表 1 化合物I ~ IV的13 C-NMR和 DEPT数据

Table 1 13 C-NMR and DEPT data of compounds I -IV

Table 1	CNNIK and DEFT data of compounds 1 10							
碳位	I	II	III	IV				
1	15. 8(2)	22. 3(2)	37. 2(2)	31. 3(2)				
2	32. 4(2)	41. 2(2)	31. 5(2)	29. 6(2)				
3	72. 3(1)	213.0(0)	71. 1(1)	71. 1(2)				
4	49. 2(1)	58. 2(1)	38. 0(2)	39. 5(2)				
5	37. 1(0)	42. 8(0)	40. 3(1)	139. 5(0)				
6	41.8(2)	41.4(2)	29. 6(2)	117. 5(1)				
7	17.6(2)	18. 2(2)	117. 5(1)	31. 5(2)				
8	53. 2(1)	53. 2(1)	139. 6(0)	31. 9(1)				
9	38. 4(0)	37. 4(0)	48. 5(1)	49. 5(1)				
10	61.4(1)	59. 5(1)	34. 2(0)	37. 2(0)				
11	35. 6(2)	35. 6(2)	21. 6(2)	21. 6(2)				
12	30. 6(2)	30. 5(2)	39. 5(2)	38. 0(2)				
13	37. 9(0)	39. 6(0)	43. 3(0)	43. 3(0)				
14	39.7(0)	38. 4(0)	55. 1(1)	55. 1(1)				
15	32. 8(2)	32. 4(2)	23. 0(2)	23. 1(2)				
16	36. 1(2)	36. 0(2)	28. 52(2)	28. 5(2)				
17	30. 0(0)	30. 1(0)	55. 9(1)	55. 9(1)				
18	42. 9(1)	42. 8(1)	12. 6(3)	12. 1(3)				
19	35. 4(2)	35. 2(2)	13. 0(3)	19. 4(3)				
20	28. 2(0)	28. 1(0)	40. 8(1)	40. 8(1)				
21	35. 2(2)	32. 8(2)	21. 1(3)	21. 1(3)				
22	39. 3(2)	39. 2(2)	138. 2(1)	138. 2(1)				
23	11.6(3)	6. 8(3)	129. 5(1)	129. 4(1)				
24	16. 4(3)	14. 6(3)	51. 3(1)	51. 3(1)				
25	18. 2(3)	17. 9(3)	31. 9(1)	31. 9(1)				
26	18.6(3)	20. 2(3)	19. 0(3)	19. 0(3)				
27	20. 1(3)	18.6(3)	21. 4(3)	21. 4(3)				
28	31.8(3)	32. 1(3)	25. 4(2)	25. 4(2)				
29	35. 0(3)	35. 2(3)	12. 2(3)	12. 2(3)				
30	32. 1(3)	31.8(3)						

括号中的数字为该碳相连的氢原子的数目(由 DEPT确定)。

三萜苷; ¹³C-NM R有一六碳糖的碳信号 (🗟 101. 4,

78. 8, 76. 4, 75. 9, 70. 4, 62. 2),其他碳信号与豆甾醇。酸水解得其糖为葡萄糖,葡萄糖部分为 C-1′101. 4 (1), C-2′78. 8(1), C-3′76. 4(1), C-4′75. 9(1), C-5′70. 4(1), C-6′62. 2(2) 由此推测该化合物为豆甾醇分分葡萄糖苷。其¹³ CNM F数据见表 1

化合物V: 甲醇中得无色粉末, mp 57 $^{\circ}$ ~ 59 $^{\circ}$ 。 与标准品三十二烷酸对照 TLC一致,混合测熔点不下降.故化合物V 为三十二烷酸

References

- [1] Jiangsu New Medical College Dictionary of Chinese Materia Medica (中药大辞典) [M]. Shanghai Shanghai People's Publishing House, 1977.
- [2] Monta H. Nagashim S. Takeya K, et al. Astins A and B. antitumor cyclic pentapeptides from Aster tataricus [J]. Chem Pharm Bull, 1993, 41(5): 992-993.
- [3] Nagao T, Okabe H, Yamauchi T. Studies on the constituents of Aster tatariclus [J]. Chem Pharm Bull, 1990, 38 (3): 783-785.
- [4] He L, Cheng D L, Pan X. Studies on the constituents of Aster farreri [J]. Chin Tradit Herb Drugs (中草药), 1996, 27(3): 142
- [5] Zhang J M, Cheng Y Z, Li B G, et al. Studies on the constituents of Aster poliothamnus [J]. China J Chin Mater Med (中国中药杂志), 1997, 22(2): 103-104.
- [6] Akihisa T, Yamamoto K, Tamura T, et al. Triterpenoid ketones from Lingnania chungii [J]. Chem Pharm Bull, 1992, 40(30, 789.
- [7] Ding L S, Chen Y Z, Wu F E, et al. Studies on the constituents of Berneuxia thibetica Decne [J]. China J Chin Maer Med (中国中药杂志), 1991, 16(5): 289.

葎草 CO 超临界萃取物的化学成分研究

王鸿梅1.杨金荣2

(1. 天津医科大学 质谱实验室,天津 300070, 2 天津医科大学药学院,天津 300070)

葎草 Humulus scandens (Lour.) Merr. 为桑科植物葎草的全草,一年生或多年生草本。主产于河北、河南、浙江、江苏安徽等地采集新鲜葎草,以干燥、茎粗、淡绿色、内心充实、味甘苦者为佳品 葎草是一种常用中药,收载于《中华药海》中,有清热解毒、利尿消肿、消瘀散结等作用,并对腹泻、痢疾等有很好的治愈效果 为进一步探讨葎草的临床疗效与所含化学成分的相关性,采用 CO2 超临界萃取技术

(SFE和水蒸气蒸馏法 (SD)提取葎草挥发性成分, 并用 GC-M S进行测定分析。 SFE萃取物分离鉴定 了 49个挥发性成分; SD提取物分离鉴定了 35个挥 发性成分,同时用峰面积归一化法测定其相对百分 含量,并对二者进行比较。

1 仪器

PE Q- Mass910 GC-MS系统(美国惠谱公司); OV- 17弹性毛细管柱(25 m× 0.25 mm, 0.25

收稿日期: 2003-02-03

作者简介: 王鸿梅(1963-),女,主管技师,研究方向为药物分析。

 μ_{m})(英国); 葎草 H. scandens (Lour.) Merr. 由天津市药材公司提供,并由天津中医学院姜华教授鉴定: 所用试剂乙醚、乙醇均为分析纯

2 方法

- 2.1 样品处理
- 2 1.1 SFE提取: 粉碎好的葎草粗粉 50 g投入萃取釜中,萃取温度 38 $^{\circ}$,萃取压力 10 M Pa,经循环萃取,并保持恒温恒压 2 h,得到超临界萃取的挥发性成分。
- 2.1.2 SD提取: 取粉碎好的葎草粗粉 100 g,进行水蒸气蒸馏,得到淡黄色乳浊液,分别用纯化过的乙醚萃取,并浓缩,得到淡黄色挥发油
- 2.2 测定方法
- 2.2.1 气相色谱 OV 17弹性毛细管柱 (25 m×
- 0. 25 mm, 0. 25 mm, 英国产); 进样量 1 m L; 载气

- He;柱前压 50 k Pa;分馏比 40: 1;进样品温度 250 [℃];内标物为正十八烷
- 2.2.2 程序升温条件: 初始温度 50°, 恒温 1 min,以 6°/min升至 90°, 再以 4°/min升至 280°, 恒温 30 min
- 2.2.3 质谱条件: 离子源 EI;进样口温度 280[℃]; 扫描范围 10~550 amu;扫描速度 1 s /dec
- 3 结果与讨论
- 3.1 取葎草挥发性成分 1 μ L(乙醚溶液),用 GC-MS分析鉴定,得到了色谱离子流图和质谱数据的再现,确定各对应组分质谱数据和扫描峰号,经数据处理系统对其内存谱图自动检索,并结合有关文献人工谱图解析,确定了葎草挥发油的化学成分。相对百分含量用峰面积归一化法得到,见表 1
- 洋量 1 ^µ L; 载气 3.2 在葎草挥发性成分中,主要为单萜烯类、倍半表 1 葎草挥发油的化学成分及其相对含量

Table 1 Chemical constituents and their relative contents in volatile oil of H. scandens

No.	ル今㎞	相对含	相对含量 %		//◇枷	相对含量 %	
	化合物	SFE	SD	No.	化合物	SFE	SD
1	已醇	0. 03	-	26	β芹子烯	1. 98	1. 30
2	2-甲基 -2-丁烯酸	0. 01	0. 12	27	α 金 合欢烯	0. 24	_
3	β - 葎草烯	1. 28	0. 53	28	正葵酸	1. 78	-
4	β蒎烯	0. 16	-	29	红没药醇氧化物	1. 78	5. 32
5	6甲基 -6-庚烯 -2-酮	0. 15	0. 12	30	乙基十四碳酸酯	0. 15	-
6	石竹烯	2.00	1. 76	31	十六烷酸	0. 98	2.91
7	α-侧柏烯	0. 11	0. 09	32	十六烷酸乙酯	1. 15	0.78
8	1,8桉叶油素	1. 18	0. 34	33	叶绿醇	0. 34	-
9	β月桂烯	1. 43	1. 21	34	亚油酸乙酯	0.43	1. 10
10	顺阝萜品烯醇	0. 14	0. 12	35	油酸乙酯	0.02	0.07
11	α-侧柏酮	0. 39	0. 18	36	β 倍半水芹烯	0. 13	-
12	β侧柏酮	0. 10	0. 08	37	莰烯	0.76	_
13	葎 草酮	0. 54	0. 43	38	甲基庚烯酮	0.07	0.09
14	樟脑	1. 18	0. 67	39	β月桂烯	1. 21	0. 98
15	龙脑	1. 58	-	40	α <i>-</i> 柠檬烯	1. 07	0.76
16	萘	0. 20	_	41	α-萜品油烯	0.10	0. 20
17	乙酸菊烯酯	0. 39	-	42	叶绿醇	1.03	0.74
18	薄荷酮	0.09	0. 07	43	十四碳酸	0. 21	2. 10
19	蛇麻酮	0. 22	0. 14	44	二十三碳烷	0.05	0.06
20	大波斯菊苷	0.76	0. 53	45	二十四碳烷	0.01	0.01
21	2甲基	0. 43	-	46	二十七碳烷	0.03	0.07
22	1甲基萘	0. 17	_	47	γ-谷甾醇	2. 50	0.18
23	石竹烯氧化物	0. 24	0. 22	48	α香树素	3. 50	0.14
24	姜黄烯	0. 14	0. 12	49	维生素 E	1. 20	_
25	α-芹子烯	2.41	2. 10				

萜类及其含氧衍生物和脂肪族化合物等。 萜类化合物具有多方面的生物活性,并是某些中药的主要有效成分。具有镇痉、平喘、祛痰、抗菌、抗病毒、抗癌及杀虫、利胆等作用。 因此,葎草是一种非常值得开发的很有前途的药物。

3. 3 实验结果表明, SFE与 SD提取物在化合物组成及含量上有明显的差别,同时 SFE比 SD具有提取时间短 得率高、有效成分提取完全、不易造成有效成分的分解破坏等优点,相信该方法会在中药有效成分的提取及质量研究方面得到广泛应用。