 购自美国 Jackson Immuno **Research** 公司。

1.2.4 仪器 L3-5K 型高速离心机(湖南可成仪器 设备有限公司);电泳仪(美国 Bio-Rad 公司);XD30 型显微镜(日本 Olympus 公司);DG5032 型酶标仪 (上海珂淮仪器有限公司);TSY-B 型摇床(天津市 莱玻特瑞仪器设备有限公司);JB-P5 型包埋机(常 州派斯杰医疗设备有限公司);RM2235 型石蜡切片 机(德国 Leica 公司)。

1.2.5 造模、分组与给药 SD 大鼠禁食不禁水 24 h 后,取 40 只大鼠采用 TNBS/乙醇法^[14]制备 UC 模

型。聚乙烯软管经石蜡润滑后插入大鼠直肠,深度 约8cm,向聚乙烯软管中缓慢注入的TNBS/乙醇溶 液(1mL/kg),为防止药液停留在软管中,药液注 入完毕后,继续注入0.4mL空气,并将大鼠倒立, 保持肛门高位2min,以防止药液倒流,使药液均 匀分布在直肠中;取8只大鼠作为对照组,注入等 体积0.9%氯化钠溶液。黄连、厚朴和黄连-厚朴配 伍水提物的制备及剂量设置参照本课题组前期研 究方法^[8],将造模成功的40只大鼠随机分为模型 组、黄连(2g/kg)组、厚朴(2g/kg)组、黄连-厚朴配伍(4g/kg)组和柳氮磺胺吡啶(0.4g/kg, 相当于临床等效剂量)组,每组8只。造模24h后, 各给药组ig相应药物(10mL/kg),对照组和模型 组 ig等体积0.9%氯化钠溶液,1次/d,持续6d。

1.2.6 黄连-厚朴配伍对 UC 大鼠 IL-1β、IL-6、TNF-α 水平和 MPO 活性的影响 末次给药 24 h 后,称定 大鼠体质量,深度麻醉,腹主动脉取血,3500 r/min 离心 10 min,收集上清液,按试剂盒说明书检测血 清中 IL-1β、IL-6、TNF-α 水平和 MPO 活性。

1.2.7 黄连-厚朴配伍对 UC 大鼠结肠质量/长度、脾 脏指数和肠黏膜损伤指数(colon macroscopic damage index, CMDI)评分的影响 大鼠腹主动脉 取血后,取结肠和脾脏组织,称定质量,将结肠平 铺在方格纸上测量结肠长度,并进行 CMDI 评分^[15]: 0分为黏膜无损伤、充血;1分为局部黏膜充血水肿, 但无糜烂、溃疡形成;2分为黏膜有溃疡形成、充 血,但炎性反应与溃疡仅显点状不显著;3分为在2 分的基础上,黏膜溃疡、充血范围直径超过4mm, 炎性反应显著;4分为在3分的基础上,黏膜溃疡、 充血、炎性反应更严重,并有结肠增厚现象;5分 为在4分的基础上,溃疡面积直径超过1cm,结肠 明显充血、增厚;6分为在5分的基础上,溃疡形 成超过2cm 且糜烂,结肠增厚。

1.2.8 黄连-厚朴配伍对UC大鼠结肠组织病理变化 的影响 各组大鼠取靠近直肠的结肠组织,于 4% 多聚甲醛中固定 48 h,经脱水、透明、包埋、切片、 贴片、烤片后,进行苏木素-伊红(HE)染色,于 显微镜下结肠组织病理变化,并进行病理损伤程度 评分,评分标准见表 1。

结肠组织病理损伤评分=(炎性细胞浸润+组织结构的 完整性)/2

1.2.9 黄连-厚朴配伍对 UC 大鼠结肠组织 PI3K、 Akt 和 cleaved Caspase-3 表达的影响 取各组大鼠

Table 1 Scoring criteria of colonic histopathological damage					
评分	炎性细胞浸润情况	组织结构的完整性情况			
$0 \sim 1$	固有层无炎性细胞或少量炎性细胞浸润	损伤小,肠壁无增厚,组织结构完整			
$2 \sim 3$	固有层有大量炎性细胞浸润	隐窝脓肿,隐窝炎,肠壁增厚,占整个视野的 2/5			
$4{\sim}5$	炎性细胞大量募集,并延伸至黏膜下层	隐窝结构改变,隐窝缺失,肠壁增厚,占整个视野的 3/5			
$6{\sim}7$	炎性细胞沿黏膜下层透壁扩展	隐窝结构改变,黏膜层大量细胞坏死,肠壁增厚,占整个视野的			
		4/5 或充满整个视野			

表 1 结肠组织病理损伤评分标准

结肠组织,包埋后切片(厚2µm),脱蜡、水化、 抗原修复、阻断、封闭后,分别滴加 Akt 抗体(1: 100)、PI3K 抗体(1:100)、cleaved Caspase-3 抗 体(1:400),4 ℃孵育过夜;加入 HRP 标记的山 羊抗兔 IgG 抗体孵育,于显微镜下观察并拍照,使 用 Image J 软件分析结肠组织 PI3K、Akt 和 cleaved Caspase-3 表达情况。

1.2.10 黄连-厚朴配伍对 UC 大鼠结肠组织 p-Akt、 Bcl-2 和 cleaved Caspase-3 蛋白表达的影响 取大 鼠结肠组织,加入预冷的 RIPA 裂解液(含磷酸酶 抑制剂和蛋白酶抑制剂),提取蛋白,采用 BCA 蛋 白定量试剂盒测定蛋白质量浓度。蛋白样品经十二 烷基硫酸钠-聚丙烯酰胺凝胶电泳,转至 PVDF 膜, 封闭后,分别加入 p-Akt、Akt、Bcl-2、cleaved Caspase-3 和β-actin 抗体,孵育过夜;加入 HRP标 记的山羊抗兔 IgG 抗体,孵育后加入 ECL 发光液显 影,采用 Image J 软件分析条带。

1.2.11 统计分析 采用 SPSS 26.0 软件进行统计, 使用单因素方差分析 (One-way ANOVA) 结合事后 检验进行组间分析。

2 结果

2.1 网络药理学分析

2.1.1 UC 差异基因的表达 GSE75214 基因表达 谱数据包括 11 例正常结肠组织样本和 74 例活动性 UC 结肠组织样本,根据 P<0.05 且|log₂FC|≥1 共筛 选出 1243 个差异表达基因,包括 794 个表达上调的 差异基因和 449 个表达下调的差异基因,见图 1。

2.1.2 PPI 网络分析 如表 2 所示, TCMSP 数据库 共检索到黄连-厚朴活性成分 22 个,其中黄连 14 个、 厚朴 8 个。如图 2、3 所示,共预测出 260 个靶点, 将筛选的黄连-厚朴活性成分靶点与UC 差异基因靶 点取交集,得到 49 个共同靶点。

2.1.3 GO 功能和 KEGG 通路富集分析 GO 功能 富集分析如图 4 所示, 生物过程(biological process, BP)主要集中在对细胞因子介导的信号通路、炎性 反应的调节、细胞程序性死亡的正向调节等; 细胞

红色表示表达上调的差异基因,绿色表示表达下调的差异基因, 黑色表示正常表达的基因

Red indicates up-regulated differentially expressed genes, green indicates down-regulated differentially expressed genes, black indicates normally expressed genes

图 1 UC 结肠组织差异表达基因的火山图

Fig. 1 Volcano map of differentially expressed genes in UC colon tissue

组成 (cellular component, CC) 主要集中在细胞膜、 肥大细胞颗粒、基底外侧质膜等;分子功能 (molecular function, MF) 主要表现在碳酸盐脱水 酶活性、蛋白激酶活性、氧化还原酶活性等。KEGG 通路富集分析如图 5 所示,主要参与过氧化物酶体 增殖物活化受体 (peroxisome proliferator-activated receptor, PPAR) 信号通路、核因子 κ B (nuclear factor- κ B, NF- κ B) 和 PI3K-Akt 信号通路等。

2.2 实验验证

2.2.1 黄连-厚朴配伍对 UC 大鼠血清中 IL-1β、 IL-6、TNF-α水平和 MPO 活性的影响 如表 3 所示, 与对照组比较,模型组大鼠血清中 IL-1β、IL-6、 TNF-α 水平和 MPO 活性显著升高 (*P*<0.01);与 模型组比较,各给药组大鼠血清中 IL-1β、IL-6、 TNF-α 水平和 MPO 活性显著降低 (*P*<0.01),尤 其以黄连-厚朴配伍组最佳,提示黄连-厚朴配伍对 UC 大鼠的抗炎作用优于单用黄连、厚朴。

2.2.2 黄连-厚朴配伍对 UC 大鼠结肠质量/长度、 脾脏指数和 CMDI 评分的影响 如表 4 所示,与 对照组比较,模型组大鼠结肠质量/长度、脾脏指 数和 CMDI 评分均显著升高 (P<0.01);与模型组 比较,各给药组结肠质量/长度、脾脏指数和 CMDI

来源	Mol ID	活性成分	OB/%	DL			
黄连	MOL001454	berberine	36.86	0.78			
黄连	MOL013352	obacunone	43.29	0.77			
黄连	MOL002894	berberrubine	35.74	0.73			
黄连	MOL002897	epiberberine	43.09	0.78			
黄连	MOL002903	(<i>R</i>)-canadine	55.37	0.77			
黄连	MOL002904	berlambine	36.68	0.82			
黄连	MOL002907	corchoroside A_qt	104.95	0.78			
黄连	MOL000622	magnograndiolide	63.71	0.19			
黄连	MOL000762	palmidin A	35.36	0.65			
黄连	MOL000785	palmatine	64.60	0.65			
黄连	MOL000098	quercetin	46.43	0.28			
黄连	MOL001458	coptisine	30.67	0.86			
黄连	MOL002668	worenine	45.83	0.87			
黄连	MOL008647	moupinamide	86.71	0.26			
厚朴	MOL001641	methyl linoleate	41.93	0.17			
厚朴	MOL001889	methyl linolelaidate	41.93	0.17			
厚朴	MOL000210	magnolol	69.19	0.15			
厚朴	MOL005955	honokiol	60.67	0.15			
厚朴	MOL005961	10,13-octadecadienoic acid methyl ester	41.93	0.17			
厚朴	MOL005970	eucalyptol	60.62	0.32			
厚朴	MOL005972	obovatol	69.45	0.18			
厚朴	MOL005980	neohesperidin	57.44	0.27			
黄连-厚	朴活性成分靶点	黄连-厚朴活性成分靶点	黄连-厚朴活性成分靶点				

表 2 黄连-厚朴的活性成分

 Table 2
 Active components of Coptidis Rhizoma-Magnoliae Officinalis Cortex

图 2 黄连-厚朴活性成分靶点与 UC 差异基因靶点的韦恩图

Fig. 2 Venn diagram of targets of Coptidis Rhizoma-Magnoliae Officinalis Cortex active components and UC differential genes

图 3 黄连-厚朴活性成分靶点与 UC 特征性基因靶点的 PPI 网络

Fig. 3 PPI network of targets of Coptidis Rhizoma-Magnoliae Officinalis Cortex active components and UC characteristic genes

Fig. 5 KEGG pathway enrichment analysis

表 3	黄连-厚朴配伍对	UC 大鼠血清中 IL-1β-	IL-6、	TNF-α 水平和 MPO	活性的影响	$(\overline{x} \pm s, n = 8)$
-----	----------	-----------------	-------	---------------	-------	-------------------------------

Table 3 Effect of *Coptidis Rhizoma-Magnoliae Officinalis Cortex* on IL-1 β , IL-6, TNF- α levels and MPO activity in serum of UC rats ($\bar{x} \pm s$, n = 8)

组别	剂量/(g·kg ⁻¹)	IL-1 $\beta/(pg \cdot mL^{-1})$	IL-6/(pg·mL ⁻¹)	$TNF-\alpha/(pg \cdot mL^{-1})$	$MPO/(U \cdot L^{-1})$
对照	—	447.56 ± 31.04	23.84 ± 1.92	184.50 ± 14.80	306.20 ± 46.31
模型	—	$865.38 \pm 15.48^{\#}$	57.93±2.76 ^{##}	$389.28 \pm 17.91^{\#\#}$	675.79±42.78 ^{##}
黄连	2	$577.95 \pm 26.93^{**}$	$34.89 \pm 3.50^{**}$	$275.14 \pm 25.03^{**}$	$450.71 \pm 59.64^{**}$
厚朴	2	$585.65 \!\pm\! 26.93^{**}$	$38.10 \pm 3.13^{**}$	$295.30 \!\pm\! 15.35^{**}$	$502.74 \pm 34.04^{**}$
黄连-厚朴配伍	4	537.26±45.96**	$31.72 \pm 3.05^{**}$	$249.44 \pm 25.19^{**}$	$394.63 \pm 19.20^{**}$
柳氮磺胺吡啶	0.4	623.49±32.17**	$45.41 \pm 3.21^{**}$	318.04±14.72**	$546.85 \pm 38.44^{**}$

与对照组比较: ##P<0.01; 与模型组比较: **P<0.01, 下表同

^{##}P < 0.01 vs control group; ^{**}P < 0.01 vs model group, same as below tables

表 4 黄连-厚朴对 UC 大鼠结肠质量/长度、脾脏指数和 CMDI 评分的影响 ($\overline{x} \pm s, n = 8$)

Table 4 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on colon weight/length, spleen index and CMDI score in UC rats $(\overline{x} \pm s, n = 8)$

组别	剂量/(g·kg ⁻¹)	结肠质量/长度/(g·cm ⁻¹)	脾脏指数/%	CMDI 评分
对照	—	0.12 ± 0.01	0.18 ± 0.04	0.25 ± 0.46
模型	—	$0.25 \pm 0.04^{\#}$	$0.32 \pm 0.04^{\#}$	$5.75 \pm 0.46^{\#}$
黄连	2	$0.14 \pm 0.01^{**}$	$0.24 \pm 0.02^{**}$	$2.25 \pm 0.46^{**}$
厚朴	2	$0.15 \pm 0.02^{**}$	$0.25 \pm 0.02^{**}$	$2.38 \pm 0.52^{**}$
黄连-厚朴配伍	4	$0.13 \pm 0.01^{**}$	$0.24 \pm 0.04^{**}$	$1.75 \pm 0.46^{**}$
柳氮磺胺吡啶	0.4	$0.14 \pm 0.02^{**}$	$0.25 \pm 0.02^{**}$	$2.63 \pm 1.19^{**}$

评分均显著降低(P<0.01),尤其以黄连-厚朴配伍 组最佳,提示黄连-厚朴配伍对 UC 大鼠结肠黏膜的 保护作用优于单用黄连、厚朴。

2.2.3 黄连-厚朴配伍对UC大鼠结肠组织病理变化 的影响 如图 6 所示,对照组大鼠结肠组织腺体排 列整齐,组织结构完整,无充血、坏死和水肿等组 织病理损伤变化;模型组大鼠结肠组织出现严重肠 上皮损伤、隐窝萎缩或缺失,黏膜坏死,坏死区域 原有组织结构消失,细胞水肿并伴有大量的炎性细 胞浸润;各给药组大鼠结肠组织上皮损伤和炎性细 胞浸润减少,隐窝炎、组织水肿和坏死现象改善, 其中黄连-厚朴配伍组大鼠结肠组织仅出现轻度的 肠上皮损伤和少量炎性细胞浸润。如表5所示,与 对照组比较,模型组大鼠组织病理损伤评分显著升 高 (P<0.01); 与模型组比较, 各给药组组织病理 损伤评分显著降低(P<0.01),尤其以黄连-厚朴配 伍组最佳,提示黄连-厚朴配伍对 UC 大鼠结肠黏膜 的保护作用优于单用黄连、厚朴。

Fig. 6 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on colonic pathological changes in UC rats (HE, × 100)

表5 黄连-厚朴配伍对UC大鼠结肠组织病理损伤评分的影 响 $(\overline{x} \pm s, n = 5)$

Table 5 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on pathological damage score of colon in UC rats $(\overline{x}\pm s, n=5)$

组别	剂量/(g·kg ⁻¹)	组织病理损伤评分
对照		0.80 ± 0.25
模型	_	$5.80 \pm 0.12^{\#}$
黄连	2	$3.00 \pm 0.16^{**}$
厚朴	2	$4.00\pm0.16^{**}$
黄连-厚朴配伍	4	$2.80 \pm 0.25^{**}$
柳氮磺胺吡啶	0.4	$2.90 \pm 0.29^{**}$

2.2.4 黄连-厚朴配伍对 UC 大鼠结肠组织 PI3K、 Akt 和 cleaved Caspase-3 表达的影响 如图 7~9 和 表 6 所示,与对照组比较,模型组大鼠 PI3K、Akt、 cleaved Caspase-3 阳性表达显著升高 (P<0.01); 与模型组比较,各给药组大鼠 PI3K、Akt、cleaved Caspase-3 阳性表达显著降低(P<0.01)。

2.2.5 黄连-厚朴配伍对 UC 大鼠结肠组织 p-Akt、 Bcl-2 和 cleaved Caspase-3 蛋白表达的影响 如图

10 和表 7 所示,与对照组比较,模型组大鼠 p-Akt/Akt和 cleaved Caspase-3 蛋白表达水平显著升 高(P<0.01), Bcl-2蛋白表达水平显著降低(P< 0.01); 与模型组比较, 各给药组大鼠 p-Akt/Akt 和 cleaved Caspase-3 蛋白表达水平显著降低(P< 0.01), Bcl-2蛋白表达水平显著升高(P<0.01)。

3 讨论

UC 是一种慢性非特异性炎性疾病^[16],主要病 理特征为结肠黏膜的炎性反应[17],其病因可能与遗 传、免疫、环境刺激等多种因素有关[18-20]。治疗 UC 的主要药物包括 5-氨基水杨酸药物、类固醇和免疫 抑制剂等[21-22],但长期使用不良反应大且费用昂贵, 因此需要寻找新的治疗策略。黄连-厚朴配伍源自 《普济方》中的"黄连厚朴汤",方中仅有黄连、厚 朴2味药,对胃肠道疾病具有确切的疗效。本研究 结果显示,黄连、厚朴单独或配伍使用均能够显著 降低 TNBS 诱导的 UC 大鼠结肠质量/长度、CMDI 评分、脾脏指数和组织病理评分,且黄连-厚朴配伍

图 7 黄连-厚朴配伍对 UC 大鼠结肠组织 PI3K 表达的影响 (×400)

Fig. 7 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on PI3K expression in colon of UC rats (× 400)

图 8 黄连-厚朴配伍对 UC 大鼠结肠组织 Akt 表达的影响 (×400)

Fig. 8 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on Akt expression in colon of UC rats (× 400)

Fig. 9 Effect of Coptidis Rhizoma-Magnoliae Officinalis Cortex on cleaved Caspase-3 expression in colon of UC rats (× 400)

	表 6	黄连-厚朴配伍对 UC 大鼠结肠组织 PI3K、Akt 和 cleaved Caspase-3 表达的影响(x ± s, n = 3)	
Table 6	Effect	of Coptidis Rhizoma-Magnoliae Officinalis Cortex on expressions of PI3K, Akt and cleaved Caspase-3 in col	on
of UC ra	ts ($\overline{x} \pm \overline{x}$	(s, n = 3)	

4日 早山	刘昌/(a lra-1)	A 值			
组加	î∬里/(g·kg ¹) ──	PI3K	Akt	cleaved Caspase-3	
对照	—	1.13 ± 0.80	2.21 ± 0.16	0.54 ± 0.05	
模型	—	$10.03 \pm 1.67^{\#}$	$7.77 \pm 0.68^{\#\#}$	$2.81 \pm 0.55^{\#}$	
黄连	2	$4.13 \pm 0.98^{**}$	$4.11\pm0.05^{**}$	$1.61 \pm 0.18^{**}$	
厚朴	2	$5.00 \pm 0.53^{**}$	$5.02 \pm 0.33^{**}$	$2.10 \pm 0.10^{**}$	
黄连-厚朴配伍	4	$2.42\pm0.11^{**}$	$3.09 \pm 0.40^{**}$	$1.11 \pm 0.08^{**}$	
柳氮磺胺吡啶	0.4	$4.18 \pm 0.78^{**}$	$4.13 \pm 1.09^{**}$	$1.81 \pm 0.13^{**}$	

Fig. 10 Effect of *Coptidis Rhizoma-Magnoliae Officinalis Cortex* on expressions of p-Akt, Bcl-2 and cleaved Caspase-3 proteins in colon of UC rats

表 7 黄连-厚朴配伍对 UC 大鼠结肠组织 p-Akt、Bcl-2 和 cleaved Caspase-3 蛋白表达的影响 ($\bar{x}\pm s$, n=6) Table 7 Effect of *Coptidis Rhizoma-Magnoliae Officinalis Cortex* on expressions of p-Akt, Bcl-2 and cleaved Caspase-3 proteins in colon of UC rats ($\bar{x}\pm s$, n=6)

4日 모山	剂量/(g·kg ⁻¹)	蛋白相对表达量			
组加		p-Akt/Akt	Bcl-2/β-actin	cleaved Caspase-3/β-actin	
对照	_	0.21 ± 0.08	7.63 ± 1.66	0.23 ± 0.12	
模型	—	$1.00 \pm 0^{\#}$	$1.00 \pm 0^{\#\#}$	$1.00\pm0^{\#\#}$	
黄连	2	$0.46 \pm 0.19^{**}$	$2.41 \pm 0.59^{**}$	$0.28 \pm 0.07^{**}$	
厚朴	2	$0.54 \pm 0.22^{**}$	$3.99 \pm 1.90^{**}$	$0.26 \pm 0.13^{**}$	
黄连-厚朴配伍	4	$0.28 \pm 0.12^{**}$	$7.38 \pm 2.23^{**}$	$0.19 \pm 0.07^{**}$	
柳氮磺胺吡啶	0.4	$0.24 \pm 0.14^{**}$	$4.79 \pm 1.84^{**}$	$0.11 \pm 0.14^{**}$	

疗效最佳。本研究结合基因组学和生物信息学分析 方法,构建生物信息学和实验药理学的集成模型, 从全基因组层面和网络药理学层面对药物与疾病相 互关系进行系统全面的分析^[23],从而阐明黄连-厚朴 配伍对 TNBS 诱导的 UC 大鼠的作用机制。结果显 示,通过 GEO 数据库的基因表达谱数据筛选活动 性 UC 与健康人结肠组织之间的差异表达基因,共 确定了 794 个上调的差异表达基因和 449 个下调的 差异表达基因; KEGG 通路富集分析显示,黄连-厚朴配伍主要通过作用于 PPAR 信号通路、NF-κB 信号通路和 PI3K/Akt 信号通路治疗 UC。

炎性细胞因子的释放和中性粒细胞的分泌是 UC 的重要特征,常用于评估 UC 的疾病活动^[24]。 促炎细胞因子如 TNF-α、IL-6 和 IL-1β 的分泌在 UC 的发展中起着重要作用^[25]。本研究结果显示,黄连、 厚朴单用及配伍均能够显著抑制 UC 大鼠血清中 TNF-α、IL-6、IL-1β 水平和 MPO 活性,且黄连-厚 朴配伍疗效最佳,表明黄连-厚朴配伍能够抑制促炎 细胞因子和相关炎性标志物的表达。细胞因子的释 放与 PI3K/Akt 信号通路密切相关^[26-27]。PI3K 由催 化结构域 P110 和调节结构域 P85 组成,活化后进 一步磷酸化 Akt,从而发生信号转导^[28-30]。本研究 结果显示,黄连、厚朴单用及配伍能够抑制大鼠结 肠组织中 PI3K、Akt 的阳性表达,并抑制 p-Akt 蛋 白表达水平。PI3K/AKT 参与细胞凋亡、自噬和增 殖等多种生物学过程^[31-32]。本研究结果显示,黄连、 厚朴单用及配伍能够上调 Bcl-2 蛋白表达水平,降 低 cleaved Caspase-3 蛋白表达水平,从而发挥抗调 • 4596 •

亡作用。

综上所述,本研究发现黄连、厚朴单用或配伍 使用能够通过抑制 PI3K/Akt 信号通路,从而发挥对 UC 大鼠的肠黏膜保护、抗炎和抗凋亡作用,其中 黄连-厚朴配伍疗效最佳,体现了中药"相使"增效 的配伍关系。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- Steed H. Ulcerative colitis [J]. *Medicine*, 2019, 47(6): 371-376.
- [2] Lakatos P L. Recent trends in the epidemiology of inflammatory bowel diseases: Up or down? [J]. World J Gastroenterol, 2006, 12(38): 6102-6108.
- [3] Adams S M, Bornemann P H. Ulcerative colitis [J]. Am Fam Physician, 2013, 87(10): 699-705.
- [4] Leong R W, Lau J Y, Sung J J. The epidemiology and phenotype of Crohn's disease in the Chinese population[J]. *Inflamm Bowel Dis*, 2004, 10(5): 646-651.
- [5] Liu Y, Liu X, Hua W, *et al.* Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis [J]. *Int Immunopharmacol*, 2018, 57: 121-131.
- [6] Cui H T, Cai Y Z, Wang L, *et al.* Berberine regulates Treg/Th17 balance to treat ulcerative colitis through modulating the gut microbiota in the colon [J]. *Front Pharmacol*, 2018, 9: 571.
- [7] Shen P, Zhang Z, He Y, *et al.* Magnolol treatment attenuates dextran sulphate sodium-induced murine experimental colitis by regulating inflammation and mucosal damage [J]. *Life Sci*, 2018, 196: 69-76.
- [8] 杨显娟,付尹,王建,等.黄连-厚朴配伍对溃疡性结肠炎模型大鼠的保护作用及对凋亡因子的影响 [J].中国实验方剂学杂志,2020,26(23):83-91.
- [9] Barrett T, Wilhite S E, Ledoux P, et al. NCBI GEO: Archive for functional genomics data sets: Update [J]. Nucleic Acids Res, 2013, 41: D991-D995.
- [10] Ru J L, Li P, Wang J N, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines [J]. J Cheminform, 2014, 6: 13.
- [11] Daina A, Michielin O, Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules [J]. *Nucleic Acids Res*, 2019, 47(W1): W357-W364.
- [12] Szklarczyk D, Morris J H, Cook H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible [J]. *Nucleic Acids Res*, 2017, 45(D1): D362-D368.

- [13] Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]. Genome Res, 2003, 13(11): 2498-2504.
- [14] Xu B, Li Y L, Xu M, *et al.* Geniposide ameliorates TNBS-induced experimental colitis in rats via reducing inflammatory cytokine release and restoring impaired intestinal barrier function [J]. *Acta Pharmacol Sin*, 2017, 38(5): 688-698.
- [15] Shi L, Dai Y, Jia B Y, *et al.* The inhibitory effects of Qingchang Wenzhong Granule on the interactive network of inflammation, oxidative stress, and apoptosis in rats with dextran sulfate sodium-induced colitis [J]. *J Cell Biochem*, 2019, 120(6): 9979-9991.
- [16] Liu Q, Zuo R, Wang K, et al. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway [J]. Acta Pharmacol Sin, 2020, 41(6): 771-781.
- [17] Li M Y, Zhang Z H, Wang Z, et al. Convallatoxin protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB signaling through activation of PPARγ [J]. Pharmacol Res, 2019, 147: 104355.
- [18] Yadav V, Varum F, Bravo R, *et al.* Inflammatory bowel disease: Exploring gut pathophysiology for novel therapeutic targets [J]. *Transl Res*, 2016, 176: 38-68.
- [19] Ungaro R, Mehandru S, Allen P B, *et al.* Ulcerative colitis
 [J]. *Lancet*, 2017, 389(10080): 1756-1770.
- [20] Glick L R, Cifu A S, Feld L. Ulcerative colitis in adults[J]. JAMA, 2020, 324(12): 1205-1206.
- [21] Katsanos K H, Papadakis K A. Inflammatory bowel disease: Updates on molecular targets for biologics [J]. *Gut Liver*, 2017, 11(4): 455-463.
- [22] Li Y H, Xiao H T, Hu D D, et al. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses [J]. *Pharmacol Res*, 2016, 110: 227-239.
- [23] Jardillier R, Chatelain F, Guyon L. Bioinformatics methods to select prognostic biomarker genes from large scale datasets: A review [J]. *Biotechnol J*, 2018, 13(12): e1800103.
- [24] Fu X X, Sun F, Wang F X, et al. Aloperine protects mice against DSS-induced colitis by PP2A-mediated PI3K/ Akt/mTOR signaling suppression [J]. Mediators Inflamm, 2017, 2017: 5706152.
- [25] Chen Q, Duan X, Fan H, et al. Oxymatrine protects against DSS-induced colitis via inhibiting the PI3K/AKT

signaling pathway [J]. Int Immunopharmacol, 2017, 53: 149-157.

- [26] Farrell R J, Lamont J T. Microbial factors in inflammatory bowel disease [J]. *Gastroenterol Clin North Am*, 2002, 31(1): 41-62.
- [27] Selvaraj S K, Giri R K, Perelman N, *et al.* Mechanism of monocyte activation and expression of proinflammatory cytochemokines by placenta growth factor [J]. *Blood*, 2003, 102(4): 1515-1524.
- [28] Huang X L, Xu J, Zhang X H, *et al.* PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis [J]. *Inflamm Res*, 2011, 60(8): 727-734.
- [29] Wang H Y, Zhang C Y, Xu L T, *et al*. Bufalin suppresses hepatocellular carcinoma invasion and metastasis by

targeting HIF-1α via the PI3K/AKT/mTOR pathway [J]. *Oncotarget*, 2016, 7(15): 20193-20208.

- [30] Li X, Wu C, Chen N, et al. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma [J]. Oncotarget, 2016, 7(22): 33440-33450.
- [31] Li T T, Zhu D, Mou T, *et al.* IL-37 induces autophagy in hepatocellular carcinoma cells by inhibiting the PI3K/AKT/mTOR pathway [J]. *Mol Immunol*, 2017, 87: 132-140.
- [32] Liu B H, Piao X H, Niu W, *et al.* Kuijieyuan decoction improved intestinal barrier injury of ulcerative colitis by affecting TLR4-dependent PI3K/AKT/NF-κB oxidative and inflammatory signaling and gut microbiota [J]. *Front Pharmacol*, 2020, 11: 1036.

[责任编辑 李亚楠]