• 药材与资源 •

黄花蒿 cyp71av1 启动子的分离及表达特性分析

杨瑞仪*,杨雪芹,冯丽玲,曾庆平

广州中医药大学热带医学研究所, 广东 广州 510405

摘要:目的 从黄花蒿中分离鉴定青蒿素生物合成途径关键酶——细胞色素 P450 单加氧酶编码基因(cyp71av1)的启动子 序列并研究其表达特性,探索提高该基因表达量并进一步促进青蒿素合成的途径。方法 采用热不对称嵌套 PCR 法从黄花 蒿 DNA 中分离 cyp71av1 5'端非翻译区序列,构建与β-葡萄糖苷酸酶(GUS)报告基因融合的植物表达载体,通过农杆菌介 导转化烟草。采用 GUS 组织化学染色法和分光光度法分别定性和定量检测 cyp71av1 5'端非翻译区序列调控 GUS 基因在正 常条件和胁迫条件下的表达。结果 从黄花蒿中分离出长短 2 个 cyp71av1 5'端非翻译区序列,分别获得与 GUS 基因融合表 达的转基因烟草,均能检测到 GUS 活性且两者无明显差异。GUS 活性定量检测结果还显示,在脱水、4 ℃和紫外辐射条件 下,转化烟草 GUS 活性提高 1.4~2.7 倍。结论 从黄花蒿分离出的 2 个 cyp71av1 5'端非翻译区序列都具有启动子功能,并 且具有环境诱导表达特性。

关键词:黄花蒿; cyp71av1; 启动子;青蒿素;β-葡萄糖甘酸酶(GUS)
中图分类号: R282.12
文献标志码: A
文章编号: 0253 - 2670(2011)04 - 0765 - 05

Isolation and expression characteristic of cyp71av1 promoter from Artemisia annua

YANG Rui-yi, YANG Xue-qin, FENG Li-ling, ZENG Qing-ping

Tropical Medicine Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

Abstract: Objective Trying to find the ways to enhance the expression of cyp71av1 gene encoding cytochrome P450 mono-oxygenase which is a key enzyme in artemisinin biosynthesis pathway accelerating the artemisinin synthesis, the promoter of cyp71av1 was isolated and characterized. **Methods** 5' untranslated regions of cyp71av1 were isolated from *Artemisia annua* with thermal asymmetric interlaced PCR. For functional characterization, the isolated fragments were fused with β -glucuronidase GUS reporter gene and introduced into *Nicotiana tabacum* by Agrobacterium-mediated transformation. The GUS expression regulated by 5' untranslated regions of cyp71av1 in transgenic *N. tabacum* under the normal or stressed conditions were detected by histochemical staining and quantitative spectrophotometry assay. **Results** Two DNA fragments upstream of cyp71av1 coding sequence, a long fragment and a truncated fragment, were isolated from *A. annua* and introduced into *N. tabacum* respectively. Histochemical staining showed that two isolated fragments confered stable GUS expression in transgenic plants, and no significant difference was found between the two fragments on the GUS activity. The quantitative results also showed that the GUS activity in transgenic tobacco plants treated by dehydration, low-temperature (4 °C), and ultraviolet irradiation were 1.4 to 2.7 folds higher than that in the controls. **Conclusion** It suggests that the isolated fragments has promoter activity and may be responsive to adverse environmental stresses. **Key words:** *Artemisia annua* L; cyp71av1; promoter; artemisini; β -glucuronidase (GUS)

20世纪70年代由我国科学家根据古籍记载及 民间验方首先从黄花蒿 Artemisia annua L.中发现青 蒿素 (artermisinin),并率先将其应用为抗疟药。至 今青蒿素及其衍生物已成为最重要的一线抗疟药, 基于青蒿素的联合疗法(artemisinin combination therapies, ACTs)是世界卫生组织推荐使用的治疗 疟疾最有效的方法。

青蒿素是一类具有独特过氧桥结构的倍半萜内

收稿日期: 2010-12-17

基金项目: 广东省自然科学基金资助项目(9145624536-4000003)

 ^{*}通讯作者 杨瑞仪(1972—),女,广东省广州市人,医学博士,副研究员,主要从事中药生物工程和分子药理学研究。
Tel: (020)36585100 E-mail: rysyry@gzhtcm.edu.cn

酯,因为产量少,但应用广泛,所以青蒿素的生物 合成基因工程研究一直是青蒿素合成的焦点, 继早 年发现并克隆第1个关键酶-紫穗槐二烯合酶编码 基因(ads)^[1-3],近年又相继克隆了细胞色素 P450 单加氧酶基因(cyp71av1)和细胞色素 P450 氧化还 原酶基因(cpr)^[4]、青蒿醛△11(13)双键还原酶 基因 (dbr2) ^[5]以及青蒿醛脱氢酶基因 (aldh1) ^[6]。 国外已有研究通过在酵母中表达上述基因获得了青 蒿素合成中间体一青蒿酸和双氢青蒿酸^[5,7]。 cvp71av1 编码的细胞色素 P450 单加氧酶是一个多 功能倍半萜氧化酶,可催化多个青蒿素合成前体, 包括紫穗槐二烯、青蒿醇、双氢青蒿醇和青蒿醛的 氧化反应^[4,6]。以往的研究表明 cyp71av1 的表达具 有组织、发育及条件诱导特性,并且与青蒿素的合 成呈正相关^[8]。因此,本研究分离了 cyp71av1 上游 的启动子序列,以β-葡萄糖苷酸酶(GUS)为报告 基因,转化烟草,对该启动子的表达特性进行了初 步的分析,为深入研究 cvp71av1 在黄花蒿中的表达 特性,提高其表达量,以及进一步促进青蒿素生物 合成奠定基础。

1 材料与方法

1.1 材料

黄花蒿 Artemisia annua L. 种子 (重庆酉阳, 华 阳2号)由本实验室保存;烟草 Nicotiana tabacum L. K326 种子由河南农业大学国家烟草栽培生理生化 研究基地崔红教授馈赠。大肠杆菌(Escherichia.coli) DH5α、根瘤农杆菌 LBA4404、质粒 pBI121 由本实 验室保存; pMD20-T 载体,限制性内切酶、连接酶 及染色体步移试剂盒(Genome Walking Kit)均购 自宝生物工程(大连)有限公司;各种抗生素和激 素购自北京鼎国生物技术有限公司; 5-溴-4-氯-3-吲 哚葡萄糖苷酸(X-gluc)购自 Sigma-Aldrich 公司; 十二烷基肌氨酸钠 (Sarcosyl) 和对硝基苯基-β-D-葡萄糖醛苷 (pNPG) 购自 Amresco 公司; 培养基 购自 Oxoid 公司; 其他化学药品均为国产分析纯; 植物 DNA 提取试剂盒购自 Omega 公司;质粒提取 试剂盒、琼脂凝胶 DNA 回收试剂盒购自天根生化 科技(北京)有限公司。引物合成与 DNA 测序由 Invitrogen 公司完成。

1.2 cyp71av1 启动子的分离

以黄花蒿叶片为材料按照植物 DNA 提取试剂 盒说明书提取 DNA。根据 cyp71av1 DNA 序列 (GenBank 收录号 DQ826743)反向合成以下引物: CYPPSP1: 5'-ATCAAGTGATGCATGTGACC-3', CYPPSP2: 5'-GTGGATTTGGAACGAGTAGCGA AC-3', CYPPSP3: 5'-AAGTGGTCAGTGAGAG TGCCATTG-3',分别与染色体步移试剂盒中提供的 4 种简并引物(AP1、AP2、AP3、AP4)进行 3 次 热不对称嵌套 PCR 反应,以获得 cyp71av1 5'端非 翻译区(5'UTR)序列。第1次PCR反应,以1ug 黄花蒿 DNA 为模板, CYPPSP1 和简并引物为引物, 反应条件为: 94 ℃、1 min, 98 ℃、1 min, 94 ℃、 30 s, 65 ℃、1 min, 72 ℃、2 min, 5 个循环; 94 ℃、30 s, 25 ℃、3 min, 72 ℃、2 min, 1 个循环; 94 °C、30 s, 65 °C、1 min, 72 °C、2 min, 94 °C、 30 s, 65 °C, 1 min, 72 °C, 2 min, 94 °C, 30 s, 44 ℃、1 min, 72 ℃、2 min, 15 个循环; 72 ℃、 10 min。第2次 PCR 反应, 以1 µL 第1次 PCR 反 应液为模板, CYPPSP2 和简并引物为引物, 反应条 件为: 94 ℃、30 s, 65 ℃、1 min, 72 ℃、2 min, 94 °C、30 s, 65 °C、1 min, 72 °C、2 min, 94 °C、 30 s, 44 ℃、1 min, 72 ℃、2 min, 15 个循环; 72 ℃、10 min。第3次 PCR 反应, 以1 µL 第2次 PCR 反应液为模板, CYPPSP3 和简并引物为引物, 反应条件同第 2 次 PCR 反应。3 次 PCR 反应后, 1%琼脂糖凝胶电泳回收纯化 PCR 产物,连接到 pMD20-T 载体并转化 DH5α,对经过酶切鉴定获得 的阳性克隆进行序列分析。

1.3 植物表达载体的构建

根据测序结果设计特异引物,并加入限制性内 切酶 Hind III 与 Xba I。CYPPBI121-1: 5'-CGCA AGCTTAGTCGACTGAGATGAAAG-3', CYPPB I 121-2: 5'-CACTCTAGAGGTGTCAAATGTTAATT A-3', CYPPBI121-3: 5'-CGCAAGCTTAAGTAGA AGTAGGTTCGC-3'。以经过序列分析带有 cyp7-1av1 5'UTR 序列的 pMD20-CYPP-941 和 pMD20-CYPP-512 质粒为模板,分别以 CYPPBI121-1、CYP-PBI121-2 和 CYPPBI121-3、CYPPBI121-2 为引物进 行 PCR 反应扩增 cyp71av1 5'UTR 序列,反应条件 如下: 94 ℃、5 min, 94 ℃、30 s, 55 ℃、30 s, 72 ℃、1 min, 30 个循环; 72 ℃、7 min。PCR 产 物经过 Hind III 与 Xba I 双酶切后, 1%琼脂糖凝胶 电泳回收纯化,与同样经过 Hind III 与 Xba I 消化去 掉 35S 启动子的质粒 pBI121 连接,构建重组质粒。 对经过酶切鉴定获得的阳性克隆进行序列分析。

1.4 植物表达载体转化烟草

将测序正确的 pBI121-CYPP-919 和 pBI121-CY PP-490 重组质粒转化农杆菌 LBA4404,选取单菌落 提取质粒, Hind III 与 Xba I 双酶切鉴定重组子。含 有重组质粒的 LBA4404 转化烟草的方法参见文献 报道^[9], 25 mg/L 卡那霉素进行筛选,提取抗性株叶 片 DNA, PCR 扩增 cyp71av1 5'UTR 序列鉴定转化 烟草。

1.5 GUS 组织化学染色鉴定及活性检测

将 PCR 鉴定阳性的转化烟草苗叶片剪成小片 进行 GUS 染色。GUS 组化染色及活性定量检测方 法参考文献方法^[9],以每分钟水解pNPG生成1 nmol 对硝基苯酚的酶量为一个酶活力单位,GUS 活性以 每单位质量(mg)总蛋白的酶活力表示。

1.6 胁迫条件处理转化烟草

挑选经过 GUS 组化染色鉴定且表达稳定的烟 草转化苗,继代培养(25℃,16h光/8h暗)30d 后,用以下条件进行处理:(1)冷处理,4℃培养 24h,光照周期为16h光/8h暗;(2)紫外辐射处 理,紫外灯(254nm,20W)下约20cm处照射1h; (3)脱水处理,转化苗移出培养基置于无菌滤纸上, 继续25℃光照培养6h。

2 结果

2.1 cyp71av1 5' UTR 的分离及序列特征分析

特异引物 CYPPSP-1、CYPPSP-2、CYPPSP-3 分别与简并引物 AP1、AP2、AP3 或 AP4 进行 3 次 热不对称嵌套 PCR 反应后得到多个产物条带。从琼 脂糖凝胶中分别回收纯化第 3 次 PCR 清晰的产物 带,克隆于 pMD20-T 载体,经过测序与序列比对 分析 (http://blast.ncbi.nlm.nih.gov/Blast.cgi/)显示特 异引物与简并引物 AP2 经过 3 次 PCR 扩增后的 2 段产物 (图 1),其中 512 bp 片段序列与 941 bp 片 段 3'端序列相同,也就是说 512 bp 片段是 941 bp 片段的截短序列。两片段的 3'端序列与 cyp71av1 编码序列相符,5'端序列与 GenBank 收录的黄花蒿 cyp71av1 5'UTR 序列(EF015297)的同源性为 68%。 其中 941 bp 序列已上传 GenBank,收录号为 HM048927。

根据 RNA 连接酶介导的快速扩增 5'cDNA 末端法(RLM-RACE)的结果假定^[7]cyp71av1的转录起始位点位于 HM048927 序列的第 899 位,以序号1 表示。通过 PlantCARE 数据库(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)分析预测 TATA 盒和 CAAT 盒分别位于转录起始位点上游

M-DNA 相对分子质量标准 1-CYPPSP3 & AP2 PCR 产物 M-DNA molecular weight marker 1-CYPPSP3 & AP2 PCR products

图 1 热不对称嵌套 PCR 产物的电泳检测 Fig. 1 Electrophoresis of thermal asymmetric interlaced PCR products

30 bp 和 76 bp 处。除了这两个必需的转录元件外, 同时还发现 1 个转录调控元件 (AT-rich element), 1 个低温诱导元件(LTR), 2 个干旱诱导元件(MBS), 1 个真菌诱导元件 (W-box), 3 个激素调控元件以 及多个与光调控有关的元件见表 1。

表 1 Cyp71av1 5'UTR 序列顺式作用元件 Table 1 Cis-acting regulatory elements in cyp71av1 5'UTR

顺式作用元件	序列与位置	作用
AT-rich element	-336 AACTAAAGGTA-326	AT-rich DNA 结合蛋白的结合 位点,与高水平转化相关
MBS	-864 GTCAAC-859 -426 GTCAAT-421	MYB 结合位点,与干旱诱导 相关
LTR	-268 AAAGCC-263	低温响应作用元件
W-box	-211 CCAGTT-206	真菌诱激子反应元件
ABRE	-231 GTGCAT-226	脱落酸反应元件
G-box	-232 CCACGTAA-225	光、紫外与脱落酸反应元件
I-box	-746 GATAAGATA-738	光反应元件
	-743 AAGATAAGTCT-733	
TATC-box	-546 ACCCTAT-540	赤霉素反应元件
TCA-element	-195 ATTTTCTACC-186	水杨酸反应元件

序列位置表示为相对于转录起始位点的上游位置 Positions are given with the respect to the putative transcription start site

2.2 植物表达载体的构建

通过 PCR 法从经过测序带有 cyp71av1 5'UTR 序列的 pMD20-CYPP-941 和 pMD20-CYPP-512 质 粒中扩增长短 2 个 cyp71av1 5'UTR 序列 (919 bp 和 490 bp),插入 pBI121 质粒并取代 35S 启动子序 列构成以 cyp71av1 5'UTR 序列调控 GUS 表达的重 组质粒 pBI121-CYPP-919 和 pBI121-CYPP-490,经 双酶切鉴定和测序分析表明序列与插入位点正确。

2.3 转化烟草 PCR 检测、GUS 染色及活性鉴定

重组质粒 pBI121-CYPP-919 和 pBI121-CYPP-490 转入农杆菌 LBA4404 后,通过共培养法侵染烟 草叶片并整合于烟草基因组中,经卡那霉素筛选获 得抗性株。提取抗性株 DNA 为模板进行 PCR 检测, 分别获得 5 个和 3 个 PCR 阳性株系。对 PCR 检测 阳性的转基因烟草株叶片进行 GUS 染色,均显现 蓝色沉淀斑点,其中 2 个 pBI121-CYPP-919 转基因 株 (4 和 5)和 2 个 pBI121-CYPP-919 转基因株 (2 和 3)的蓝色斑点较为明显(图 2)。化学分光光度 法检测 pBI121-CYPP-919 转基因株 4、5 和 pBI121-CYPP-490 转基因株 2、3 的 GUS 活性分别 为 1.69、1.75、1.52、1.68 nmol/(min·mg),表明长 短 2 个 cyp71av1 5'UTR序列均有启动子活性且无明 显差异(P>0.05)。

1, 2-pBI121-CYPP-490 转基因株 2 和 3

3, 4-pBI121-CYPP-919 转基因株 4 和 5 5-野生型

1, 2-N. tabacum transformed with pBI121-CYPP-490 2 and 3

3, 4-N. tabacum transformed with pBI121-CYPP-9194 and 5 5-wild type

图 2 转基因烟草的 GUS 组化染色

Fig. 2 GUS-staining in transgenic N. tabacum

2.4 胁迫条件下 cyp71av1 启动子的表达调控模式

选取 pBI121-CYPP-919转基因株 5 进行低温、 紫外辐射及脱水处理。未经处理时转化烟草叶片 的 GUS 活性为 (1.75±0.21) nmol/(min·mg)。而 经过胁迫条件处理的转化烟草 GUS 活性提高 1.4~2.7 倍,其中脱水处理后转化烟草 GUS 活性 升幅最高为 (4.76±0.42) nmol/(min·mg),4 $^{\circ}$ C和 紫外辐射处理后转化烟草 GUS 活性分别为 (2.52± 0.16)、(2.47±0.41) nmol/(min·mg) (*n*=10),见 图 3。表明这些胁迫条件可能对 cyp71av1 启动子 有诱导效应。

3 讨论

本研究从黄花蒿中分离了 cyp71av1 长短2 个启 动子序列,经烟草转化实验表明,截短的序列与长 序列一样均具有调控 GUS 基因表达的功能。该序 列与 GenBank 收录的另一个黄花蒿 cyp71av1 5'UTR 序列并不相同,表明 cyp71av1 启动子可能存

在多态性,并且这一现象可能与不同品系黄花蒿的 青蒿素产量存在差异相关。Kim 等^[10]发现青蒿素合 成另一关键酶——紫穗槐二烯合酶 (ads)的启动子 也存在多样性。

序列分析显示, cyp71av1 启动子序列含有多个 环境响应诱导元件,经过低温、紫外辐射和干旱等 胁迫条件处理后, GUS 的活性均有不同程度的提 高,可见 cvp71av1 启动子对基因表达的调控受到环 境条件的影响。普遍认为,青蒿素作为1种次生代 谢产物,外界的条件刺激,包括冷冻、高盐、真菌 感染及真菌诱激子、多糖、植物激素(水杨酸、茉 莉酸甲酯、赤霉素)等都可以促进其合成^[11-13]。Pu 等[14]认为水杨酸通过上调青蒿素合成基因表达促 进青蒿素前体合成和刺激产生活性氧促进青蒿素前 体转化2条途径来提高青蒿素合成。本课题组也检 测到多种人工模拟胁迫条件可诱导青蒿素合成基因 的表达,其中以 ads、cyp71av1 和 dbr2 基因的响应 最为明显^[15]。在4 ℃条件下, cyp71av1 和 ads 的量 分别上调 80%和 50%^[8]。由此看来, cyp71av1 等青 蒿素合成基因具有诱导表达特性且表达量直接与青 蒿素合成量相关。cvp71av1 启动子序列中还含有多 个光调控元件,说明该启动子很可能受到光调控, 在实验中也发现在黑暗或弱光条件下,冷处理对 cyp71av1 基因表达的诱导作用会被削弱或抵消,但 该启动子在光逆境条件下的表达方式还有待进一步 分析。

另外,青蒿素在植株中的积累有明显的组织和 发育特异性,主要分布在腺毛丰富的叶和花中,以 花期前或者花期时的量为最高。与之相应,青蒿素 生物合成基因的表达也大多具有组织和发育特性。 cyp71av1、dbr2和 aldh1 基因都是从腺毛(glandular trichome)表达序列标签库中分离出来的,其 mRNA 在腺毛丰富的组织中呈高水平表达^[4-6]。本课题组追 踪监测了黄花蒿不同生长阶段青蒿素生物合成基因 的表达水平,发现各基因的 mRNA 水平在生长过程 中逐步提高,在临近开花前达到最大值,而 ads 和 cyp71av1 基因的升幅最大^[15]。可见,青蒿素合成关 键酶编码基因的表达特性与青蒿素合成规律一致。 但 cyp71av1 启动子的组织及发育表达特性还有待 于进一步研究。

黄花蒿在世界范围分布广泛,但绝大多数地区 黄花蒿中的青蒿素量都很低,无生产利用价值。青 蒿素的量明显受各种环境因素,如营养条件、光温 变化、外源激素等的影响。深入研究青蒿素合成途 径关键基因在各种压力条件下的表达特性、基因启 动子的调控元件、转录因子及其相互作用关系有助 于阐明青蒿素生物合成调控机制,藉此筛选优良品 种,优化栽种条件,或通过代谢工程手段提高青素 合成产量,从根本上解决青蒿素的原料问题。

参考文献

- [1] 刘硕谦,田 娜,李 娟,等.青蒿素组合生物合成的 研究进展 [J]. 中草药, 2007, 38(9): 1425-1431.
- [2] 吴 静,丁 伟,张永强,等.提高青蒿产量的生物技术研究进展 [J].中草药,2007,38(2):305-308.
- [3] Bouwmeester H J, Wallaart T E, Janssen M H, et al. Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis [J]. *Phytochemistry*, 1999, 52(5): 843-854.
- [4] Teoh K H, Polichuk D R, Reed D W, et al. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin [J]. FEBS Lett, 2006, 580(5): 1411-1416.
- [5] Zhang Y, Teoch K H, Reed D W, *et al.* The molecular cloning of artemisinic aldehyde $\Delta 11(13)$ reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in *Artemisia annua* [J]. *J Biol Chem*, 2008, 283(31): 21501-21508.

- [6] Ro D K, Paradise E M, Ouellet M, *et al.* Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. *Nature*, 2006, 440(7086): 940-943.
- [7] Teoh K H, Polichuk D R, Reed D W, et al. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in *Artemisia annua* [J]. *Botany*, 2009, 87: 635-642.
- [8] Zeng Q P, Zeng X M, Yin L L, et al. Quantification of three key enzymes involved in Artemisia annua by polyclonal antisera-based ELISA [J]. Plant Mol Biol Rep, 2009, 27(1): 50-57.
- [9] Feng L L, Yang R Y, Yang X Q, et al. Synergistic re-channeling of mevalonate pathway for enhanced artemisinin production in transgenic Artemisia annua [J]. Plant Sci, 2009, 177(1): 57-67.
- [10] Kim S H, Chang Y J, Kin S U. Tissue specificity and developmental pattern of amorpha-4, 11-diene synthase (ADS) proved by ADS promoter-driven GUS expression in the heterologous plant, *Arabidopsis thaliana* [J]. *Planta Med*, 2008, 74(2): 188-193.
- [11] Yin L L, Zhao C, Huang Y, et al. Abiotic stress-induced expression of artemisinin biosynthesis genes in Artemisia annua L. [J]. Chin J Appl Environ Biol, 2008, 14(1): 1-5.
- [12] Baldi A, Dixit V K. Yield enhancement strategies for artemisinin production by suspension cultures of *Artemisia annua* [J]. *Bioresour Technol*, 2008, 99(11): 4609-4614.
- [13] Qureshi M I, Israr M, Abdin M Z, et al. Responses of Artemisia annua L. to lead and salt-induced oxidative stress [J]. Environ Exp Bot, 2005, 53(2): 185-193.
- [14] Pu G B, Ma D M, Chen J L, et al. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. [J]. Plant Cell Rep, 2009, 28(7): 1127-1135.
- [15] Yang R Y, Zeng X M, Lu Y Y, *et al.* Senescent leaves of artemisia annua are one of the most active organs for overexpression of artemisinin biosynthesis responsible genes upon burst of singlet oxygen [J]. *Planta Med*, 2010, 76(7): 734-742.