丹皮多糖 PSM2bB 的结构研究

廖洪梅^{1,2}, 吕平³, 戴玲^{1*}

1. 安徽大学生命科学学院, 安徽 合肥 230039

2. 阜阳职业技术学院, 安徽 阜阳 236031

3. 天津职业大学生物与环境工程学院, 天津 300410

摘 要:目的 研究从丹皮中得到的酸性多糖 PSM2bB 的化学结构。方法 利用糖组分分析、甲基化分析、部分酸水解、 高碘酸氧化和 Smith 降解等化学方法和 IR、NMR、刚果红试验等光谱方法分析其结构特征。结果 PSM2bB 由鼠李糖、阿 拉伯糖、葡萄糖、半乳糖、甘露糖和少量蛋白质、糖醛酸组成,甲基化分析、部分酸水解、高碘酸氧化和 Smith 降解等化学 方法和 IR、¹³C-NMR 进一步分析了糖残基的连接方式和序列。结论 PSM2bB 为一多分枝、以(1→6)连接为主链的、结 构复杂的多糖,为首次从该植物中分得。

关键词:丹皮;多糖;甲基化;结构分析;酸水解 中图分类号:R284.18 文献标志码:A 文章编号:0253-2670(2011)08-1494-04

Structure investigation on PSM2bB, a polysaccharide of Moutan Cortex

LIAO Hong-mei^{1, 2}, LV Ping³, DAI Ling^{1*}

- 1. School of Life Science, Anhui University, Hefei 230039, China
- 2. Fuyang Vocational and Technical Institute, Fuyang 236031, China
- 3. School of Biological and Environmental Engineer, Tianjin Vocational Institute, Tianjin 300410, China

Key words: Moutan Cortex; polysaccharide; methylation; structure analysis; acid hydrolysis

丹皮(Moutan Cortex)为植物牡丹 Paeonia suffruticosa Andr. 的根皮,是安徽四大名药之一, 具有清热凉血、活血祛瘀的功效,在安徽沿江一带 广泛种植,是许多中药复方的重要配伍之一^[1-3]。丹 皮多糖是从丹皮中提取的天然水溶性多糖复合物, 本课题组多年来一直致力于丹皮多糖的研究,前期 研究表明以丹皮为原料制得的丹皮多糖 2b (polysaccharide from moutan, PSM2b)为降血糖活 性有效部位,具有明显降低糖化血红蛋白,升高超 氧化物歧化酶(SOD)和载脂蛋白 A₁ 水平等功 能^[4-6]。本研究对 PSM2b 进行了分离纯化和结构分 析,为进一步探讨丹皮多糖的降血糖作用机制,明 确其活性区域提供理论依据。

1 仪器与试药

红外光谱仪 Nicolet IR200; 紫外可见分光光度 计 UV9200 (Pharmacia); 核磁共振波谱仪 Bruker AV500; 冷冻干燥机 Alpha1—2 (德国 Christ 公司); 快速色谱纯化系统 (FPLC) 为 AKTA Prime, XK16/60, Superose 12^{TM} 柱; 气质联用仪: 岛津 GC-MS 2010, DB—5 MS 毛细管柱 (0.25 μ m×30 mm); 3K15 高速离心机 (Sigma); Agilent 2100 液 相系统: (柱型号: ZorbaxGF—250, Agilent)。单 糖对照品为 Fluka 产品, DEAE-52、碘甲烷、1-甲 基咪唑、三氟乙酸、二甲基亚砜、高碘酸钠、硼氢 化钠、间羟联苯等试剂均为 Sigma 公司出品,分子 筛 Superose-12TM 为 Amersham Biosciences 公司产 品。其他试剂均为国产 AR 级,购自国药集团化学 试剂有限公司。丹皮购自安徽铜陵牡丹山,由安徽 大学生命科学学院沈业寿教授鉴定为 Paeonia suffruticosa Andr.。

2 方法 2.1 分离纯化

*通讯作者 戴 玲

收稿日期:2010-12-18 基金项目: 安徽省自然科学基金资助项目(03043301);安徽大学211工程学术创新团队、安徽省中药研究与开发重点实验室资助 作者简介: 廖洪梅(1975—),女,汉族,安徽阜阳人,硕士,讲师,主要进行多糖方向的研究。

按文献方法所得的粗多糖制品^[4],经 DEAE-52 制备柱以 0.5 mol/L NaCl 溶液洗脱获得 PSM2b 粗 品,经 FPLC 进一步纯化并结合苯酚硫酸法检测得 2 个组分: PSM2bA 和 PSM2bB。本实验对 PSM2bB 的结构进行了研究。

2.2 纯度测定

以流动相溶解 PSM2bB 后,以 Agilent 2100 液 相系统和凝胶过滤柱 ZorbaxGF—250 及示差检测器 检验样品纯度。

2.3 多糖理化性质和定量测定^[7]

总糖质量分数测定采用苯酚硫酸比色法,蛋白 质质量分数测定采用考马斯亮蓝比色法,己糖醛酸 质量分数测定采用间羟联苯法。

2.4 单糖组成分析:

以半乳糖(Gal)、葡萄糖(Glc)、甘露糖(Man)、 阿拉伯糖(Ara)、木糖(Xyl)、鼠李糖(Rha)、岩 藻糖(Fuc)等标准单糖和内标肌醇(inositol)建 立内标法标准曲线。称取 10 mg PSM2bB 和 2 mg 肌醇与 2 mol/L 三氟乙酸(TFA) 2 mL 混合,震荡, 封管。于 100 ℃水解 6 h。水解液减压蒸干,加 3 mL 甲醇溶解,减压蒸干,重复至水解液 pH 6~7。浓 缩,乙酰化方法采用水相乙酰化法^[8]。内标法定量 多糖样品中的单糖组分。

2.5 部分酸水解^[9-10]

分别将 10 mg PSM2bB 与 0.05、0.5、1 mol/L TFA 1 mL 混合,封管,于 75 ℃水解 16 h。用拦截 相对分子质量 7 000 的透析袋将水解片段分级。分 别得到袋内上清组分和袋内沉淀组分。

将所得各组分按内标法定量,分析各单糖相对 质量分数,方法同单糖组分分析的方法。

2.6 单糖基连接方式及构型分析

2.6.1 碘反应 将 2 mg PSM2bB 多糖样品溶解于 蒸馏水,滴于白瓷板上,加一滴碘液。

2.6.2 甲基化分析 取 10 mg PSM2bB 采用 Needs 法^[4]甲基化,经 IR 检测无羟基峰后,经水解、还原、乙酰化并进行 GC-MS 分析。

2.6.3 高碘酸氧化和 Smith 降解 取 25 mg PSM2bB 按照文献方法进行高碘酸氧化^[4]。

上述氧化液用乙二醇处理后,蒸馏水透析48h, 袋外部分干燥进行 GC-MS 定量分析(组分I),袋 内部分流水、蒸馏水各24h。浓缩,加入NaBH4还 原过夜。用50%醋酸中和至pH为6~7。浓缩至 10mL左右,取1/3干燥后进行GC-MS定量分析(组 分 II),剩余部分进行 Smith 降解。

加入等体积的 0.2 mol/L TFA,使 TFA 终浓度为 0.1 mol/L。35 ℃水解 30 h,驱除 TFA 至 pH 为 6~7, 用蒸馏水透析 48 h,袋外部分干燥进行 GC-MS 定量 分析 (组分 III),袋内部分流水、蒸馏水各透析 24 h,浓缩,GC-MS 定量分析 (组分 IV)。

2.7 红外光谱分析

取 PSM2bB 各 2 mg, 分别与 400 mg 干燥的 KBr 混匀, 压片, 测定 4 000~400 cm⁻¹ 的红外光谱。

2.8 ¹³C-NMR 分析

PSM2bB 样品 30 mg, 以 D₂O 为溶剂,¹³C-NMR 频率 125 MHz,宽带燥音去偶,累加 22 729 次,5 mm ¹³C 双碳头。

2.9 刚果红试验^[10]

将 PSM2bB 溶液 (2 mg/mL) 7.5 mL 与刚果红 溶液 (12.2 μmol/L) 等体积混合,静置分装到 5 支 试管中。在各支试管中依次加入 10 mol/L NaOH 0、 30、60、90、120 μL,使每管 NaOH 终浓度依次为 0、 0.1、0.2、0.3、0.4 mol/L。静置 15 min 后,测定混 合液在不同浓度 NaOH 溶液中最大吸收波长的变 化。以纯刚果红溶液、葡聚糖为参比,进行扫描。

3 结果与讨论

3.1 PSM2b 的纯化

PSM2bB 样品分别经 HPLC 检测,呈单一狭窄 对称峰,说明样品经制备后相对分子质量单一,质 量分数较高,符合结构分析的要求。

3.2 多糖理化性质分析

PSM2bB 的理化性质为总糖量 89.6%,蛋白质量 1.3%,己糖醛酸量 6.7%。结果显示,该多糖样品为带有少量蛋白质和己糖醛酸的植物多糖。

3.3 单糖组成分析

PSM2bB单糖组成为Rha-Ara-Xyl-Man-Glc-Gal (3.46:7.53:1.00:1.26:27.43:11.42;质量分数 分别为Rha(6.94%)、Ara(13.86%)、Xyl(1.84%)、 Man(2.77%)、Glc(49.42%)、Gal(25.17%)。

3.4 部分酸水解

在 3 种水解条件下,透析袋内上清组分与沉淀 组分各单糖组成的定量结果见表 1。

①Ara 在弱酸水解后,总量明显下降,表明其 主要分布在支链或链末端,在弱酸条件下,容易与 主链分离;另一方面,在沉淀组分中量相对稳定也 显示了其在主链或靠近主链区域也有少量的特定 分布。

Table 1 Monosaccharides contents of PSM2bB after mild acid hydrolysis								
TEA / (m a 1 I-1)	组分	质量分数 / %						
IFA/(mol·L)		Rha	Ara	Xyl	Man	Gle	Gal	
0.05	上清组分	7.59	1.21	4.25	9.64	55.87	21.44	
	沉淀组分	7.64	7.54	23.44	11.85	38.84	10.69	
0.50	上清组分	16.06	0.57	9.63	6.35	42.75	24.64	
	沉淀组分	12.31	2.34	20.14	8.25	49.59	7.37	
1.00	上清组分	15.71	1.18	5.02	11.36	47.90	18.83	
	沉淀组分	9.85	2.59	5.58	18.63	45.61	17.74	

表 1 PSM2bB 部分酸水解后各单糖的质量分数 Table 1 Monosaccharides contents of PSM2bB after mild acid hydrolys

②当酸浓度由 0.05 mol/L 提高到 0.5 mol/L 时, Rha 在上清组分中的质量分数增加,提示其有可能 分布在主链或靠近主链的部分。

③在 0.05 mol/L TFA 条件下的上清组分中,各 单糖的质量分数与全糖中的具有相似性,显示结构 上存在重复结构。

④Xyl 和 Man 在全糖中的质量分数不高,表中的数据显示它们的质量分数并无下降,显示其应该分布在主链或靠近主链区域。

⑤水解后,透析袋内有沉淀产生,表明主链抗 水解。提示存在比较多的(1→6)糖苷键或分支。

3.5 单糖连接方式及构型分析

3.5.1 PSM2bB 溶液在加入碘液后,没有产生蓝色, 说明结构中不含有连续的 α (1→4) 糖苷键结构的 葡萄糖基,也证明不含有淀粉。

3.5.2 高碘酸氧化和 Smith 降解 高碘酸氧化后, 有甲酸生成,说明含有(1→4)或(1→6)键型; 对组分 I~IV 通过内标法定量分析其组成,结果见 表 2。

表 2 PSM2bB 高碘酸氧化和 Smith 降解各组分单糖组成 Table 2 Monosaccharide contents of each composition of

PSM2bB by periodate oxidation-Smith degration

组分 -	质量分数 / %						
	Rha	Ara	Xyl	Man	Glc	Gal	
Ι	—	0.77	0.30	16.52	60.13	22.28	
II	11.84	7.24	18.42	12.50	38.16	11.84	
III	—	21.05	15.79	—	34.21	31.58	
IV	11.54	5.38	10.77	17.69	30.77	23.85	

①组分I与II质量比为34.9:1,说明大量糖残 基环被高碘酸氧化断裂,在生成的甲酸作用下,糖 链水解断裂成许多小片段透析出袋外。

②丙三醇的质量分数明显多于赤藓醇,显示

(1→4)或(1→6)键型不是主要的连接键型。

③组分 I 和 III 中均未检出 Rha, 且组分 II 和 IV 中 Rha 质量分数相当,说明其不被高碘酸氧化,分 布靠近于主链区域或在主链上。

④Ara 在组分 I 中的质量分数不高,结合部分 酸水解,得出其主要分布在外周,主要为可被高碘 酸氧化的键型。

⑤Rha、Xyl、Gal 和 Glc 的不被高碘酸氧化的 键型与 Man 不被高碘酸氧化的键型量相当。

⑥组分 II、IV 中 Glc 质量分数的变化显示有少量的 Glc 不被高碘酸氧化的键型分布在支链上。

3.5.3 甲基化分析^[11] 部分甲基化乙酰化的 PSM2bB的GC-MS分析结果见表 3。糖残基以被高 碘酸氧化的键型为主,只有少量糖残基抗高碘酸氧 化;主要糖残基连接以抗水解的(1→6)键型为主, 被高碘酸氧化后产生甘油的键型明显多于产生赤藓 醇的键型,此结果与前述结果相符。

3.6 红外光谱分析

IR 光谱图显示在 875 cm⁻¹处有吸收峰,示其为 β-糖苷键为主的多糖。1740~1680、1620~1550、 1440~1380 cm⁻¹处有羧基特征吸收峰。

3.7 ¹³C-NMR 分析^[12-13]

由于存在种类较多的连接单元,碳谱中的峰重 叠现象比较明显,以致无法精确归属每种连接单元 的 C1~C6 的化学位移。主要连接单元的化学位移 归属见表 4。δ 175 的共振信号为糖醛酸 C-6 的信号, 17.0 的共振信号为 α-L-1, 3, 4-Rha_p 的 C-6 的信号。

3.8 刚果红试验

具有螺旋结构的 β-(1→3) 葡聚糖可与刚果红 发生颜色反应,如树舌多糖,裂褶菌多糖,香菇多 糖等^[14]。PSM2bB 与刚果红的络合物没有发生红移, 可能是由于 PSM2bB 的长侧链形成的空间位阻效应

Table 3	Analysis of O-methylalditol acetate of PSM2bB						
峰号	甲基化单糖	键型	摩尔比				
1	2, 3, 5-Me ₃ Ara _f	1-Ara _f	4.3				
2	2, 4-Me ₂ Xyl _p	1, 3-Xyl _p	0.8				
3	2, 3-Me ₂ Rha	1, 4-Rha	3.3				
4	2, 3-Me ₂ Ara _f	1, 5-Ara _f	2.2				
5	2, 3 -Me ₂ Xyl _f	1, 5-Xyl _f	0.2				
6	2-MeRha	1, 3, 4-Rha	0.2				
7	2, 3, 4, 6-Me ₄ Glc	1-Glc	2.3				
8	2, 3, 4-Me ₃ Glc	1, 6-Gal	5.9				
9	2, 3, 4-Me ₃ Glc	1, 6-Glc	16.3				
10	2-Me Ara _f	1, 3, 5-Ara _f	1.0				
11	2, 3, 6-Me ₃ Gal	1, 4-Gal	5.0				
12	2, 4-Me ₂ Gal	1, 3, 6-Gal	0.6				
13	2, 4-Me ₂ Glc	1, 3, 6-Glc	0.2				
14	2, 3-Me ₂ Glc	1, 4, 6-Glc	3.5				
15	2, 4-Me ₂ Man	1, 3, 6-Man	0.3				
16	2, 3-Me ₂ Man	1, 4, 6-Man	0.7				

表 3 PSM2bB 甲基化乙酰化产物分析

表 4 ¹³C-NMR 化学位移归属 Table 4 ¹³C-NMR chemical shifts assignment

糖 基	C-1	C-2	C-3	C-4	C-5	C-6
L-1-Ara _f	107.7	81.5	77.3	84.2	61.4	_
<i>L</i> -1, 4-Rha _p	103.4	70.6	71.0	81.1	68.2	16.8
<i>L</i> -1, 5-Ara _f	107.1	81.1	77.2	84.2	68.4	—
<i>L</i> -1, 3, 5-Ara _f	107.3	81.1	82.5	84.2	68.4	—
D-1-Glc _p	100.0	70.4	74.3	70.1	73.1	61.5
<i>D</i> -1, 6-Glc _p	100.0	72.2	73.5	69.6	71.8	66.1
<i>D</i> -1, 6-Gal _p	99.3	72.0	73.5	68.9	74.8	66.1
<i>D</i> -1, 4-Gal _p	99.3	71.5	73.5	76.8	71.8	60.8
<i>D</i> -1, 4, 6-Glc _p	99.9	73.0	74.0	77.0	71.0	68.7

影响了规则多维结构的形成。

4 结论^[15]

综合以上部分酸水解、IR 分析、高碘酸氧化、 Smith 降解、甲基化分析、核磁共振等实验结果的 分析, PSM2bB 的结构可以描述如下: $(1\rightarrow 6)$ 连接 的主链由 1, 6-Glc、1, 6-Gal、1, 4-Rha、1, 4, 6-Glc 等组成, 1, 3-Xyl_p、1, 3, 6-Man 位于主链上, 1, 5Ara_f、1, 3, 6-Glc 位于支链上,由 1-Ara_f、1-Glc 构 成糖链的非还原性末端。

依照上述结论,对 PSM2bB 的结构推断如下: 少量存在的 1, 3, 6-Glc、1, 3, 6-Gal、1, 3, 6-Man 推 断应由糖苷酶在(1→6)连接六碳糖基础上随机添 加 3-连接形成的。

参考文献

- 吴少华,马云保,罗晓东,等.丹皮的化学成分研究
 [J].中草药,2002,33(8):679-680.
- [2] 盛习锋,谭健兵,徐康平,等. HPLC 法同时测定丹皮 中丹皮酚和去甲丹皮酚 [J]. 中草药, 2006, 37(7): 1095-1097.
- [3] 王 勇, 邓晓春. 丹皮与关木通配伍对马兜铃酸 I 的影响[J]. 中草药, 2008, 39(12): 1805-1807.
- [4] 刘丽萍,洪 浩,王钦茂,等.丹皮多糖-2b 降血糖作用的实验研究 [J].中国临床药理学与治疗学,2002, 7(5):424-427.
- [5] 赵帜平,何正祥,刘祚军,等.丹皮多糖2b对肾上腺素 模型小鼠降血糖作用研究 [J]. 生物学杂志,2003, 20(5):18-20.
- [6] 王钦茂,刘 超,赵帜平,等.丹皮多糖降血糖有效成分的筛选及其作用研究 [J].中国中医基础医学杂志, 2001,7(5):18-21.
- [7] 张惟杰. 复合多糖生化研究技术 [M]. 杭州: 浙江大学 出版社, 1997.
- [8] 廖洪梅,戴 玲,魏晓飞,等. 单糖乙酰化条件的优化
 [J]. 理化检验: 化学分册, 2008, 44(5): 441-443.
- [9] 张劲松,方积年. 白木通多糖的研究 [J]. 药学学报, 1997, 32(6): 438-441.
- [10] 周 鹏, 谢明勇, 聂少平. 茶多糖 TGC 的结构表征 [J]. 中国科学 C 辑: 生命科学, 2004, 34(2): 178-185.
- [11] 乔治亚大学复杂碳水化合物研究中心数据库 [DB/OL]. http://www.ccrc.uga.edu/specdb/ms/pmaa/ pframe.html.
- [12] Cardoso SM, Silva AM, Coimbra MA. Structural characterisation of the olive pomace pectic polysaccharide arabinan side chains [J]. *Carbohydr Res*, 2002, 337(10): 917-924.
- [13] 糖化学研究中心 CASPER 数据库 [DB/OL]. http: //www.casperold.organ.su.se/casper/.
- [14] 周义发,张丽萍,杨庆尧,等.裂褶菌多糖的构想研究[J]. 生物化学与生物物理进展,1995,22(1):53-55.
- [15] Wang Z J, Luo D H, Liang Z Y. Structure of polysaccharides from the fruiting body of *Hericium erinaceus* Pers [J]. *Carbohydr Polym*, 2004, 57(3): 241-247.