大黄素调控 11β-HSD1 诱导小鼠骨髓间充质干细胞成骨细胞分化改善骨质 疏松症作用研究

汤新乐1,杨 浩2,张裕祥1,梁 静1,李 敏3,赛达儿·阿布都沙拉木4,张丽娟4*

- 1. 新疆医科大学第六附属医院 检验科,新疆 乌鲁木齐 830000
- 2. 新疆医科大学第六附属医院 药剂科, 新疆 乌鲁木齐 830000
- 3. 新疆医科大学第六附属医院 内分泌科, 新疆 乌鲁木齐 830000
- 4. 新疆医科大学 药学院, 新疆 乌鲁木齐 830011

摘 要:目的 基于差异表达基因分析与实验验证探讨大黄素治疗骨质疏松症的作用机制。方法 从基因表达综合数据库 (GEO) 中筛选骨质疏松症的芯片数据,经 GEO2R 软件处理获取差异基因(DEGs),结合文献分析选择 11β-羟基类固醇脱 氢酶1(11β-HSD1)作为核心基因进行研究;使用 AutoDock 软件分子对接模拟大黄素与11β-HSD1的结合活性;小鼠骨髓 间充质干细胞(BMSCs)分别使用 DMEM/F12 培养基(对照组)、成骨分化专用培养基(成骨诱导组)、含不同浓度(2.5、 5.0、10.0 µmol·L⁻¹) 大黄素的成骨分化专用培养基(大黄素组)进行培养,培养至14、21 d 进行碱性磷酸酶(ALP)和茜素 红染色观察判断成骨细胞分化成熟情况;培养至第7天时 ELISA 法检测细胞中 ALP 水平,实时荧光定量 PCR (qRT-PCR) 检测 11β-HSD1 与 Runt 相关转录因子 2 (Runx2) mRNA 水平, Western blotting 检测骨钙素 (OCN)、骨桥蛋白 (OPN) 蛋白 表达水平。结果 从 GEO 数据库中获得 44 个与脂肪/成骨细胞分化相关的 DEGs,在脂肪细胞分化组中 RASD1、HSD11B1 (又称 11β-HSD1)、RGS2 等 31 个基因表达量显著上调; SHRM、EGR1、TNS3 等 13 个基因表达量显著下调。分子对接显示 大黄素与 11β-HSD1 具有较好的结合活性。ALP/茜素红染色观察发现 10 μmol·L⁻¹的大黄素组成骨细胞分化较多,与对照组 差异明显。与成骨诱导组相比,大黄素可显著下调 11β-HSD1 mRNA 水平(P<0.01),显著上调 ALP 水平、Runx2 mRNA 水 平 (P < 0.01、0.001)。Western blotting 检测结果显示,与成骨诱导组相比,大黄素组 OCN 蛋白表达显著升高 (P < 0.001), OPN 蛋白表达呈升高趋势。结论 大黄素体外诱导小鼠 BMSCs 成骨细胞分化,可能通过抑制 11β-HSD1 表达,增加 Runx2 表达发挥作用。

关键词:大黄素;骨质疏松症;骨髓间充质干细胞(BMSCs);成骨分化;11β羟基类固醇脱氢酶1(11β-HSD1);Runt相 关转录因子2(Runx2)

中图分类号: R285.5 文献标志码: A DOI: 10.7501/j.issn.1674-6376.2025.06.007

文章编号: 1674 - 6376(2025)06 - 1449 - 11

Study on effect of emotin in regulating 11β-HSD1 to induce osteoblast differentiation of mouse bone marrow mesenchymal stem cells and improve osteoporosis

TANG Xinle¹, YANG Hao², ZHANG Yuxiang¹, LIANG Jing¹, LI Min³, SARDAR Abudoushalamu⁴, ZHANG Lijuan⁴

1. Department of Laboratory Medicine, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China

2. Department of Pharmacy, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China

3. Department of Endocrinology, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China

4. College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China

Abstract: Objective To explore the mechanism of emodin in the treatment of osteoporosis based on differential expression gene analysis and experimental verification. Methods Chip data related to osteoporosis was screened from the Gene Expression Omnibus

收稿日期: 2024-12-08

基金项目:新疆维吾尔自治区自治区卫生健康青年医学科技人才专项(WJWY-202332);新疆医科大学第六附属医院自然科学基金资助项目 (LFYKYZX2023-7); 乌鲁木齐市中医药科技创新项目(ZYYMS-38)

作者简介:汤新乐(1992-),男,学士,从事临床生物化学与分子生物学检验研究。E-mail:576892936@qq.com

^{*}通信作者: 张丽娟(1992—), 女, 在读博士, 从事中药药剂学研究。E-mail: 2229840722@qq.com

(GEO) database. The differentially expressed genes (DEGs) were obtained through GEO2R software processing. Based on literature analysis, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) was selected as the core gene for research. Molecular docking simulation was conducted using AutoDock software to assess the binding activity of emodin with 11β-HSD1. Mouse bone marrow mesenchymal stem cells (BMSCs) were cultured in DMEM/F12 medium (control group), osteogenic differentiation-specific medium (osteogenic induction group), and osteogenic differentiation-specific medium containing different concentrations (2.5, 5.0, 10.0 µmol·L⁻¹) of emodin (emodin group). At 14 and 21 days of culture, alkaline phosphatase (ALP) and alizarin red staining were performed to observe and determine the differentiation and maturation of osteoblasts. On the 7th day of culture, the ALP level in cells was detected by Elisa, and the mRNA levels of 11β-HSD1 and Runt-related transcription factor 2 (Runx2) were detected by real-time fluorescence quantitative PCR (qRT-PCR). The protein expression levels of osteocalcin (OCN) and osteopontin (OPN) were detected by Western blotting. Results A total of 44 DEGs related to adipocyte/osteoblast differentiation were obtained from the GEO database. In the adipocyte differentiation group, the expression levels of 31 genes, including RASD1, HSD11B1 (also known as 11β-HSD1), and RGS2, were significantly upregulated; the expression levels of 13 genes, including SHRM, EGR1, and TNS3, were significantly downregulated. Molecular docking showed that emodin had good binding activity with 11β-HSD1. ALP/alizarin red staining revealed that the 10 μ mol·L⁻¹ emodin group had more osteoblast differentiation, with significant differences from the control group. Compared with the osteogenic induction group, emodin significantly downregulated the mRNA level of 11β -HSD1 (P < 0.01) and significantly upregulated the ALP level and Runx2 mRNA level (P < 0.01, 0.001). Western blotting results showed that compared with the osteogenic induction group, the OCN protein expression in the emodin group was significantly increased (P < 0.001), and the OPN protein expression showed an increasing trend. Conclusion Emoxanthine induces osteoblast differentiation of mouse BMSCs in vitro, which may exert its effect by inhibiting the expression of 11β-HSD1 and increasing the expression of Runx2.

Key words: emodin; osteoporosis; bone marrow mesenchymal stem cells (BMSCs); osteogenic differentiation; 11β -hydroxysteroid dehydrogenase 1 (11β-HSD1); runt-related transcription factor 2 (Runx2)

骨质疏松症(OP)作为一种与年龄密切相关的 骨骼疾病,近年来在全球范围内引起广泛关注。其 特点为骨量减少、骨组织微结构破坏导致骨脆性增 加,从而易于发生骨折^[1]。据流行病学调查,中国 50岁以上女性 OP 患病率近 30%^[2];随着人口老龄 化程度日趋严重,将会给患者家庭和社会造成沉重 经济负担^[3]。当前临床常用于治疗 OP 药物存在疗 效欠佳、不良反应明显、无法改善成骨细胞增殖分 化等诸多问题^[4],因此寻找新的治疗靶点进行靶向 治疗意义重大。中医药治疗 OP 历史悠久,疗效显 著,值得进一步挖掘探索^[5]。

大黄素是一种天然的蒽醌衍生物,存在于如大 黄、虎杖等植物的根和根茎中。以往对大黄素的研 究集中于其抗氧化、抗炎、抗菌和抗肿瘤方面^[6-9]。 现代药理学证明大黄素在调控代谢、抗 OP 治疗等 方面同样具备潜在价值^[10-11],但作用机制并不十分 清楚。本研究寻找骨髓间充质干细胞(BMSCs)向 脂肪/成骨细胞分化过程中的差异表达基因 (DEGs),结合文献分析选择11β-羟基类固醇脱氢 酶1型(11β-HSD1)作为大黄素的作用靶点进行研 究,通过大黄素体外诱导小鼠 BMSCs 向成骨细胞 分化的实验进行验证,以期为深入探索大黄素治疗 OP 作用机制和临床转化提供参考,进一步丰富中 药治疗 OP 的理论和实践价值。

1 材料

1.1 DEGs 分析和分子对接使用的数据库及软件

基因表达综合数据库 (Gene Expression Omnibus, GEO, https://www.ncbi.nlm.nih.gov/geo); GEO2R; R 语言; PubChem (https://pubchem.ncbi. nlm.nih.gov); Uniprot (https://www.uniprot.org); RCSB PDB (https://www.rcsb.org); PyMOL (https://www.pymol.org/); AutoDock。

1.2 细胞

小鼠 BMSCs(上海富衡生物科技有限公司,批 号 FH-M078),保存于新疆维吾尔自治区药物研究 院重点实验室。

1.3 药物及主要试剂

大黄素(美国 MCE 生物科技公司,质量分数> 98%,批号 HY-14393);小鼠骨髓间充质干细胞完 全培养基(上海富衡生物科技有限公司,批号 PY-M078);DMEM/F12 培养基、成骨分化专用培养基、 Fetal Bovine Serum、茜素红 S 染色液(武汉普诺赛 生命科技有限公司,批号 PM150312、PD-003、 SA220822、PD-003);Enhanced CCK-8 Buffer、PE Anti-Mouse CD45 Antibody、PE Anti-Mouse CD 90 Antibody、PE Anti-Mouse CD105 Antibody(武汉伊

莱瑞特生物科技有限公司, 批号 E-CK-A362、E-AB-F1136D、E-AB-F1283D、E-AB-F1233D); 胰蛋白酶 (北京全式金生物技术有限公司, 批号 FG301-01); 二甲基亚砜 (DMSO, 德国 Biofroxx 公司, 批号 1084ML100);碱性磷酸酶染色试剂盒(偶氮偶联 法)、蛋白提取试剂盒(北京索莱宝科技有限公司, 批号 G1480、240001001); BCA 蛋白定量试剂盒(日 本 SEVEN 公司, 批号 24BN0154); β-actin、骨钙 素 (OCN)、骨桥蛋白 (OPN) 抗体 (江苏亲科生物 研究中心有限公司, 批号 12w2944、85n2245、 50x3141); 小鼠碱性磷酸酶 (ALP) 酶联免疫吸附 测定试剂盒(瑞迪生物科技有限公司, 批号 RE3152M); TransZol Up RNA 提取试剂盒、One-Step gDNA Remover and cDNA Synthesis SuperMix, Green qPCR SuperMix, Passive Refrence Dye II(50×)(Transgen 公司, 批号 ET111、AE311、 AQ601、P20925)。

1.4 主要仪器

XL5A 低速多管架自动平衡离心机(湖南湘立 公司); SPARK 多功能微孔板检测仪(瑞士 TECAN 公司); Eppendorf 微量移液器(德国 Eppendorf 公 司); HERACELL 150i 细胞培养箱(美国 Thermo Fisher 公司); ZHJH-C1109C 超净工作台(上海智城 公司); DSY2000 倒置光学显微镜(重庆澳浦光电 技术公司); DM3000 LED 正置荧光显微镜(德国 Leica 公司); BCD-271WPB 无霜冷藏冰冻冰箱(长 虹美菱公司); DK-S22 电热恒温水浴锅(上海精宏 实验设备公司); QuantStudioTM 3 System 荧光定量 PCR 仪(德国 Thermo 公司); FUSION FX6 凝胶成 像仪(法国 VILBER BIO IMAGING 公司)。

2 方法

2.1 获取 OP 的 DEGs 并可视化分析

以"Osteoporosis"为关键词,选择物种"Homo sapiens",从GEO数据库中获得编号为GSE80614^[12] 数据集(该数据集截至2022年11月29日,包含 脂肪/成骨细胞的不同时间节点共69组样本信息), 以及探针平台文件GPL6947。利用R语言的CEO query包,对GSE80614矩阵数据文件进行下载及整 理;利用python将数据集的探针名转化成基因名。 通过比较数据集各组基因的表达量平均值差异,判 断数据集的合理性。利用 limma 包内置函数 normalize Between Arrays 对数据进行批次矫正后对 数据集进行差异分析(其中脂肪细胞作为实验组, 成骨细胞作为对照组)。DEGs 的筛选标准为 $|\log_2 \pm$ 异倍数 $|\geq 1$, *P*<0.05;利用 R 语言内置函数绘制 DEGs 的可视化热图与火山图。

2.2 分子对接

使用 PubChem 数据库获取大黄素 2D 结构的 SDF 格式文件,使用 Uniprot 寻找 11β-HSD1 对应 的蛋白晶体结构,数据库中优先选择物种为"Homo sapiens"且已验证的蛋白。在 RCSB PDB 数据库中 下载分辨率较高的蛋白晶体结构(pdb 格式文件)。 利用 PyMOL 和 AutoDock 软件移除水和加氢,使 用 Chem 3D 绘制最小化大黄素的能量,然后将其加 载到 AutoDock 软件中以找到活动的口袋与大黄素 对接后的结合能,结合能越低亲和力越强,结合越 稳定。一般情况下结合能<0 则可以自发对接,选 定结合能<-20.93 kJ·mol⁻¹ 为阈值标准。通过 PyMOL 进行可视化处理,进一步进行分析。

2.3 小鼠 BMSCs 培养及鉴定

2.3.1 细胞培养 小鼠 BMSCs 用小鼠骨髓间充质 干细胞专用培养基在 37 ℃、5% CO₂ 细胞培养箱中 培养,每 2~3 天换液或传代 1 次,每次 1:2~1:3 传代。

2.3.2 BMSCs 鉴定(流式细胞) 小鼠 BMSCs 传 代培养 3 代后,胰酶消化已长满的细胞。4 ℃、 3 000 r·min⁻¹离心 3 min 收集细胞,用 0.1%磷酸盐 缓冲液 (PBS)浸洗 2 次,离心收集细胞。将细胞 分 4 份,1 份不染色,其他 3 份分别用 CD45、CD90 和 CD105 抗体避光染色 20 min;将已染色的细胞 中加满 0.1% PBS,4 ℃、3 000 r·min⁻¹离心 3 min 收集细胞。用 0.1% PBS 浸洗 2 次,再次离心后加 0.4 mL 0.1% PBS 重悬细胞,流式细胞仪检测细胞 表面分子。

2.3.3 BMSCs 鉴定(免疫荧光) 24 孔板内放入 细胞爬片,每孔接种 5×10⁴个细胞培养 1 晚。将已 制备好的细胞爬片用 PBS 浸洗 3 次,每次 3 min; 用 4%的多聚甲醛固定爬片 15 min, PBS 浸洗玻片 3 次,每次 3 min; 0.5% TritonX-100 (PBS 配制) 室温通透 20 min; PBS 浸洗玻片 3 次,每次 3 min, 吸水纸吸干 PBS。在玻片上滴加正常山羊血清,室 温封闭 30 min; 吸水纸吸掉封闭液,每张玻片滴加 足够量的稀释好的一抗并放入湿盒,4 ℃孵育过 夜。隔日使用 PBS 浸洗爬片 3 次,每次 3 min,吸 干多余液体后滴加稀释好的荧光 (cy3)标记羊抗兔 IgG,湿盒中室温下孵育 1 h, PBS 浸洗切片 3 次, 每次3min(从加荧光二抗起,后面所有操作步骤均 在暗处进行)。滴加DAPI避光孵育5min,PBS浸 洗4次,每次5min。用吸水纸吸干液体,用含抗荧 光淬灭剂的封片液封片,在荧光显微镜下观察采集 图像。

2.4 CCK-8 法检测细胞活性

小鼠 BMSCs 以每孔 5×10³个铺板于96孔板, 每组 6 孔。铺板 24 h 后对 BMSCs 细胞镜检,确保 细胞密度均匀无污染。将镜检合格的细胞移除旧培 养基,分为对照组 (DMEM/F12 培养基培养),大黄 素 0.25、0.50、1.00、2.50、5.00、10.00 μmol·L⁻¹组 (DMEM/F12 培养基培养),成骨诱导组(成骨分化 专用培养基培养),因大黄素水溶性差,本实验采用 DMSO 助溶,DMSO 终体积分数不超过 0.1%,对 照组与成骨诱导组给予等体积的 DMSO。分别于 处理 24 h 及 3、7 d 取出 96 孔板,吸弃孔内培养 基,按照每孔 10 μL 加入 CCK-8 母液,反应 1.5 h 后于 450 nm 处进行吸光度 (*A*) 值检测,计算细胞 存活率。

细胞存活率= (A_{实验}-A_{对照}) /A_{对照}

2.5 细胞染色

培养小鼠 BMSCs, 以每孔 1×104 铺板于 12 孔 板。设置对照组、成骨诱导组和大黄素(2.5、5.0、 10.0 µmol·L⁻¹) 组,对照组用 DMEM/F12 培养基培 养,成骨诱导组和大黄素组用成骨分化专用培养基 培养,培养14、21 d 后分别进行 ALP 及茜素红染 色,评估上述5组培养基中成骨细胞分化成熟情况。 ALP 染色: 第 14、21 天时吸弃培养基, 使用磷酸 盐缓冲液(PBS)清洗 3~4 次并吸干液体;使用 2~ 8 ℃预冷的 ALP 固定液按每孔 200 µL 固定 60 s, 吸弃 ALP 固定液,蒸馏水洗 1次;滴加 ALP 孵育 液每孔 200 µL, 37 ℃温箱孵育 20 min, 蒸馏水洗 1次后显微镜下观察拍照。茜素红染色:第14、21 天时吸弃孔板内的培养基,用 PBS 清洗 2 遍;每孔 200 µL 加入 4%多聚甲醛溶液,固定细胞 30 min 后 吸弃多聚甲醛溶液,用 PBS 清洗 2 遍;每孔 200 µL 茜素红染液,室温染色 30 min 后弃去染液, PBS 冲 洗后镜下观察。

2.6 成骨细胞分化标志物及核心靶点检测

2.6.1 ELISA 检测 培养小鼠 BMSCs, 以每孔 5×10⁴ 个铺板于 6 孔板, 设置对照组、成骨诱导组和大 黄素(10.0 μmol·L⁻¹)组, 细胞培养及给药方式同 "2.5"项, 至第 7 天时 ELISA 法检测细胞中 ALP

水平,严格参照试剂说明书操作。

2.6.2 qRT-PCR 检测 采用 Trizol 法提取总 RNA; 采用 EasyScript[®] One-Step gDNA Remover and cDNA Synthesis SuperMix 反转录试剂盒进行反转 录,得到 cDNA; 采用 PerfectStart[®] Green qPCR SuperMix 荧光定量试剂盒检测 *11β-HSD1、Runx2* 基 因 mRNA 表达水平。引物序列见表 1,荧光定量体 系见表 2,荧光定量程序见表 3。

表1 引物序列

Table 1 11111cl sequence						
引物	序列(5'→3')					
11β - HSD1	F-GCAGGTTTTCTTCGTGTGTCC					
	R-CCCTGGAGCATTTCTGGTCT					
Runx2	F-GGGAACCAAGAAGGCACAGA					
	R-GGATGAGGAATGCGCCCTAA					
ACTB	F-ATGTGGATCAGCAAGCAGGA					
	R-AAGGGTGTAAAACGCAGCTCA					

表 2 荧光定量体系

 Table 2
 Fluorescence quantification system

体系	体积/μL
cDNA	2
Forward Primer $(10 \text{ mol} \cdot L^{-1})$	0.4
Rorward Primer $(10 \text{ mol} \cdot L^{-1})$	0.4
2×PerfectStart Green qPCR SuperMix	10
Passive Refrence Dye $(50 \times)$	0.4
Nuclease-tree Water	定容至20
总体积	20

	表 3 荧光定量程序
Fahle 3	Fluorescence quantification program

	-			
阶段	t/°C	t/s	循环/次	
预变性	94	30	1	
变性	94	5	40	
退火	60	30		

2.6.3 Western blotting 检测 提取总蛋白并按 照 BCA 蛋白浓度测定试剂盒进行浓度测定。所 有样本蛋白浓度调平一致后加 5×上样缓冲液, 95~100 ℃加热变性 10 min,分装冻存。按试剂 盒说明书制备 SDS-PAGE 凝胶,12% SDS-PAGE 凝胶电泳,湿法转至 PVDF 膜上,室温下用 5% 脱脂牛奶封闭 2 h,封闭后用 TBST 缓冲液洗涤 4~5次,每次 5 min。加入一抗(1:1000)4 ℃ 过夜孵育;次日用 TBST 缓冲液洗涤 4~5次后 室温下孵育二抗 2 h (1:10 000),用 TBST 缓 冲液洗 4~5 次后用 ECL 化学发光底物试剂盒 显影,拍照。

2.7 统计分析

数据以*x*±*s*表示,录入Excel,采用GraphPad Prism 8.4.2 软件包进行分析及制图,各组之间比较 进行单因素方差分析。

- 3 结果
- 3.1 DEGs

GSE80614 基因表达谱芯片的 DEGs 热图见图 1。火山图见图 2,共得到 44 个差异基因,其中表 达量显著上调的基因有 31 个(前 10 名分别为 *RASD1、11β-HSD1、RGS2、G0S2、KIAA1881、*

图 1 GSE80614 的差异表达基因热图

Fig. 1 Heat map of differentially expressed genes of GSE80614

图 2 GSE80614 的差异表达基因火山图 Fig. 2 Volcanic map of differentially expressed genes of GSE80614

PDE4D、FABP4、CHMP1B、ACACB、CXCR7),表 达量显著下调的基因有13个(前10名分别为SHRM、 EGR1、TNS3、HSPB7、LOC649366、KRTAP1-5、 CLIC3、LOXL4、KIAA1199、RGS4)。

对 DEGs 进一步分析,结合查阅文献报道^[13-15], 本研究认为 11β-HSD1 更有可能成为治疗 OP 的关 键靶点,值得探索研究。

3.2 分子对接

大黄素 2D 分子结构见图 3,通过 RCSBPDB 数据库找到 11β-HSD1 蛋白(编号为 1XU9),分辨 度为 1.55 Å(1 Å=1×10⁻¹⁰ nm)。大黄素与 11β-HSD1 之间的结合能为-38.49 kJ·mol⁻¹,提示对接效 果较好,见图 4。

3.3 小鼠 BMSCs 鉴定

小鼠 BMSCs 培养至第 3 代后进行鉴定,免疫 荧光鉴定结果见图 5, CD90 和 CD105 呈阳性。流 式细胞仪检测结果提示 CD45 阴性率>98%, CD90 和 CD105 阳性率分别 96.9%和 92.6%,确认为小鼠 BMSCs,见图 6。

3.4 大黄素对小鼠 BMSCs 细胞活性的影响

培养至第7天时,5、10μmol·L⁻¹的大黄素组 细胞存活率显著高于对照组(*P*<0.001),表明本 实验中大黄素对小鼠 BMSCs 无明显毒性,结果 见图7。

3.5 细胞染色

ALP 染色可见成骨诱导组和大黄素组细胞胞 质被深黑色团块沉淀所充满,密度高,镜下呈深黑 色颗粒沉淀;茜素红染色显示,成骨诱导组和大黄

图 3 大黄素结构 Fig. 3 Structure of emodin

黄色为大黄素分子构象,蓝色为11β-HSD1构象。 Yellow represents the conformation of emodin molecule, and blue represents the conformation of 11β-HSD1.

图 4 分子对接 Fig. 4 Molecular docking

CD90

DAPI

图 5 小鼠 BMSCs (第 3 代)免疫荧光鉴定 (×200)

Fig. 6 Flow cytometry identification results of mouse BMSCs (third generation)

图 7 细胞活性检测 ($\overline{x} \pm s, n=5$) Fig. 7 Cell viability testing ($\overline{x} \pm s, n=5$)

组的矿化结节较大,染色较深,镜下呈红褐色。2 种 染色均提示 10 μ mol·L⁻¹ 的大黄素组成骨细胞矿化 结节较为显著,见图 8、9。

3.6 成骨细胞分化标志物及核心靶点检测

与成骨诱导组相比,大黄素可下调 *11β-HSD1* mRNA 表达 (*P*<0.01),上调 ALP 水平、*Runx2* mRNA 水平 (*P*<0.01、0.001)。Western blotting 检

测结果显示,与成骨诱导组相比,大黄素组 OCN 蛋 白表达显著升高(P<0.001), OPN 蛋白表达量呈升 高趋势。结果见图 10、11。

4 讨论

BMSCs 由早期的中胚层细胞发育而来,主要分 布于结缔组织和器官间质,具有自我更新、增殖分 化为多种细胞等的潜能^[16]。生理状态下,BMSCs 的

图 8 各组细胞培养 14、21 d 时 ALP 染色情况 (×40) Fig. 8 ALP staining of cells in each group cultured for 14 and 21 d (×40)

图 9 各组细胞培养 14、21d 时茜素红染色情况 (×40) Fig. 9 Alizarin red staining of cells in each group at 14 and 21 d of culture (×40)

成骨分化和成脂分化是一个高度有序并且复杂的过程,受多种转录因子和不同信号通路的调控^[17-18]。研究表明 BMSCs 分化潜能失衡可引起多种代谢性疾病,如在骨质疏松和年龄相关性骨丢失、肥胖等疾病中,由于成脂分化占优势,在表现为骨密度减少同时伴随明显的脂肪组织堆积^[19-20],这表明过多的骨髓脂肪细胞产生是影响骨骼健康的一个重要风险因素。另有体外研究证实,脂肪诱导因子,如核受体过氧化物酶体增殖物激活受体γ(PPARγ)依赖间接途径调控脂肪生成,影响成骨细胞分化发育^[21]。因此,降低脂肪细胞转化率,促进成骨细胞分化发育不失为较好的 OP 治疗思路^[22]。

以 11β-HSD1 为切入点研究影响骨代谢的机 制是近年来的一个重要研究方向,因为它是体内唯 一能将无活性皮质酮转变成有活性皮质醇的酶,对 调节局部组织中活性糖皮质激素水平至关重要^[23], 从而间接影响骨骼健康^[24-25],使用 11β-HSD1 抑制 剂治疗激素诱导型骨质疏松可能成为一个新的途 径^[14],值得进一步探索。

大黄素在近年来研究广泛,除作为潜在的 11β-HSD1 抑制剂外^[26],还可对 BMSCs 向成骨细胞分化 起到正向促进作用^[27],其作用机制可能在于增加成骨 细胞分化过程中的关键转录因子 Runx2 水平^[28]。 Runx2 也称核心结合因子 1 (Cbfa1),属于 Runt 结 构域基因家族成员之一,在成骨部位高表达,决定 着成骨细胞的发生与分化,是多种骨诱导因子诱导 成骨的共同信号分子,可增强 BMSCs 向成骨细胞 分化及骨形成的能力^[29-30],所以被认定为成骨分化 过程中最重要的转录因子之一,在成骨细胞的分化 和成熟过程中起着至关重要的作用。

当前研究认为 OP 通过骨髓内脂肪细胞的增加 和成骨细胞的减少来体现,调控脂肪/成骨细胞分化 不失为新的治疗 OP 的途径。然而, 驱动 BMSCs 从 脂肪细胞向成骨细胞生成转变的生理机制并不十 分明确。本研究利用生物信息学工具,使用 GEO 数据库 (GSE 80614)的数据来分析 BMSCs 在成 脂/成骨细胞分化过程中的基因表达,寻找到 DEGs,结合文献分析选择 11β-HSD1 作为调控目 标,并辅以分子对接和细胞实验来验证。本研究发 现 10 μmol·L⁻¹的大黄素对小鼠 BMSCs 向成骨细胞 分化发育十分有利,这体现在对成骨细胞矿化结节 的 ALP/茜素红染色结果、成骨细胞分化标志物检测 等方面,如 Runx2、ALP、OCN,机制与抑制 11β-HSD1 有关。本课题组后期将通过完善动物体内实 验,进一步阐明大黄素对于 11β-HSD1 及成骨细胞分 化作用的影响机制,为抗 OP 治疗提供参考。

利益冲突 所有作者均声明不存在利益冲突

参考文献

- Compston J E, McClung M R, Leslie W D. Osteoporosis
 [J]. Lancet, 2019, 393(10169): 364-376.
- [2] Zeng Q, Li N, Wang Q Q, et al. The prevalence of osteoporosis in China, a nationwide, multicenter DXA survey [J]. J Bone Miner Res, 2019, 34(10): 1789-1797.
- [3] Si L, Winzenberg T M, Jiang Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010-2050 [J]. Osteoporos Int, 2015, 26(7): 1929-1937.
- [4] Tsai J N, Lee H, David N L, et al. Combination denosumab and high dose teriparatide for postmenopausal osteoporosis (DATA-HD): A randomised, controlled phase 4 trial [J]. Lancet Diabetes Endocrinol, 2019, 7(10): 767-775.
- Jia Y, Sun J G, Zhao Y, et al. Chinese patent medicine for osteoporosis: A systematic review and meta-analysis [J]. Bioengineered, 2022, 13(3): 5581-5597.
- [6] Hassan H M, Hamdan A M, Alattar A, et al. Evaluating anticancer activity of emodin by enhancing antioxidant activities and affecting PKC/ADAMTS4 pathway in thioacetamide-induced hepatocellular carcinoma in rats [J]. Redox Rep, 2024, 29(1): 2365590.
- [7] Xin K, Ge M Q, Li X K, et al. Emodin suppresses mast cell migration via modulating the JAK2/STAT3/JMJD3/ CXCR3 signaling to prevent cystitis [J]. Neurourol Urodyn, 2024, 43(8): 2258-2268.
- [8] Ritacca A G, Prejanò M, Alberto M E, et al. On the antibacterial photodynamic inactivation mechanism of Emodin and Dermocybin natural photosensitizers: A theoretical investigation [J]. J Comput Chem, 2024,

45(15): 1254-1260.

- [9] Zhang F, Gu T, Li J, et al. Emodin regulated lactate metabolism by inhibiting MCT1 to delay non-small cell lung cancer progression [J]. Hum Cell, 2024, 38(1): 11.
- [10] Yu L Y, Zhao Y L, Zhao Y L. Advances in the pharmacological effects and molecular mechanisms of emodin in the treatment of metabolic diseases [J]. Front Pharmacol, 2023, 14: 1240820.
- [11] Wei Y B, Kang J F, Ma Z Y, et al. Protective effects of emodin on subchondral bone and articular cartilage in osteoporotic osteoarthritis rats: A preclinical study [J]. Exp Gerontol, 2024, 190: 112413.
- [12] van de Peppel J, Strini T, Tilburg J, et al. Identification of three early phases of cell-fate determination during osteogenic and adipogenic differentiation by transcription factor dynamics [J]. Stem Cell Reports, 2017, 8(4): 947-960.
- [13] Li H W, Hu S H, Wu R Z, et al. 11β-hydroxysteroid dehydrogenase type 1 facilitates osteoporosis by turning on osteoclastogenesis through hippo signaling [J]. Int J Biol Sci, 2023, 19(11): 3628-3639.
- [14] Fenton C G, Doig C L, Fareed S, et al. 11β-HSD1 plays a critical role in trabecular bone loss associated with systemic glucocorticoid therapy [J]. Arthritis Res Ther, 2019, 21(1): 188.
- [15] Wu L, Qi H M, Zhong Y, et al. 11β-Hydroxysteroid dehydrogenase type 1 selective inhibitor BVT.2733 protects osteoblasts against endogenous glucocorticoid induced dysfunction [J]. Endocr J, 2013, 60(9): 1047-1058.
- [16] You Y H, Liu J C, Zhang L, et al. WTAP-mediated m6A modification modulates bone marrow mesenchymal stem cells differentiation potential and osteoporosis [J]. Cell Death Dis, 2023, 14(1): 33.
- [17] Zhang Z, Tao Z B, Zhang Y H, et al. Integrative analyses of genetic mechanisms responsible for bone-fat imbalance in osteoporosis [J]. J Gene Med, 2024, 26(11): e3739.
- [18] Chen K, Tao H Q, Xiao H X, et al. Identification of ferroptosis/autophagy-related genes and potential underlying mechanisms involved in the effect of BMSC senescence on the osteogenic differentiation of aging BMSCs [J]. Genes Dis, 2024, 12(1): 101259.
- [19] Liu Z H, Huang D G, Jiang Y H, et al. Correlation of R2* with fat fraction and bone mineral density and its role in quantitative assessment of osteoporosis [J]. Eur Radiol, 2023, 33(9): 6001-6008.
- [20] Chaiyavech N, Thiengwittayaporn S, Hongku N. Prevalence of common metabolic bone diseases diagnosed

by dual-energy X-ray absorptiometry scanning and blood test in outpatients with osteoarthritis the knee [J]. Geriatr Orthop Surg Rehabil, 2024, 15: 21514593241266377.

- [21] Chen Q, Shou P, Zheng C, et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts ? [J]. Cell Death Differ, 2016, 23(7): 1128-1139.
- [22] Li Z Y, Jin S, Xu T, et al. Effects of seipin on mouse mesenchymal stem cell osteo-adipogenic balance [J]. Stem Cells Dev, 2024, 33(7/8): 177-188.
- [23] Krozowski Z, Li K X, Koyama K, et al. The type I and type II 11beta-hydroxysteroid dehydrogenase enzymes [J]. J Steroid Biochem Mol Biol, 1999, 69(1/2/3/4/5/6): 391-401.
- [24] Blaschke M, Koepp R, Streit F, et al. The rise in expression and activity of 11β-HSD1 in human mesenchymal progenitor cells induces adipogenesis through increased local Cortisol synthesis [J]. J Steroid Biochem Mol Biol, 2021, 210: 105850.
- [25] Xia T S, Dong X, Jiang Y P, et al. Metabolomics profiling reveals rehmanniae Radix preparata extract protects against glucocorticoid-induced osteoporosis mainly via

intervening steroid hormone biosynthesis [J]. Molecules, 2019, 24(2): 253.

- [26] Wang Y J, Huang S L, Feng Y, et al. Emodin, an 11βhydroxysteroid dehydrogenase type 1 inhibitor, regulates adipocyte function *in vitro* and exerts anti-diabetic effect in ob/ob mice [J]. Acta Pharmacol Sin, 2012, 33(9): 1195-1203.
- [27] Kim J Y, Cheon Y H, Kwak S C, et al. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation [J]. J Bone Miner Res, 2014, 29(7): 1541-1553.
- [28] Li P, Kong J C, Chen Z M, et al. Aloin promotes osteogenesis of bone-marrow-derived mesenchymal stem cells via the ERK1/2-dependent Runx2 signaling pathway [J]. J Nat Med, 2019, 73(1): 104-113.
- [29] Gomathi K, Akshaya N, Srinaath N, et al. Regulation of Runx2 by post-translational modifications in osteoblast differentiation [J]. Life Sci, 2020, 245: 117389.
- [30] Pierce J L, Begun D L, Westendorf J J, et al. Defining osteoblast and adipocyte lineages in the bone marrow [J]. Bone, 2019, 118: 2-7.

[责任编辑 兰新新]