极差值和方差分析结果表明,3 种因素对番泻苷 A 提取率的影响程度依次为 B>A>C。由于提取次数对提取率的影响不明显,且多次提取增长了提取的时间,增加了溶剂的用量,故提取次数确定为 2 次。3 种因素的优化组合为 $A_2B_2C_1$,即每次 10 倍原料量的 50%乙醇为溶剂,室温浸提 24 h,提取 2 次。2. 2. 5 验证试验:按上述确定的提取工艺条件,取 10 g 药材中粉,精密称定,用 10 mL 50%乙醇室温浸提 24 h,提取 2 次,提取液合并,定容至 25 mL,测定番泻苷 A 的质量浓度为 1.35 mg/mL,计算得提取率为 91.2% (n=4)。

3 讨论

3.1 番泻苷包括番泻苷 A、B、C、D 等^[2],由于番泻 苷类对照品不易得到,而此类物质物理、化学性质相 近,所以暂以番泻苷 A 为考察指标,建立测定方法, 优选番泻苷类化合物的提取工艺。

- 3.2 《中国药典》2000 年版一部,采用比色法测定番泻叶中总蒽酮,方法需多次回流、萃取,操作复杂。通过多种流动相:水-甲醇、水-乙腈、水-乙腈-磷酸盐缓冲液等的优化,本研究建立了 HPLC 测定番泻叶中番泻苷 A 的方法,此方法简单、准确、快速。可作为番泻叶中番泻苷 A 测定的方法。
- 3.3 通过提取温度的选择试验可以明显看出番泻 苷类物质在较高温度下不稳定。因此建议在进行 HPLC 测定时,番泻苷 A 对照品不宜过久放置,样 品保存时温度不应超过 60 ℃。

References:

- [1] Stuppner H, Sturmv S. LC-MS and CZE of dianthrones from Cassia angustifolia and C. acutifolia [J]. Chromatographia, 1996, 42 (11-12): 697.
- [2] Tanaka H, Murata R, Yoshida A, et al. Analytical studies on the active constituents in crude drugs V. The structure of sennoside G, a new glucoside from Senna [J]. Chem Pharm Bull. 1982, 30 (5): 1550-1556.

HPLC 法测定丹芩滴丸中黄芩苷、隐丹参酮和丹参酮ⅡA

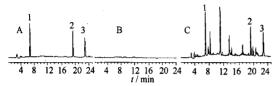
刘 刚,王杰松,姜 韧,薛克昌,徐冰心,谭生建 (中国人民解放军第306 医院 药剂科,北京 100101)

丹芩滴丸由丹参和黄芩等经提取加工制备而成,具有抗菌、抗炎和镇痛等作用,临床用于耐青霉素、红霉素、金霉素的金黄色葡萄球菌、乙类链球菌和绿脓杆菌等感染所致的外耳道炎、外耳道疖肿、中耳炎等。黄芩苷、隐丹参酮和丹参酮 IA 为丹芩滴丸中抗菌、抗炎的活性成分。因此本实验建立了高效液相色谱法同时测定丹芩滴丸中黄芩苷、隐丹参酮和丹参酮 IA 的方法。

1 仪器与试药

高效液相色谱仪:含 2800 液相色谱泵,7215 型手动进样器,BIO-DIMENSION 紫外可见分光光度检测器(美国 BIO-RAD 公司);TL 9900 色谱数据工作站(北京泰乐公司)。

黄芩苷对照品(批号:0715-9708)、隐丹参酮对照品(批号:0852-9902)和丹参酮 IA 对照品(批号:0766-200010)购自中国药品生物制品检定所。丹芩滴丸由本院制剂室制备(批号:20030208、20030209、20030211)。乙腈为色谱纯。


2 方法与结果

- 2.1 对照品溶液的制备:分别精密称取黄芩苷、隐 丹参酮和丹参酮 I_A 对照品 24、10、12 mg,置 100 mL 棕色量瓶中,加乙醇溶解并稀释至刻度,摇匀。 精密量取 5 mL,置 10 mL 棕色量瓶中,加乙醇稀释 至刻度,摇匀,即得混合对照品溶液,分别含黄芩苷 120 μg/mL、隐丹参酮 50 μg/mL 和丹参酮 I_A 60 μg/mL。
- 2.2 供试品溶液的制备:取丹芩滴丸20粒,研匀,精密称定125 mg,置50 mL 锥形瓶中,精密加入乙醇25 mL,称定,超声5 min 使溶解,擦干瓶壁,补足减失的乙醇,摇匀,即得。
- 2.3 色谱条件和系统适用性试验: MZ C_{18} 分析色谱柱(250 mm×4.6 mm, 5 μ m), C_{18} 保护柱(北京分析仪器厂,5.0 mm×4.6 mm, 5 μ m); 流动相 A 为 85%乙腈水溶液(含 0.5%三乙胺,磷酸调 pH 3.0), 流动相 B 为 10%乙腈水溶液(含 0.5%三乙胺,磷酸调 pH 3.0), 梯度洗脱,程序为 $0\sim15$ min, A $20\%\sim$

收稿日期:2004-11-22

作者简介:刘 刚(1961—),男,北京人,副主任药师,解放军 306 医院药剂科副主任,主要从事药物分析研究。 Tel. (010) 66356187 66356172

100%,B $80\%\sim0\%$;体积流量:1.0 mL/min;检测波长:270 nm。在此色谱条件下,测得黄芩苷、隐丹参酮、丹参酮 I_A 对照品、阴性样品(PEG 6000、PEG 1000、丙二醇质量比按 7:63:10 加热熔化混合而成)和丹芩滴丸色谱图见图 1。可见黄芩苷、隐丹参酮和丹参酮 I_A 保留时间分别为 6.7、19.3、22.8 min,与各自相邻峰的分离度均大于 1.5,理论板数分析为 3600、7500 7500

1-黄芩苷 2-隐丹参酮 3-丹参酮 IA

1-baicalin 2-cryptotanshinone 3-tanshinone I A

图 1 混合对照品(A)、缺丹参和黄芩的阴性 样品(B)和丹芩滴丸(C)的 HPLC 图

Fig. 1 HPLC chromatograms of mixed reference substances (A), negative sample (B), and Danqin Dropping Pill (C)

2.4 线性关系与最低检出限:取黄芩苷对照品 12 mg,置 100 mg 量瓶中,用乙醇溶解并稀释至刻度,摇匀,为黄芩苷对照品储备液(含黄芩苷 120.0 μ g/mL);分别取隐丹参酮对照品 8 mg 和丹参酮 \mathbb{I}_A 对照品 8 mg,置同一 100 mL 量瓶中,用乙醇溶解并稀释至刻度,摇匀,为隐丹参酮对照品和丹参酮 \mathbb{I}_A 对照品混合储备液含隐丹参酮 80.00 μ g/mL,含丹参酮 \mathbb{I}_A 78.00 μ g/mL)。

将对照品储备液稀释 1 倍,摇匀,分别取 4、8、12、16、20 μ L 注入液相色谱仪,记录色谱峰面积。以峰面积对进样量线性回归:黄芩苷回归方程 $Y=1.100\times10^6+8.189\times10^7$ X,r=0.999 9,线性范围:0.240 $2\sim1.201$ 0 μ g;隐丹参酮回归方程 $Y=6.954\times10^5+1.472\times10^8$ X,r=0.999 9,线性范围:0.160 $0\sim0.800$ 0 μ g;丹参酮 I A 回归方程 $Y=6.579\times10^5+1.371\times10^8$ X,r=0.999 6,线性范围:0.156 $0\sim0.780$ 0 μ g。

将对照品储备液适当稀释后进样,以峰高为基线噪音 3 倍计算,黄芩苷、隐丹参酮和丹参酮 \mathbb{L}_{Λ} 最低检出限分别为 0.005 1、0.004 5、0.006 4 μ g。

2.5 精密度试验:取混合对照品溶液,重复进样 5次,每次 10μ L,记录色谱峰面积,计算,结果黄芩苷峰面积 RSD 为 1.2%,隐丹参酮峰面积 RSD 为 1.4%,丹参酮 I_A 峰面积 RSD 为 1.6%。取丹芩滴丸供试品溶液,重复进样 5次,每次 10μ L,记录色谱峰面积,计算,结果黄芩苷峰面积 RSD 为 1.5%,

隐丹参酮峰面积 RSD 为 1.8%,丹参酮 I A 峰面积 RSD 为 2.0%。

2.6 重现性试验:取同一批丹芩滴丸,平行 5 次取样,制备供试品溶液,进样测定,计算质量分数,结果黄芩苷的 RSD 为 1.6%, 隐丹参酮的 RSD 为 2.9%,丹参酮 \mathbb{I}_A 的 RSD 为 2.6%。

2.7 稳定性试验:取丹芩滴丸供试品溶液,每隔1 h 测定 1 次,测定 5 次,计算质量分数,结果黄芩苷 的 RSD 为 1.7% (n=5), 隐 丹 参 酮 的 RSD 为 1.9% (n=5),丹参酮 I_A 的 RSD 为 2.3% (n=5)。 2.8 加样回收率试验:精密量取丹芩滴丸(批号: 20030211)供试品溶液 3 mL 置 10 mL 棕色量瓶中, 用乙醇稀释至刻度,作为回收率测定用空白样品;精 密量取同一供试品溶液 3 mL 置 10 mL 棕色量瓶 中,精密加入黄芩苷对照品储备液 4 mL(相当于黄 芩苷 480·4 μg)、隐丹参酮和丹参酮 I_A 对照品混合 储备液 3 mL(相当于隐丹参酮 240 μg 和丹参酮 IA 234 μg),作为回收率测定用加样样品。同法重复制 备5个加样样品,测定,计算回收率,结果黄芩苷、隐 丹参酮、丹参酮 IA的加样回收率分别为 97.4% (RSD 为 2.4%)、97.3%(RSD 为 2.1%)、101.6% (RSD 为 1.1%)。

2.9 样品的测定:分别精密吸取混合对照品溶液和供试品溶液各 10 μL,注入液相色谱仪,分别记录黄芩苷、隐丹参酮和丹参酮 I_A 色谱峰面积,采用外标法计算,测定结果见表 1。

表 1 丹芩滴丸中黄芩苷、隐丹参酮和 丹参酮 II A 的测定结果 (n=3)

Table 1 Determination of baicalin, cryptotanshinone, and tanshinone I an Danqin Dropping Pill (n=3)

批号	黄芩苷 /(mg・g ⁻¹)	隐丹参酮 /(mg•g ⁻¹)	丹参酮 I _A /(mg·g ⁻¹)
20030208	24.60	10.06	12.09
20030209	24.02	9.470	11.54
20030211	23. 24	9.176	11.81

3 讨论

经对混合对照品溶液在线光谱扫描发现,270 nm 处黄芩苷、隐丹参酮和丹参酮 I_A 均有较强吸收,故选 270 nm 作为测定波长。

在等梯度洗脱条件下,当黄芩苷在 7 min 左右 出峰时,丹参酮 \mathbb{I}_A 在 $30 \text{ min } 以后出峰。本实验采用梯度洗脱,使丹参酮 <math>\mathbb{I}_A$ 在 23 min 之前出峰,提高检测效率。

本法操作简便,测定结果准确可靠,可用于丹芩 滴丸中黄芩苷、隐丹参酮和丹参酮 I_A 的测定。