Structure of Rabdonervosin B Isolated from Veined Rabdosia Stems and Leaves (Rabdosia nervosa)

Gao Youheng, Wu Shunhua and Cheng Yi (Guangzhou University of TCM, Guangzhou 510407)

A new diterpene, rabdonervosin B (I), was isolated from the leaves and stems of Rabdosia nervosa (Hemsl.) C. Y. Wu. et H. W. Li. Its structure has been shown to be 1α, 15β-dihydroxy-6βmethoxy-6, 7-B-seco-ent-kaur-16-en-6, 20-epoxy-7, 20-δ-olide on the basis of spectroscopic data and in comparison with the known rabdonervosin A(I).

Rabdosia nervosa (Hemsl.) C. Y. Wu. et H. W. Li diterpene rabdonervosin A rab-Key words donervosin B

山苦瓜的抗癌活性成分△

李祖强* 云南大学实验中心(昆明 650091)

要 对葫芦科植物山苦瓜 Momoridica dioica 干燥块根的浸膏进行了分离、提纯,用 L₁₂₁₀、CCER-CEM、LS174T 癌细胞对其成分进行了体外筛选,5 个化合物具有抗癌活性,经光谱鉴 定,它们是拜俄尼酸(Ψ)、雪胆甲素(XI)、α-菠甾醇-3-O-β-D-吡喃葡萄糖苷、丝石竹皂苷元(V)及 常春藤皂苷元(VII)。

关键词 山苦瓜 抗癌活性 三萜 甾体

山苦瓜 Momordica dioica Roxb ex Willd. 为葫芦科苦瓜属植物,也称为雌雄异 株苦瓜或异株木鳖子。滇产山苦瓜主要分布 在滇西一带,其块根有多种疗效,民间用于治 疗肝炎、喉炎及风火牙痛等。

从山苦瓜干燥块根乙醇浸膏的石油醚提 取物(MI)、氯仿-乙酸乙酯提取物(MI)、 正丁醇提取物(M II A)及正丁醇提取物总皂 甙水解产物(M II C)中共分离得到 23 个纯 化合物。对山苦瓜块根的提取物、单体、用 L₁₂₁₀、CCER-CEM、LS174T 三种癌细胞进行 体外筛选,结果:M I 剂量为 50 μg/mL,抑 制率为 93%;M II C 剂量为 50 μg/mL,抑制 率为 80%; Ψ 剂量为 10 μg/mL,抑制率为 40%; XX 及 XI 的 IC₅₀为 5 μg/mL; XXI 剂量 为 1.0 μg/mL,抑制率为 43%; XI 的 IC₅₀为 4 μg/mL; XVII (结构待鉴定)的 IC₅₀为 1 μg/ mL。WI、XI、XII、XXX 和 XXI 等6种成分的抗 癌活性分别超过(XIVII)、达到(XII)、接近(XI、 XX、XXI和 WID)美国国家抗癌药物的活性标 准(IC₅₀<4 μg/mL)。上述粗提取物及成分经 过进一步药理及临床试验,有望开发为抗癌 药物。

1 仪器和材料

熔点测定仪,北京产 X-6 型,未校正。红 外光谱仪,美国 BIO-RAD FTS-40 型,KBr 压片。核磁共振仪,Bruker AM400。质谱仪, VG Outspect。紫外仪,日立 V-3400。TLC 高 效板、柱层析硅胶,青岛海洋化工厂生产产 品。山苦瓜块根样品,采自云南省腾冲县,由 昆明药材公司中药师李元鉴定。

2 提取和分离

取已粉碎的山苦瓜块根粉 5 kg,用工业 乙醇渗漉,回收乙醇,得浸膏 370 g。依次用

Address: Li Zuqiang, Experiment Center of Yunnan University, Kunming 李祖强 男,55岁,教授,硕士生导师。1966年云南大学化学系五年制本科毕业,1968-09~1984-01先后在国防科委 1614 研究所, 兵器部 54 所, 冶金部贵金属研究所从事理学研究。1984 年至今在云南大学从事有机化学、有机波谱学教学与 研究。研究方向:生物属性天然产物。主持或参加完成 14 项研究课题(含国际合作项目)。其中 3 项分别获国家科学大会奖、 兵器部科技成果二等奖,冶金部科技三等奖。

^{*} 云南教育学院化学系

[△] 国家自然科学基金资助项目

石油醚、氯仿-乙酸乙酯(1:1)、正丁醇萃取,得萃取物 M I 15.59 g, M I 25.4 g, M II 68 g(总皂苷 35 g-M II A 11 g, M II B 24 g 及水解产物苷元 M II C 8 g)。对 M I、M II、M II 人 M II、 M II 人 A、M II C 4 个组份进行柱层析(干法,200~300 目 硅 胶, 石油-氯仿-乙酸 乙酯-甲醇洗脱), 重结晶得 23 个纯晶: M I (I ~ V), M II (IV ~ XIV), M II A(XIV ~ XVIII), M II C(XIX ~ XXIII)。

3 鉴定

晶 VIII. 白色针晶 (MeOH), mp 239 C ~ 241 C, Liebermann-Burchar 反应示为三萜成分,由元素分析及 MS(M+,456)得分子式 $C_{30}H_{48}O_3$ 。 IR 谱示有羟基(3 435 cm⁻¹)和羟基(1 680 cm⁻¹)。 M+(456),碎片(252,203)证明有五环三萜 RDA 裂解。其 MS、IR、HNMR 谱数据,与文献[1,2]中拜俄尼酸对照一致,但13 CNMR 谱与文献值[2]有小异。为进一步确证,本研究测定了 VIII的 DEPT 谱,其中,7 条谱线为 CH₂信号,3 条谱线为 CH 信号,间接判断,9 条谱线为季碳信号[其中1个是羧基碳信号(8 181.18 ppm)],并对其各碳的归宿进行了指认。证实证为拜俄尼酸(bryonolic acid)。

晶 X: 白色粒晶 (EtOH), mp 234℃~236℃, Liebermann-Burchar 反应示为三萜成分,由元素分析及 MS(M⁺—AcOH,502)得分子式 C₃₂H₅₀O₈。 IR 谱示有多外羟基(3 570、3 465、3 407 cm⁻¹) 和 羟 基 (1 713、1 688 cm⁻¹)。¹HNMR(δ)1.88 ppm 处有强单峰(CH₃COO-),有一个烯氢信号(5.62 ppm)。¹℃NMR 及 DEPT 谱表明有 9 个 CH₃、6 个 CH₂、7 个 CH、10 个季碳[其中 2 个为羰基碳(213.56、214.08 ppm)1 个为羧基碳(170.66 ppm)]。 XI 的 MS、IR、UV、¹HNMR、¹³CNMR 及 DEPT 谱数据,与文献^[3]中雪胆甲素对照一致,故将 XI 鉴定为雪胆甲素(23,24-dihydrocucurbitacin-F-25-acetate)。

晶 XI:白色针晶(MeOH),mp 294℃~ 296℃,Liebermann-Burchar 反应示为甾体 化合物,由元素分析及 MS((M⁺,574)得分子式 $C_{35}H_{58}O_6$ 。 IR(KBr)cm⁻¹显示强羟基信号(3 500 cm⁻¹)。¹HNMR 示有一个糖基 β-构型端基质子信号(δ 5.0 ppm,d,J=7.0 Hz),¹³CNMR、DEPT 信号与 α-披甾醇相比,多了 5 个次甲基及 1 个季碳信号,其余一致。 XII 水解产物针晶通过 ¹HNMR 谱判断为 α-披甾醇。双向纸层析判断糖基部分为 D-葡萄糖。鉴定 XII 为 α-披甾醇-3-氧- β -D-吡喃葡萄糖苷。

晶 XX:白色针晶(CHCl₃-MeOH),mp 245 $C \sim 247$ C, Liebermann-Burchar 反应呈阳性,由元素分析及 $(M^+,470)$ 得分子式 C_{30} $H_{46}O_4$ 。 IR 谱示在 3430 cm $^{-1}$ (OH)、1690 cm $^{-1}$ (C=O)、1720 cm $^{-1}$ (C=O) 或 CHO)有强吸收信号; 1330、1360 cm $^{-1}$ 与 1320、1295 cm $^{-1}$ 四个吸收峰证实有 β-香树脂醇型五环三萜骨架 MS 给出 m/z 248 的基峰,说明 RDA 裂解的 d、e 碎片,进一步证实五环三萜的结构。由 1 HNMR $(CDCl_3)$ δ (ppm) 9.04 Q 13 CNMR δ (ppm) 207.00 (C_{23}) 证实有 CHO基。综合鉴定 XX 为丝石竹皂苷元 $^{[4]}$ 。

晶 XXI:白色针晶(CHCl₃-MeOH),mp 313℃~315℃,Liebermann-Burchar 反应呈阳性,由元素分析及 MS(M⁺,472)得分子式 C₃₀H₄₈O_{4。}IR 谱示在 3 440 cm⁻¹(OH)、1 690 cm⁻¹(羧 C=O)有强吸收信号;由 1 390~1 355 cm⁻¹、1 320、1 290 cm⁻¹及 MS 碎片,m/z:248(基峰),可判断为β-香树属型五环三萜。由¹HNMR,¹³CNMR 及 DEPT 谱,进一步证实 XXI 为常春藤皂苷元^[4]。

化合物 Ⅷ、Ⅺ、Ⅺ、罴 和 Ⅺ 的¹³CNMR 及 DEPT 数据见表 1。

致谢:质谱、元素分析由中科院昆明植物 研究所丁靖恺等测定,核磁谱由该所何以能 等测定。

参考文献

- 1 樊 娟,等. 云南植物研究,1988,10(4):475
- 2 北岛润一,他. 药学杂志(日),1989,109(4):2503

表 1 晶 VII、XI、XI、XX 和 XXI 的 19CNMR 化学位移(ppm)及 DEPT 数据

С	V ≡ *	DEPT	XI * *	DEPT	XI ·	DEPT	XX * *	DEPT	X XI *	DEPT
1	35. 14	CH ₂	33. 01	CH ₂	37.41	CH ₂	38.38	CH ₂	38. 81	CH ₂
2	28.76	CH_2	70.56	CH_2	30.38	CH_2	27.09	CH_2	27.50	CH_2
3	78.06	CH	80.57	CH	78.65	CH	71.62	CH	73. 56	CH
4	39.44	C	41.82	C	34.61	CH_2	56.31	C	42.40	C
5	51.04	CH	140.84	C	40. 29	CH	47.95	CH	48.67	CH
6	19.68	CH_2	118.89	CH	30.09	CH_2	20.75	CH_2	18.61	CH_2
7	28.00	CH_2	23.59	CH_2	117.91	CH	33. 23	CH_2	33.04	CH_2
8	134.25	C	42.56	CH	139.63	C	40.01	C	39.89	C
9	134.69	C	48.62	С	49.70	CH	47.78	CH	48. 20	CH
10	37.91	C	33.78	CH	34.82	C	36.15	С	37. 21	C
11	21.10	CH ₂	213.56	C	21.81	CH_2	23.81	CH_2	23.74	CH_2
12	30.55	CH_2	48.12	CH_2	39.71	CH_2	122. 28	CH	122.71	CH
13	37. 78	C	48.35	С	43.54	C	144.84	C	144.82	C
14	42.18	C	50.52	C	55.36	CH	42.22	C	42.80	C
15	25. 58	CH_2	45. 33	CH_2	23. 38	CH_2	28. 24	CH_2	28.33	CH_2
16	37.56	CH_2	70.58	CH	28.80	CH_2	23.84	CH_2	23.74	CH_2
17	31.47	С	57.66	CH	56.14	CH	46.61	C	46.71	C
18	45.27	CH	19.59	CH_3	12.72	CH_3	41.97	CH	42.10	CH
19	31.20	CH_2	18.75	CH_3	13.09	CH_3	46.52	CH_2	46.60	CH_2
20	40.63	C	78.97	C	41.04	CH	30. 92	C	30.91	С
21	30.75	CH_2	24.35	CH_3	21.15	CH_3	34.41	CH_2	34.37	CH_2
22	35. 61	CH_2	214.08	C	138.64	CH	32.61	CH_2	32. 32	CH_2
23	28.65	CH_3	30.70	CH_2	129.78	CH	207.00	CH	68.56	CH_2
24	16.49	CH_3	34.54	CH_2	51.48	CH	10.08	CH_3	13.14	CH_3
25	20.17	CH_3	81.50	C	32.14	CH	15.69	CH_3	15.84	CH_3
26	22.41	CH_3	25.69	CH_3	21.64	CH_3	17.40	CH_3	17.58	CH_3
27	18.03	CH_3	25.95	CH_3	19. 20	CH_3	26. 20	CH_3	26. 27	CH_3
28	31.35	CH_3	21.42	CH_3	25.71	CH_2	180.11	C	180. 21	C
29	181.18	C	24.49	CH_3	12.31	CH_3	33. 34	CH_3	33. 30	CH_3
30	33. 30	CH_3	20,00	CH_3			23. 83	CH_3	23.82	CH_3
1′			170.66	C	102.37	CH				
2′			22. 17	CH_3	75.38	CH				
3′					78.45	CH				
4′					71.89	CH				
5′					77.27	CH				
6′					63.10	CH ₂				

^{*} in $C_5D_5N_1$ * * in CDCl₃

(1998-04-28 收稿)

Studies on the Anti-cancer Active Constituents of Yunnan Momordica (Momordica dioica)

Li Zuqiang, Luo Lei and Ling Min (Experiment Centre of Yunnan University, Kunming 650091)

Abstract Five anti-cancer compounds were isolated from the dried root of *Momordica dioica* Koxb. ex Willd. They were identified as bryonolic acid, 23, 24-dihydrocucurbitacin-F-25-acetate, α-spinasterol-3-O-β-D-glucopyranoside; gypsogenin and hederagenin by spectroscopic (MS, IR, ¹HNMR, ¹³CNMR and DEPT) data. All of them were found to possess anti-cancer activities against L₁₂₁₀, CCER-CEM, Ls174T cell lines by pharmacological screenings.

Key words Momordica dioica Koxb. ex Willd. anti-cancer activity

³ Marfa TR, et al. J Nat Prod, 1987, 50(2):315

⁴ 罗 蕾,等. 云南植物研究,1997,19(3):316