穆库尔没药中的2个新吉玛烷型倍半萜

陈邦姣¹,周洪雷¹,任冬梅²,娄红祥²,沈 涛^{2*}

```
1. 山东中医药大学药学院,山东 济南 250355
```

2. 山东大学药学院 天然产物化学生物学教育部重点实验室, 山东 济南 250012

摘 要:目的 研究穆库尔没药 *Commiphora mukul* 树脂的化学成分。方法 采用硅胶和 Sephadex LH-20 凝胶柱色谱法进行 分离纯化,运用波谱学方法鉴定化合物的结构。结果 从穆库尔没药树脂醋酸乙酯提取物中分离获得 2 个吉玛烷型倍半萜化 合物,分别鉴定为 1α, 8α, 12α-三羟基-2β-甲氧基-8, 12-环氧吉玛烷-7(11), 9-二烯-6-酮 (1)和 1α, 8β, 12α-三羟基-2β-甲氧基-8, 12-环氧吉玛烷-7(11), 9-二烯-6-酮 (2)。结论 2 个吉玛烷型倍半萜化合物 1和 2 为未见文献报道的新化合物,分别命名为穆 库尔素 A (1)和穆库尔素 B (2)。 关键词:没药;穆库尔没药;吉玛烷型倍半萜;穆库尔素 A;穆库尔素 B 中图分类号: R284.1 文献标志码: A 文章编号: 0253 - 2670(2014)16 - 2299 - 04

DOI: 10.7501/j.issn.0253-2670.2014.16.003

Two new germacrane-type sesquiterpenoids from resin of Commiphora mukul

CHEN Bang-jiao¹, ZHOU Hong-lei¹, REN Dong-mei², LOU Hong-xiang², SHEN Tao²

1. School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China

 Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China

Abstract: Objective To investigate the chemical constituents from the resin of *Commiphora mukul*. **Methods** Silica gel and Sephadex LH-20 column chromatographies were used for the purification, and spectroscopic techniques were adopted for the structure elucidation. **Results** Two germacrane-type sesquiterpenoids have been isolated from the resin of *C. mukul*, which were identified to be 1 α , 8 α , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (1) and 1 α , 8 β , 12 α -trihydroxy-2 β -methoxy-8, 12-epoxygermacra-7(11), 9-dien-6-one (2). Conclusion These two sesquiterpenoids are new compounds named as mukulsin A (1) and mukulsin B (2), respectively.

Key words: Myrrha; Commiphora mukul (Hook. ex Stocks) Engl.; germacrane-type sesquiterpenoids; mukulsin A; mukulsin B

没药为橄榄科植物地丁树 Commiphora myrrha Engl. 或哈地丁树 C. molmol Engl. 分泌的胶状树 脂,为常用树脂类中药,具有散血祛瘀、消肿定痛 之功效。除上述两种没药属植物,本属其他植物的 胶状树脂亦常作为没药入药使用,如穆库尔没药 C. mukul (Hook. ex Stocks) Engl.。本属植物中主要含有 萜类、甾体类、木脂素类等化学成分,具有抗肿瘤、 抗微生物、抗炎、镇痛等药理作用^[1-3]。

穆库尔没药为没药属中的一种重要植物,主要 分布于印度的拉贾斯坦、古加拉特、卡纳塔克等地 区,在非洲东部的埃塞俄比亚等国家亦有分布。前 人对该种植物化学成分研究较多,分离鉴定了一系 列甾体、倍半萜、二萜、三萜、长链脂肪醇等化合物^[1-3]。本课题组围绕没药属植物开展了次生代谢产物分离鉴定、生物转化和抗肿瘤作用机制的研究工作,并分离鉴定了一系列倍半萜、三萜、甾体等化合物^[4-8]。在此基础上,针对穆库尔没药开展了系统的化学成分研究,以期获得结构新颖的化合物,丰富本属植物的化学结构多样性。本实验从穆库尔没药树脂醋酸乙酯提取物中分离获得2个吉玛烷型倍半萜化合物,分别鉴定为1α,8α,12α-三羟基-2β-甲氧基-8,12-环氧吉玛烷-7(11),9-二烯-6-酮 [1α,8α,12α-trihydroxy-2β-methoxy-8,12-epoxygermacra-7(11),9-dien-6-one,1]、1α,8β,12α-三羟基-2β-甲氧基-8,

收稿日期: 2014-04-08

基金项目: 国家自然科学基金资助项目(81001376);中国博士后基金(201104602, 20100471536);山东省博士后创新基金(201002018) 作者简介:陈邦姣(1990—),女,硕士在读,研究方向为中药及复方活性成分与质量控制研究。E-mail:chenbangjiao@163.com *通信作者 沈 涛,博士,讲师。Tel: (0531)88382028 E-mail: shentao@sdu.edu.cn

12-环氧吉玛烷-7(11), 9-二烯-6-酮 [1α, 8β, 12α-trihydroxy-2β-methoxy-8, 12-epoxygermacra-7(11),
9-dien-6-one, 2]。2 个化合物均为新化合物,分别 命名为穆库尔素 A (1) 和穆库尔素 B (2)。

1 仪器与材料

Bruker Avance 600 型核磁共振波谱仪, API4000 型质谱仪和 Waters GCT 飞行时间高分辨气质联用 仪。石油醚、醋酸乙酯、三氯甲烷、丙酮均为分析 纯;薄层色谱用硅胶(Silica gel GF₂₅₄)及柱色谱用 硅胶(200~300 目)均由青岛海洋化工厂生产; Sephadex LH-20 凝胶购自 Pharmacia Bioteck 公司。

没药药材于 2007 年 9 月购自瑞士 Dixa AG 药材 公司,产地为埃塞俄比亚。药材为干燥的胶状树脂, 呈颗粒状,大小均一,直径约 0.5 cm,淡黄色或桔黄 色,表面具有光泽。质坚脆,具有芳香气味。由山东 大学药学院生药学研究所向兰教授鉴定为穆库尔没 药 *Commiphora mukul* (Hook. ex Stocks) Engl.。标本 (20070930CM)存于山东大学药学院生药学研究所。

2 提取与分离

穆库尔没药树脂 3.0 kg,粉碎,以醋酸乙酯为 提取溶剂,索氏提取器提取 36 h,减压浓缩得浸膏 220 g。取 100 g浸膏,采用硅胶柱色谱,以石油醚-醋酸乙酯梯度洗脱(100:0→0:100),并采用薄层 色谱法合并相同部分,得 10 个馏份 Fr. 1~10。Fr. 9 (27 g)采用硅胶柱色谱,以石油醚-醋酸乙酯梯度洗脱(85:15→50:50)得8个组分Fr.9a~9h。Fr.9f
采用制备薄层色谱,石油醚-三氯甲烷-丙酮(50:50:20)为展开剂分离制备获得化合物1和2,共22mg。

3 结构鉴定

化合物1和2为一对无法分离的异构体(图1), 由其氢谱中峰面积比值推断两者在混合物中比例为 3:1。碳谱信号均裂分,而氢谱信号部分裂分,可 能因个别位置异构化引起,遂在混合物状态下进行 结构解析。

2 8β-OH

图1 化合物1和2的化学结构式

Fig. 1 Chemical structures of compounds 1 and 2

化合物 1 和 2 为白色粉末,以石油醚-丙酮(7: 3)为展开剂在薄层色谱板上展开, Rf 值为 0.30, 10% H₂SO₄-EtOH 试剂加热后显粉红色斑点。ESI- MS 谱中显示 *m/z*: 313.5 [M+H]⁺;其分子式通过 HR-EI-MS (*m/z* 294.149 0 [M-H₂O]⁺,计算值 294.146 7) 结 合 NMR 波谱数据 (表 1) 推断为 C₁₆H₂₄O₆,不饱和

碳位	1		2	
	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	$\delta_{ m H}$
1	87.5	5.05 (1H, brs)	87.2	5.03 (1H, brs)
2	77.2	3.57 (1H, brs)	77.2	3.57 (1H, brs)
3a	33.6	1.43 (1H, m)	33.4	1.43 (1H, m)
3b		1.65 (1H, m)		1.65 (1H, m)
4	29.6	2.35 (1H, m)	29.8	2.35 (1H, m)
5α	47.8	3.10 (1H, t, J = 12.0 Hz)	47.7	3.04 (1H, t, J = 12.1 Hz)
5β		2.03 (1H, m)		2.03 (1H, m)
6	206.4		206.2	
7	138.5		138.2	
8	120.3		120.5	
9	124.2	5.37 (1H, s)	125.6	5.50 (1H, s)
10	143.8		143.3	
11	140.3		140.3	
12	101.8	5.61 (1H, s)	101.2	5.80 (1H, s)
13	10.6	1.79 (3H, s)	10.6	1.78 (3H, s)
14	12.9	1.76 (3H, s)	12.9	1.76 (3H, s)
15	20.1	1.06 (3H, d, J = 7.0 Hz)	20.2	1.06 (3H, d, J = 7.0 Hz)
-OCH ₃	57.1	3.36 (3H, s)	57.1	3.36 (3H, s)

表 1 化合物 1 和 2 的核磁共振波谱数据 (CDCl₃) Table 1 NMR data of compounds 1 and 2 (CDCl₃)

度为 6。化合物 1/2 的 ¹H 和 ¹³C-NMR 数据结合 HMQC 谱可推断, 1/2 结构中分别含有 3 个甲基、2 个亚甲基、1 个次甲基、4 个连氧碳、2 个双键、1 个 酮羰基 (δ_{C} 206.2/206.4)、1 个甲氧基 (δ_{C} 57.1/57.1)。

对2个化合物的波谱数据分别单独解析确定其 结构。化合物1为其中量较大的组分,¹H-¹H COSY 谱中, H-2 (δ_H 3.57) 与 H₂-3 (δ_H 1.43 和 1.65) 和 H-1 (δ_H 5.05) 相关; H-4 (δ_H 2.35) 与 H₂-3 (δ_H 1.43 和 1.65) 和 H₂-5 (δ_H 2.03 和 3.10) 相关; H-4 (δ_H 2.35) 与 H₃-15 ($\delta_{\rm H}$ 1.06) 相关;由此确定分子中 1 个自旋 耦合系统(图 2 中黑线所示结构片段)。HMBC 谱 中存在下列相关关系: H₃-14 (δ_H 1.76) 与 C-1 (δ_C 87.5), C-9 ($\delta_{\rm C}$ 124.2), C-10 ($\delta_{\rm C}$ 143.8); H-9 ($\delta_{\rm H}$ 5.37) 与 C-8 (δ_{C} 120.3); H₂-5 (δ_{H} 2.03 和 3.10) 与 C-6 (δ_{C} 206.4); H₃-13 ($\delta_{\rm H}$ 1.79) 与 C-6 ($\delta_{\rm C}$ 206.4), C-7 ($\delta_{\rm C}$ 138.5), C-11 ($\delta_{\rm C}$ 140.3), C-12 ($\delta_{\rm C}$ 101.8), C-8 ($\delta_{\rm C}$ 120.3); H-12 (δ_H 5.61) 与 C-8 (δ_C 120.3) (图 2)。根 据上述 HMBC 相关关系将由¹H-¹H COSY 谱推断出 的结构片段(图 2 中黑线所示)与 HMQC 确定的 结构单元相连接,推出1的平面结构为1,8,12-三 羟基-2-甲氧基-8, 12-环氧吉玛烷-7(11), 9-二烯-6-酮。采用同样的方法确定化合物 2 与 1 具有相同的 平面结构。

- 图 2 化合物 1 和 2 的主要 ¹H-¹H COSY (—) 和 HMBC (H→C) 相关
- Fig. 2 Key ¹H-¹H COSY (→) and HMBC (H→C) correlations of compounds 1 and 2

化合物 1 与 2 的相对构型通过 NOESY 谱和 3D 模拟确定。化合物 1 的 NOESY 谱中, H₃-14 ($\delta_{\rm H}$ 1.76) 与 H-9 ($\delta_{\rm H}$ 5.37)相关,表明 C-9 位双键构型为顺式 (Z)。化合物 1 的 NOESY 谱存在下述相关关系: H-1 ($\delta_{\rm H}$ 5.05)与 H₃-14 ($\delta_{\rm H}$ 1.76)、H-2 ($\delta_{\rm H}$ 3.57)和-OCH₃ ($\delta_{\rm H}$ 3.36); H-2 ($\delta_{\rm H}$ 3.57)与 H-5 α ($\delta_{\rm H}$ 3.10); H₃-15 ($\delta_{\rm H}$ 1.06)与 H-2 ($\delta_{\rm H}$ 3.57)、H-5 α ($\delta_{\rm H}$ 3.10)和H-5 β ($\delta_{\rm H}$ 2.03)(图 3-a)。结合文献报道的吉玛烷型倍半萜单 晶^[9]和 Chem 3D 模拟的方法,建立了化合物 1 A 环 的构型,并对 A 环中碳原子不同构型的组合进行了 空间距离测量,以确证化合物的立体构型,分为以 下 3 个步骤:

(1) C-2 构型确证: 当 H-2 为 α 构型, 2-OCH₃ 为 β 构型时, H-2 与 H-5α 和 H-5β 的距离分别为 0.286 和 0.398 nm (图 3-a), 与实测 NOESY 谱中 H-2 (*δ*_H 3.57) 与 H-5α(*δ*_H 3.10) 相关一致(若 2 个氢原子间 存在 NOE 相关, 其空间距离小于 0.3 nm); 当 H-2 为 β 构型, 2-OCH₃ 为 α 构型时, H-2 与 H-5α、H-5β 的空间距离分别为 0.415 和 0.510 nm, 不存在 NOE 相关。因此确证 H-2 为 α 构型, 2-OCH₃ 为 β 构型。

(2) C-1 构型确证: 当 H-1 为 β 构型, 1-OH 为 α 构型时, H-1 与 H₃-14、H-2 和-OCH₃ 的空间距离 分别为 0.207、0.283、0.289 nm (图 3-a), 与实测 NOESY 谱中 H-1 (δ_H 5.05) 与 H₃-14 (δ_H 1.76)、H-2 (δ_H 3.57) 和 2-OCH₃ (δ_H 3.36) 相关一致; 当 H-1 为 α 构型, 1-OH 为 β 构型时, H-1 与 H₃-14、H-2 和 2-OCH₃ 的空间距离分别为 0.303、0.239、0.373 nm, 在此构 型条件下 H-1 与 H₃-14、2-OCH₃ 不存在 NOE 相关。 因此确证 H-1 为 β 构型, 1-OH 为 α 构型。

(3) C-4 构型确证: 当 H-4 为 β 构型, 15-CH₃
为 α 构型时, 15-CH₃ 与 H-2 空间距离为 0.248 nm(图 3-a), 与实测 NOESY 谱中 H₃-15 (δ_H 1.06) 与 H-2 (δ_H

图 3 化合物 1 (a) 和 2 (b) 的主要 NOESY (↔) 相关和 OH 去屏蔽效应 (—) Fig. 3 Key NOESY (↔) correlations and OH defielding effect (—) of compounds 1 (a) and 2 (b)

3.57) 相关一致; 当 H-4 为 α 构型, 15-CH₃ 为 β 构 型时, 15-CH₃ 与 H-2 空间距离为 0.335 nm, 不存在 NOE 相关。因此确证 15-CH₃ 为 α 构型。

由此确定化合物 **1** A 环中 1-OH、2-OCH₃、 15-CH₃的相对构型分别为α、β、α构型。同理,根 据化合物 **2** 的 NOESY 谱中的相关关系(图 3-b), 推断出 **2** 与 **1** 具有相同的 A 环构型。

化合物 B 环中 8-OH 和 12-OH 的相对构型通过 分析羟基去屏蔽效应对 2 个化合物 ¹H-NMR 谱数据 的差异确证。1 与 2 的 3 个位置 H-5α、H-9 和 H-12 的氢化学位移值存在差别。2 中 H-9 ($\delta_{\rm H}$ 5.50) 化学 位移值与 1 中 H-9 ($\delta_{\rm H}$ 5.37) 相比向低场位移 0.13, 此差别为 8β-OH 去屏蔽效应引起(图 3-b 粗线所 示),因此确证 2 中 8-OH 与 H-9 处于相同方向为 β 构型,而 1 中 8-OH 与 H-9 处于相反方向为 α 构型。 同理,8β-OH 对 H-12 的去屏蔽效应(图 3-b 粗线所 示)造成 2 中 H-12 ($\delta_{\rm H}$ 5.80) 比 1 中 H-12 ($\delta_{\rm H}$ 5.61) 向低场位移 0.19,确定 2 个化合物中的 12-OH 均为 α 构型。而 8α-OH 对 H-5α 去屏蔽效应(图 3-a 粗线 所示)引起 1 中 H-5α ($\delta_{\rm H}$ 3.10) 比 2 中 H-5α ($\delta_{\rm H}$ 3.04) 向低场位移 0.06。

因此确定化合物 1 和 2 的结构分别为 1α, 8α, 12α-三羟基-2β-甲氧基-8, 12-环氧吉玛烷-7(11), 9-二 烯-6-酮和 1α, 8β, 12α-三羟基-2β-甲氧基-8, 12-环氧 吉玛烷-7(11), 9-二烯-6-酮,并分别命名为穆库尔素 A 和 B (mukulsin A 和 B)。

参考文献

[1] Shen T, Li G H, Wang X N, et al. The genus

Commiphora: A review of its traditional uses, phytochemistry and pharmacology [J]. *J Ethnopharmacol*, 2012, 142(2): 319-330.

- [2] Shen T, Lou H X. Bioactive constituents of myrrh and frankincense, two simultaneously prescribed gum resins in Chinese traditional medicine [J]. *Chem Biodivers*, 2008, 5(4): 540-553.
- [3] 沈 涛, 娄红祥. 没药的化学成分及其生物活性 [J]. 天然产物研究与开发, 2008, 20(2): 360-366.
- [4] Shen T, Zhang L, Wang Y Y, et al. Steroids from Commiphora mukul display antiproliferative effect against human prostate cancer PC3 cells via induction of apoptosis [J]. Bioorg Med Chem Lett, 2012, 22(14): 4801-4806.
- [5] Shen T, Wan W Z, Yuan H Q, et al. Secondary metabolites from Commiphora opobalsamum and their antiproliferative effect on human prostate cancer cells [J]. *Phytochemistry*, 2007, 68(9): 1331-1337.
- [6] Shen T, Yuan H Q, Wan W Z, et al. Cycloartane-type triterpenoids from the resinous exudates of *Commiphora* opobalsamum [J]. J Nat Prod, 2008, 71(1): 81-86.
- [7] Shen T, Wan W Z, Wang X N, et al. Sesquiterpenoids from the resinous exudates of *Commiphora opobalsamum* (Burseraceae) [J]. *Helv Chim Acta*, 2008, 91(5): 881-887.
- [8] Shen T, Wan W Z, Wang X N, et al. A triterpenoid and sesquiterpenoids from the resinous exudates of *Commiphora* myrrha [J]. Helv Chim Acta, 2009, 92(4): 645-652.
- [9] Dekebo A, Dagne E, Hansen L K, et al. Crystal structures of two furanosesquiterpenes from Commiphora sphaerocarpa [J]. Tetrahedron Lett, 2000, 41(50): 9875-9878.