Box-Behnken 设计-效应面法优选甘草切制工艺

陈 洁1, 戴衍朋2, 孙立立2*, 周 倩2

- 1. 山东中医药大学, 山东 济南 250355
- 2. 山东省中医药研究院, 山东 济南 250014

摘 要:目的 优选甘草的最佳切制工艺。方法 以甘草苷、甘草酸的量和外观性状为评价指标,采用 Box-Behnken 设计-效应面法考察润制、蒸制、烘制法切制甘草饮片对其质量的影响,优选甘草切制工艺参数。结果 甘草最佳切制工艺为润制 6 h、蒸制 30 min、烘制 2 h、烘制温度 60 ℃。结论 优选的甘草切制工艺合理可行。

关键词: 甘草; Box-Behnken 设计; 效应面法; 切制工艺; 甘草苷; 甘草酸

中图分类号: R283.1 文献标志码: A 文章编号: 0253-2670(2013)12 - 1579 - 05

DOI: 10.7501/j.issn.0253-2670.2013.12.011

Optimization of cutting technology for *Glycyrrhiza uralensis* by Box-Behnken design-response surface method

CHEN Jie¹, DAI Yan-peng², SUN Li-li², ZHOU Qian²

- 1. Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- 2. Shandong Academy of Chinese Medicine, Jinan 250014, China

Abstract: Objective To optimize the cutting technology for *Glycyrrhiza uralensis*. **Methods** Using the contents and appearance characters of liquirtin and glycyrrhizic acid as indexes, the effects of different cutting methods, such as embellishing, steaming, and baking, on the quality of *G. uralensis* were investigated by Box-Behnken design-response surface method, so as to optimize the cutting technology parameters of *G. uralensis*. **Results** The optimal parameters were as follows: embellishing time of 6 h, steaming time of 30 min, drying time of 2 h, and drying temperature of 60 °C. **Conclusion** The optimized cutting technology of *G. uralensis* is feasible. **Key words:** *Glycyrrhiza uralensis* Fisch.; Box-Behnken design; response surface method; cutting technology; liquirtin; glycyrrhizic acid

甘草为豆科甘草属植物甘草 Glycyrrhiza uralensis Fisch.、胀果甘草 G. inflata Batal. 或光果甘草 G. glabra L. 的干燥根和根茎,具有补脾益气、祛痰止咳、调和诸药等功效^[1],是临床常用的大宗中药材。

甘草须经炮制成饮片后才能药用,甘草饮片软化切制过程中常存在冬季泡润时间长致成分流失、夏季泡润温度高易发霉变质等问题,《中国药典》和各省炮制规范中均未规定具体的切制工艺参数,故甘草饮片切制工艺缺乏规范,随意性大,不仅造成甘草质量不稳定,更为严重的是药材易发霉变质,

致使甘草饮片质量参差不齐,稳定性差,从而危害患者健康,对临床疗效影响甚大。为了规范甘草的切制工艺,优选切制参数,本实验采用 Box-Behnken设计-效应面优化法,以甘草中主要有效成分甘草苷、甘草酸的量与切制后饮片外观性状为指标,考察不同浸泡闷润时间、蒸制时间、烘干温度和烘干时间对甘草饮片质量的影响,优选甘草饮片切制工艺参数,为甘草饮片切制工艺的规范提供科学依据,从而保证其临床应用的安全、有效。

1 仪器与试药

Waters 2965 高效液相仪 (美国 Waters 公司),

收稿日期: 2013-01-28

基金项目: 国家"十一五"科研支撑计划项目(2006BA109b06-08);中医药行业科研专项(201007012-1-8)

作者简介: 陈 洁(1987—), 女, 山东潍坊人, 硕士研究生, 主要从事中药新药开发与炮制原理研究。

Tel: 13506419551 E-mail: chenjie870111@126.com

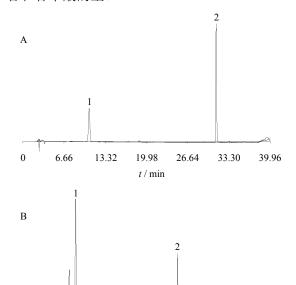
*通信作者 孙立立 Tel: (0531)82949829

网络出版时间: 2013-05-03 网络出版地址: http://www.cnki.net/kcms/detail/12.1108.R.20130503.1615.001.html

含 Waters 2996 二极管阵列检测器; LC—35OA 型超声波中药处理机(济宁市中区鲁超仪器厂); XS205 DU 型电子天平(梅特勒-托利多仪器有限公司); DHG—9146A 电热恒温鼓风干燥箱(上海精宏实验设备有限公司)。

甘草药材购自内蒙古亿利科技甘草分公司,经山东省中医药研究院林慧彬研究员鉴定为豆科植物甘草 *Glycyrrhiza uralensis* Fisch. 的根和根茎。

甘草苷(批号111610-201005)、甘草酸铵(批号110731-201116)购于中国药品生物制品检定所; 乙腈(色谱纯,迪马科技),水为蒸馏水;其余试剂为分析纯。


2 方法与结果

2.1 甘草苷和甘草酸的测定[1]

- **2.1.1** 色谱条件 色谱柱为 Dikma Diamonsil C_{18} 柱 (250 mm×4.6 mm, 5 μ m); 流动相为乙腈-0.05%磷酸溶液,梯度洗脱: 0~8 min, 19%乙腈; 8~35 min, 19%~50%乙腈; 35~36 min, 50%~100%乙腈; 36~40 min, 100%~19%乙腈; 检测波长为 237 nm; 柱温为 30 °C; 体积流量为 1.0 mL/min; 进样量为 10 μ L。理论板数按甘草苷峰计算不低于 5 000。
- 2.1.2 对照品溶液的配制 精密称取甘草苷 10.51 mg 置 25 mL 量瓶中,加 70%乙醇约 20 mL,超声溶解,放冷,加 70%乙醇定容至刻度,摇匀,取 1 mL 置 10 mL 量瓶中,加 70%乙醇定容至刻度,摇匀,取 1 mL 置 10 mL 量瓶中,加 70%乙醇定容至刻度,摇匀,即得甘草苷对照品储备液;精密称取甘草酸铵 10.36 mg 置 25 mL 量瓶中,加 70%乙醇约 20 mL,超声溶解,放冷,加 70%乙醇定容至刻度,摇匀,即得甘草酸铵对照品储备液(甘草酸量=甘草酸铵量/1.020 7);分别吸取 2 种对照品储备液各 5 mL,置 10 mL 量瓶中,摇匀,制备成混合对照品溶液(含甘草苷 21.02 ug/mL、甘草酸铵 207.2 ug/mL)。
- 2.1.3 供试品溶液的制备 取甘草药材粉末(过 3 号筛)约 0.2 g,精密称定,置 100 mL 具塞圆底烧瓶中,精密加入 70%乙醇 100 mL,密塞,称定质量,超声(功率 250 W,频率 40 kHz)30 min,放至室温,再称定质量,用 70%乙醇补足减失的质量,摇匀,滤过,用 0.45 μm 微孔滤膜滤过,即得。
- **2.1.4** 线性关系的考察 按"2.1.1"项下色谱条件,取甘草苷和甘草酸铵混合对照品溶液 2、5、10、15、20 μ L 进样,记录色谱图。以峰面积为纵坐标(Y),进样量为横坐标(X)进行线性回归,得线性回归方程:甘草苷 Y=30 046 X+5 089.8,r=0.999 7;

甘草酸铵 Y=87 613 X-6 553.4,r=1.000 0;结果表明甘草苷在 42.04~420.40 ng,甘草酸铵在414.4~4 144.0 ng 与峰面积呈良好的线性关系。

2.1.5 样品测定 精密吸取混合对照品溶液和供试品溶液各 10 μL, 注入 HPLC 色谱仪,记录色谱图 (图 1),测定甘草苷和甘草酸铵峰面积,并计算甘草苷和甘草酸的量。

1-甘草苷 2-甘草酸铵 1-liquiritin 2-ammonium glycyrrhetate

24.98

 t / \min

33.31

49.96

41.63

图 1 混合对照品 (A) 和甘草样品 (B) HPLC 色谱图 Fig. 1 HPLC chromatograms of mixed reference substances (A) and licorice samples (B)

2.2 甘草饮片切制工艺研究

8.33

16.65

2.2.1 试验设计 选择润制时间 (A)、蒸制时间 (B)、烘制时间 (C) 和烘制温度 (D) 4 个因素为 自变量,以甘草苷、甘草酸的量及外观性状 3 个指标的综合评分为效应值 (Y),根据 Box-Behnken 中心组合试验设计原理,采用 4 因素 3 水平的效应面分析方法进行分析,试验设计因素及水平见表 1。

取甘草药材 29 份,每份 200 g,按表 1 效应面设计方案,将甘草药材分别用多层纱布包裹,计时,每隔 10 min 喷水 1 次,润制完成后取出,放入"圆气"的蒸锅内,再计时,蒸制完成后取出,用手工切药刀迅速切成 2~3 mm 的厚片,分别放入不同温度烘箱中干燥,按时取出,放凉,即得。

2.2.2 综合评分方法 用多指标试验的综合评分公

式,对效应面试验结果进行分析。以甘草苷和甘草酸的最高量(3.707%和4.282%)分别计为30分,以外观性状的最高评分9计为40分。

外观性状以甘草饮片片型整齐、无炸心、无翘片、无掉边、无碎片、无皱皮、无连刀、皮红棕色、切面黄白色者为佳,总分记为 10 分,根据切制的甘草饮片分别赋分。

按效应面设计方案,参照"2.2.1"项下,制备 29份样品,并按"2.1.3"项下方法制备供试品溶液, 分别精密吸取混合对照品溶液与供试品溶液各 10 μL,注入液相色谱仪,按上述色谱条件进行测定, 即得。结果见表 1。各样品分别计算综合评分 [综合评分= $(M/3.707) \times 30 + (N/4.282) \times 30 + (J/9) \times 40$,其中 M 为甘草苷的量,N 为甘草酸的量,J 为外观性状评分] 值,分析结果见表 1。

2.2.3 多元二次效应面回归模型的建立与分析 采用 Design-expert 7.1.6 软件对表 1 结果进行二次回归效应面回归分析,建立多元二次效应面回归模型,得拟合方程 Y=41.78+4.63 A+6.07 B-5.96 C-7.07 D+2.25 AB+2.38 AC+6.69 AD-0.96 BC-0.047 BD+6.15 CD+15.03 A²+6.40 B²+12.76 C²+9.51 D²,回归方程及各影响因素的方差分析结果见表 2。

表 1 Box-Behnken 设计及结果
Table 1 Box-Behnken design and results

试验号	A/h	B / min	C / h	D / °C	甘草苷 /%	甘草酸 /%	外观性状评分	综合评分
1	0 (-1)	10 (-1)	4(0)	50 (0)	2.134	3.166	2	48.34
2	6 (1)	10 (-1)	4(0)	50 (0)	1.624	3.326	5	58.67
3	0 (-1)	30 (1)	4(0)	50 (0)	1.974	3.141	5	60.20
4	6 (1)	30 (1)	4(0)	50 (0)	2.500	2.756	9	79.54
5	3 (0)	20(0)	2 (-1)	40 (-1)	3.707	4.282	8	95.56
6	3 (0)	20(0)	6 (1)	40 (-1)	1.078	2.973	5	51.77
7	3 (0)	20(0)	2 (-1)	60 (1)	1.887	3.350	5	60.97
8	3 (0)	20(0)	6 (1)	60 (1)	1.218	3.288	2	41.79
9	0 (-1)	20(0)	4(0)	40 (-1)	3.399	4.105	5	78.49
10	6 (1)	20(0)	4(0)	40 (-1)	1.656	3.112	8	70.76
11	0 (-1)	20(0)	4(0)	60 (1)	1.906	3.490	2	48.77
12	6 (1)	20(0)	4(0)	60 (1)	2.709	3.373	5	67.78
13	3 (0)	10 (-1)	2 (-1)	50 (0)	1.691	2.926	5	56.41
14	3 (0)	30 (1)	2 (-1)	50 (0)	1.667	3.024	8	70.23
15	3 (0)	10 (-1)	6 (1)	50 (0)	1.850	4.276	2	53.82
16	3 (0)	30 (1)	6 (1)	50 (0)	2.072	3.543	5	63.81
17	0 (-1)	20(0)	2 (-1)	50 (0)	2.199	4.220	5	69.58
18	6 (1)	20(0)	2 (-1)	50 (0)	1.620	3.352	8	72.15
19	0 (-1)	20(0)	6 (1)	50 (0)	3.378	4.110	2	65.02
20	6 (1)	20(0)	6 (1)	50 (0)	2.116	3.489	8	77.12
21	3 (0)	10 (-1)	4(0)	40 (-1)	2.021	2.607	5	56.84
22	3 (0)	30 (1)	4(0)	40 (-1)	1.569	2.403	8	65.08
23	3 (0)	10 (-1)	4(0)	60 (1)	1.955	4.064	2	53.18
24	3 (0)	30 (1)	4(0)	60 (1)	1.687	3.620	5	61.23
25	3 (0)	20(0)	4(0)	50 (0)	0.818	2.849	2	35.47
26	3 (0)	20(0)	4 (0)	50 (0)	2.557	2.789	2	49.12
27	3 (0)	20(0)	4 (0)	50 (0)	0.954	2.125	2	31.49
28	3 (0)	20(0)	4 (0)	50 (0)	2.132	3.513	2	50.75
29	3 (0)	20 (0)	4 (0)	50 (0)	1.481	3.021	2	42.04

表 2 方差分析 Table 2 Analysis of variance

误差来源	平方和	自由度	均方	F值	<i>P</i> 值
模型	4 420.53	14	315.75	3.81	0.008 7
A	257.75	1	257.75	3.11	0.099 6
В	442.30	1	442.30	5.34	0.036 6
C	426.72	1	426.72	5.15	0.039 6
D	599.24	1	599.24	7.23	0.017 6
AB	20.29	1	20.29	0.24	0.628 4
AC	22.73	1	22.73	0.27	0.608 6
AD	178.77	1	178.77	2.16	0.164 0
BC	3.66	1	3.66	0.044	0.836 5
BD	8.94×10^{-3}	1	8.94×10^{-3}	1.08×10^{-4}	0.991 9
CD	151.28	1	151.28	1.83	0.198 0
A^2	1 465.95	1	1465.95	17.69	0.0009
B^2	265.94	1	265.94	3.21	0.0948
C^2	1 056.23	1	1056.23	12.75	0.003 1
D^2	586.63	1	586.63	7.08	0.018 6
剩余项	1 159.96	14	82.85		
失拟项	879.96	10	88	1.26	0.445 7
误差项	280	4	70		
总计	5 580.49	28			

由方差分析可知,模型的 F 值为 3.81, P 值为 0.008 7<0.01,表明实验所采用的二次模型具有极显著的影响,在统计学上是有意义的。失拟项 P 值为 0.445 7>0.05,对模型是有利的,无明显失拟因素存在,因此可用该回归方程代替试验真实点对实验结果进行分析。

 A^2 项的 P 值 0.000 9<0.001,说明 A^2 对综合评分的影响是极显著的;因素 B、C、D、 C^2 、 D^2 项的 P 值均<0.05,说明这几项对综合评分均有显著影响;剩余各项的 P 值均>0.05,所以对综合评分没有显著影响,由此可知,单因素对 Y 值的影响明显大于交互项。由方差分析结果可知,交互效应对 Y 值的影响并不显著,因此本实验不再进行交互效应分析。

用效应面优化法预测最优值得:润制时间为 6.00 h,蒸制时间为 29.99 min,烘制时间为 2.02 h,烘制温度为 $59.94 \, \mathbb{C}$,综合评分为 $95.973 \, 4$ 。但考虑到实际操作方便,将甘草的切制工艺确定为取甘草药材,润制 6 h,置已"圆气"的蒸制容器内,蒸 30 min 后,迅速切 $2\sim3 \text{ mm}$ 厚片, $60 \, \mathbb{C}$ 烘干 2 h,

即得。

2.3 验证试验

取甘草药材 3 份,每份 200 g,按确定的最佳切制工艺,制备甘草饮片,按"2.1.3"项方法制备供试品溶液,进行甘草苷和甘草酸的测定,结果见表3。制备的 3 批甘草饮片综合评分均值为 91.41,RSD 为 0.22%,与预测值相差不大,且结果稳定,说明确定的甘草切制工艺稳定可行。

表 3 验证试验 Table 3 Verification test

样品	甘草苷 /%	甘草酸 /%	外观性状	综合评分
1	2.842	4.089	9	91.65
2	2.770	4.120	9	91.28
3	2.735	4.164	9	91.31

3 讨论

甘草药材在软化过程中,需要长时间的水处理,从而导致有效成分流失^[2],本课题组也得出类似的结论。对甘草不同软化方法的比较发现,采用蒸制制备的甘草饮片中甘草苷和甘草酸的量最高,分别比浸泡法和闷润法高 0.72%、1.31%和 0.84%、2.98%。因此采用蒸法软化甘草有利于其中有效成分的保留,可以用于甘草的软化切制。切制的最佳甘草饮片成圆片状,皮红棕色,切面黄白色,大小均匀,没有破碎。

甘草苷、甘草酸是甘草的主要成分,具有解毒、消炎、抗溃疡、镇咳等多种药理作用^[3],其量高低可以较好地指示甘草饮片的质量。因此,本实验选用甘草苷与甘草酸作为指标成分,对甘草切制工艺参数进行优选。

本课题组前期对甘草饮片切片厚度进行了考察,对 2~3、3~4、4~5 mm 厚度的甘草饮片进行了甘草苷和甘草酸的测定,结果表明,甘草饮片切制厚度为 2~3 mm 时,甘草苷和甘草酸的量最高,外观性状达到最佳,符合传统甘草饮片切厚片的要求。

Box-Behnken 中心组合设计是统计设计实验技术的合成,利用 Box-Behnken 实验设计并通过实验得到一定数据,采用多元多次方程来拟合因素和效应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,以解决多变量问题的一种统计分析方法^[4]。本实验采用 Box-Behnken 中心组合设计,其充分考虑到各因素的交互作用,设计方法简单,试验次数少,在中心点进行重复试验以提高试验精

度,同时采用非线性模型拟合,可信度较好,预测值更接近真实值。与正交及均匀设计相比,此方法所得结果更加直观,便于分析,同时提高了实验精确度^[5-6]。

本实验采用适合于非线性拟合的 Box-Behnken 效应面试验设计方法优选甘草饮片切制工艺,确定了最佳切制工艺参数,即取甘草药材,润制 6 h,置已"圆气"的蒸制容器内,蒸 30 min 后,迅速切 2~3 mm 厚片,60 ℃烘制 2 h,即得。经验证该方法稳定可行,为甘草切制工艺规范的制定提供了科学依据。

参考文献

[1] 中国药典 [S]. 一部. 2010.

- [2] 冯 薇, 王文全, 赵平然, 等. 甘草润制前后药用活性成分比较研究 [J]. 时珍国医国药, 2007, 18(8): 1804-1806.
- [3] 田庆来, 官月平, 张 波, 等. 甘草有效成分的药理作用研究进展 [J]. 天然产物研究与开发, 2006, 18(2): 343-347.
- [4] 田宝成, 贾昌平, 杨军涛, 等. Box-Behnken 效应面法 优化红旱莲总黄酮提取工艺的研究 [J]. 中成药, 2010, 32(3): 389-392.
- [5] 苏柘僮, 刘 英, 徐佳丽, 等. 应用 Box-Behnken 设计 优化地榆皂苷的闪式提取工艺研究 [J]. 中草药, 2012, 43(3): 501-504.
- [6] 伍永富, 吴品江, 魏 萍, 等. Box-Behnken 设计-效应 面法优化木犀草素-β-环糊精包合物的制备工艺研究 [J]. 中草药, 2010, 41(7): 1094-1099.