A New Triterpenoid Saponin from Aidi Injection

ZHANG Miao-miao, LIU Yan-li, CHEN Zhong, LI Xiao-ran, XU Qiong-ming^{*}, YANG Shi-lin College of Pharmacy, Soochow University, Suzhou 215123, China

Abstract: Objective To investigate the chemical constituents from Aidi Injection. Methods The chemical constituents were isolated by chromatography on Sephadex LH-20 gel columns and reverse phase semi-preparative HPLC repeatedly. Their structures were identified by spectroscopic analysis (NMR and MS). Results Twenty-two compounds were isolated and identified to be 3-O-3',4'-diacetyl-β-D-xylopyranosyl-6-O-β-D-glucopyranosylcycloastragenol (1), astragaloside IV (2), astragaloside II (3), astragaloside I (4), isoastragaloside I (5), acetylastragaloside I (6), ginsenosid Re (7), ginsenoside Rf (8), ginsenoside Rg₁ (9), ginsenoside Rb₃ (10), notoginsenoside R₄ (11), ginsenoside Rb₁ (12), ginsenoside Rc (13), ginsenoside Rb₂ (14), ginsenoside Rd (15), lucyoside H (16), $3-O-\beta-D$ -glucopyranosyl($1\rightarrow 4$)- $\beta-D$ -glucopyranosyl($1\rightarrow 3$)- $\alpha-L$ -rhamnopyranosyl ($1\rightarrow 2$)- $\alpha-L$ arabinopyranosyl oleanolic acid $28-O-\alpha-L$ -rhamnopyranosyl($1\rightarrow 4$)- β -D-glucopyranosyl($1\rightarrow 6$)- β -D-glucopyranoside (17), $3-O-\beta-D$ -glucopyranosyl($1\rightarrow 3$)- α -L-rhamnopyranosyl [β -D-glucopyranosyl-($1\rightarrow 4$)]-($1\rightarrow 2$)- α -L-arabinopyranosyl oleanolic acid $28-O-\alpha-L$ -arabinopyranosyl($1\rightarrow 4$)- β -D-glucopyranosyl($1\rightarrow 6$)- β -D-glucopyranoside (18), syringin (19), elentheroside E (20), 4-(1,2,3-trihydroxypropyl)-2,6-dimethoxyphenyl-1-O- β -D-glucopyranoside (21), and conjferin (22). Conclusion Compounds 1-6 are originated from *Astragalus membranceus*, compounds 7-18 are originated from Panax ginseng, and compounds 19-22 are originated from Acanthopanax senticosus by LC-MS analysis. Compound 1 is a new compound.

Key words: Aidi Injection; astragaloside I; astragaloside II; astragaloside IV; 3-O-3',4'-diacetyl-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-cycloastragenol

DOI: 10.3969/j.issn.1674-6384.2012.02.002

Introdution

Aidi Injection (ADI), made by extraction from Renshen (Ginseng Radix et Rhizoma), Huangqi (Astragali Rdix), Ciwujia (Acanthopanacis Senticosi Radix et Rhizoma seu Caulis), and Banmao (Mylabris), is used for the clinical treatment of cancer. It is reported that ADI could inhibit the growth of tumor with the mechanism of inducing apoptosis, decreasing the side effect of radiotherapy, and increasing immune function, which could also improve life quality of cancer patients (Duan, Fan, and Hou, 2005; Xu, Luo, and Li, 2005). To discover the active agents from ADI, the chemical constituents were systematically investigated. Twentytwo compounds including a new compound, 3-O-3', 4'-diacetyl-B-D-xylopyranosyl-6-O-B-D-glucopyranosylcycloastragenol were isolated. The new compound was originated from A. membranceus by LC-MS analysis.

Materials and methods

Equipments

¹H-NMR and ¹³C-NMR spectra were recorded on a Bruker ZAB-HS Spectrometer; HR-ESI-MS data were obtained on QSTAR Elite Instrument; ODS was purchased from Qingdao Marine Chemical Factory; Sephadex LH-20 was purchased from Beijing Marine Chemical Factory.

Plant material

ADI (20100801) and plant material [the roots and rhizomes of *Panax ginseng* C. A. Mey., the roots of *Astragalus membranceus* (Fisch.) Bge., and the roots and rhizomes of *Acanthopanax senticosus* (Rupr. et Maxim.) Harms] were provided by Guizhou Yibai Medicine Co., Ltd.

Extraction and isolation

ADI (10 L) was evaporated under reduced

^{*} Corresponding author: Xu QM Tel: +86-512-6956 1421 E-mail: xuqiongming@suda.edu.cn

Received: April 3, 2012; Revised: April 24, 2012; Accepted: April 27, 2012

Fund: National Technology Research Program for Creating New Drugs (2009ZX09308-003 and 2011ZX09201-201-16)

pressure. The extract was subjected to MPLC on ODS $(20-40 \ \mu\text{m})$ column and eluted with gradient mixture of MeOH-H₂O to afford six fractions (Frs. 1–6). All point these fractions were further purified by semipreparative HPLC on a Zorbax SB-ODS column at a flow rate of 2.0 mL/min. Fr. 1 was eluted by ur MeOH-H₂O (80:20) and yielded pure compounds **1**, **5**, and **6**; Further purification of Fr. 2 using MeOH-H₂O (65:35) as eluant yielded compounds **2**–**4**; Further purification of Fr. 3 using MeOH-H₂O (70:30) as eluant

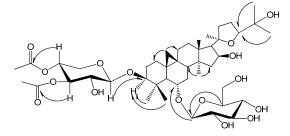
yielded compounds 7 - 10; Fr. 4 was eluted by MeOH-H₂O (75:25 \rightarrow 85:15) gradient elution, yielded compound 11; Further purification of Fr. 5 using MeOH-H₂O (68:32) as eluant yielded compounds 12-18; Fr. 6 was eluted by MeOH-H₂O (30:70) and yielded compounds 19-22.

Most structures of those compounds were identified by comparison of spectrum data with those in literatures. Twenty compounds were identified to be 3-O-3',4'-diacetyl-β-D-xylopyranosyl-6-O-β-D-glucopyranosyl-cycloastragenol (1, 23.0 mg), astragaloside IV (2, 104.2 mg, Liu, Wang, and Liang, 2008), astragaloside II (3, 31.1 mg), and astragaloside I (4, 13.1 mg), isoastragaloside I (5, 22.1 mg), acetylastragaloside I (6, 8.2 mg, Liu, Wang, and Liang, 2008), ginsenosid Re (7, 15.2 mg), ginsenoside Rf (8, 12.1 mg), ginsenoside Rg₁ (9, 78.3 mg), ginsenoside Rb₃ (10, 12.4 mg, Wang, Wang, and Xu, 1991), notoginsenoside R₄ (11, 14.2 mg), ginsenoside Rb₁ (12, 12.0 mg), ginsenoside Rc (13, 156.3 mg), ginsenoside Rb₂ (14, 35.3 mg), ginsenoside Rd (15, 123.5 mg), lucyoside H (16, 156 mg, Du and Gao, 2006), 3-*O*-β-*D*-glucopyranosyl $(1\rightarrow 4)$ -β-*D*-glucopyranosyl $(1\rightarrow 3)$ - α -*L*-rhamnopyranosyl $(1\rightarrow 2)$ - α -*L*-arabinopyranosyl oleanolic acid 28-O- α -L- rhamnopyranosyl $(1\rightarrow 4)$ - β -*D*-glucopyranosyl $(1\rightarrow 6)$ - β -*D*-glucopyranoside (**17**, 17.2 mg, Xia *et al*, 2004), 3-*O*-β-*D*-glucopyranosyl $(1\rightarrow 3)$ - α -*L*-rhamnopyranosyl [β -*D*-glucopyranosyl- $(1\rightarrow 4)$]- $(1\rightarrow 2)$ - α -L-arabinopyranosyl oleanolic acid 28-*O*-α-*L*-arabinopyranosyl $(1\rightarrow 4)$ - β -*D*-glucopyranosyl $(1\rightarrow 6)$ - β -D-glucopyranoside (18, 15.8 mg), syringin (19, 210.3 mg, Zhang, Ye, and Yan, 2000), elentheroside E (20, 304.5 mg, Wang, 1980), 4-(1, 2, 3-trihydroxypropyl)-2,6-dimethoxyphenyl-1-O-β-Dglucopyranoside (21, 25.2 mg, Kong and luo, 1990), and coniferin (22, 22.0 mg, Li et al, 2005).

Results

Compound 1 was obtained as white amorphous powder. $[\alpha]_D^{18}$ +18.1° (*C* 0.05, MeOH). Its molecular formula was assigned as C₄₅H₇₂O₁₆ by HR-ESI-MS at *m/z*: 891.4718 [M + Na]⁺, with the degree of unsaturation of 10. IR spectra of compound 1 suggested the presence of hydroxyl and carbonyl groups at 3410, 1740, 1230, and 1050 cm⁻¹. Compound 1 was inferred to be a triterpenoid saponin by the fact of positive Molish and Liebermann-Burchard reactions.

The ¹H-NMR (500 MHz, CD₃OD) data of compound 1 (Table 1) showed seven singlets belonging to seven tertiary methyl groups at δ 1.00 (3H, s, CH₃-30), 1.01 (3H, s, CH₃-29), 1.12 (3H, s, CH₃-27), 1.19 (3H, s, CH₃-28), 1.24 (3H, s, CH₃-18), 1.25 (3H, s, CH₃-21), and 1.27 (3H, s, CH₃-26) and two doublet signals at δ 0.26 (1H, d, J = 4.0 Hz) and 0.59 (1H, d, J = 4.0 Hz) corresponding to H-19, which suggested that compound 1 belonged to the cycloartane-type triterpenoid Close saponin. inspection of the ¹H-NMR spectrum revealed the presences of two sugar anomeric protons at δ 4.43 (1H, d, J = 7.5 Hz) and 4.32 (1H, d, J = 7.5 Hz) attributed to Xyl-1' and Glc-1", respectively, as well as two methyl groups at δ 2.07 (3H, s) and 1.98 (3H, s) attributed to acetyl groups. In comparison with ¹H-NMR and ¹³C-NMR spectral data of isoastragaloside I (5), the two sugar groups could be located at C-3 and C-6 based upon the down-field shifts of C-3 at δ 90.6 and C-6 at δ 80.6, while the acetyl groups were established at C-3' and C-4' on the basis of the down field shifts of H-3' at δ 5.00 and H-4' at δ 4.80.


The proposed structure of compound **1** was verified by HMBC experiment (Fig. 1). Thus the structure of compound **1** was established as 3-O-3', 4'-diacetyl- β -D-xylopyranosyl- $6-O-\beta$ -D-glucopyranosyl-cycloastragenol (Fig. 1).

Acknowledgment

The authors are grateful to professor ZHANG Wei-dong in Second Military Medical University for the work of LC-MS analysis. At the same time, the authors are also grateful to Guizhou Yibai Pharmaceutical Co., Ltd. for providing the ADI and plant materials.

Table 1 ¹³C-NMR (125 MHz, CD₃OD) of compounds 1 and 5 and ¹H-NMR (500 MHz, CD₃OD) of compound 1

No.	1		5	N	1		5
	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$	No.	$\delta_{ m C}$	$\delta_{ m H}$	$\delta_{ m C}$
1	34.6	1.69 (m); 1.62 (m)	34.5	23	27.5	1.9 (m); 1.36 (m)	27.3
2	33.4	1.61 (m); 1.36 (m)	33.1	24	83.1	3.65 (t)	82.9
3	90.6	3.24 (m)	90.5	25	72.9	_	72.8
4	43.6	_	43.1	26	29.0	1.27, 3H (s)	28.8
5	53.7	1.62 (m)	53.5	27	27.2	1.12, 3H (s)	28.7
6	80.6	3.42 (m)	80.4	28	29.0	1.19, 3H (s)	30.1
7	35.9	2.61, 2H, dd	35.8	29	17.1	1.01, 3H (s)	16.9
8	47.2	1.83 (m)	47.1	30	20.7	1.00, 3H (s)	20.5
9	22.6	_	22.4	C3-			
10	30.8	_	30.6	Xyl-1'	107.4	4.43 (d, J = 7.5 Hz)	105.2
11	30.4	1.91 (m); 1.69 (m)	27.0	2'	73.8	3.42 (m)	75.8
12	35.6	1.84, 2H (m)	35.5	3'	76.3	5.00 (t, J = 8.5 Hz)	73.5
13	46.5	_	46.3	4'	71.6	4.80 (m)	73.3
14	47.6	_	46.5	5'	63.6	3.98 (m); 3.35 (m)	63.7
15	46.7	2.02 (s); 1.4 (m)	47.4	2',3'-OAc	172.6	2.07 (s)	172.3
					21.4		21.7
16	75.1	4.64 (m)	75.0	4'-OAc	172.2	1.98 (s)	172.0
					21.1		21.0
17	59.4	2.35 (d, J = 8.0 Hz)	59.3	C6-			
18	21.9	1.24, 3H (s)	21.5	Glc-1"	105.4	4.32 (d, J = 7.5 Hz)	105.3
19	30.2	0.26 (d, J = 4.0 Hz);	30.2	2″	76.1	3.18 (m)	76.0
		0.59 (d, J = 4.0 Hz)		3″	79.1	3.38 (m)	78.9
20	88.9		88.7	4″	72.3	3.29 (m)	72.1
21	28.1	1.25, 3H (s)	27.9	5″	78.2	3.30 (m)	78.0
22	43.3	,	43.1	6″	63.5	3.84 (m); 3.64 (m)	63.3

Fig. 1 Structure and key HMBC correlation of compound 1

References

- Du QZ, Gao SJ, 2006. Preparative separation of saponins from the Luffa cylindeica (L.) Roem. by slow rotary countercurrent chromatograph. J Liq Chromatogr Relat Technol 29: 2451-2456.
- Duan YL, Fan XH, Hou JQ, 2005. Clinical observation on effect of Aidi Injection in treating radiation injury of lung. *China J Integr Chin West Med* 25: 299-302.
- Kong DY, Luo SQ, 1990. Studies on the chemical constituents of

Acanthopanax giraldii Harms. Chin J Pharm 21(5): 203-204.

- Li B, Chen WS, Zhao Y, Zhang HM, Dong JX, Qiao CZ, 2005. Phenylpropanoids isolated from tetraploid roots of *Isatis* indigotica. Chin Tradit Herb Drugs 36(3): 326-328.
- Liu W, Wang ZC, Liang FF, 2008. Chemical compositions of processed Astragalus membranaceus Bunge. J Med Chem 18(2): 142-146.
- Wang BX, Wang TS, Xu DM, 1991. Research Progress of Ginseng. Tianjin Science and Technology Press: Tianjin.
- Wang MS, 1980. Studies on the constituents of *Daphne giraldii* Nitsche (III). *Chin Tradit Herb Drugs* 11(19): 389-390.
- Xia ZT, Liu DY, Wang XY, Liu KF, Zhang PC, 2004. Studies on the chemical compositions of the rhizome of *Anemone raddeana* Regel. *Chim Sin* 62(19): 1935-1940.
- Xu K, Luo HY, Li LN, 2005. Clinical study on comprehensive treatment of primary liver cancer mainly with Chinese medicinal perfusion embolization. *Chin J Integr Chin West Med* 28: 299-303.
- Zhang QW, Ye WC, Yan XZ, 2000. Cernuosides A and B, two sucrase inhibitors from *Pulsatilla cernua*. J Nat Prod 63: 267-278.