Prevention and Treatment of Osteoporosis with Chinese Herbal Medicines

ZHAO Xiao-ling1,2, FENG Yu-xiong1,2,3, PENG Yong1,2*
1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
2. Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing 100193, China
3. College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China

Abstract: In this paper, laboratory reports, medication rules, formulating principles, and research methods are summarized and analyzed, including single herb, compound herbs, and the problems in the prevention and treatment of osteoporosis (OP) within the past decade. With widely recognized efficacy, satisfying achievements have been achieved in preventing and treating OP with Chinese herbal medicines (CHM). However, due to the complex constituents, the pharmacological activities and mechanism of CHM are not clear yet, and there is no unified standard on the diagnosis and syndrome differentiation of OP and the efficacy evaluation of CHM in the treatment. Accordingly, the research in the future should focus on the pharmacology and standardization of CHM in treating OP.

Key words: Chinese herbal medicines; efficacy evaluation; osteoporosis; pharmacological activities; prevention and treatment
DOI: 10.3969/j.issn.1674-6348.2012.04.001

Introduction

Osteoporosis (OP) is a metabolic bone disease that leads to an increasing risk of fracture. In OP, micro-architecture of bone is damaged, and the proportions of bone minerals and bone matrixes are reduced. Clinically, OP falls into three categories, primary OP, secondary OP, and idiopathic OP (Table 1).

The formation of bone tissue in the body is a continuous process of turnover, including bone remodeling and destructing. The process of bone remodeling is controlled by a balance of bone formation and bone resorption (Roodman, 1996). Excessive bone resorption results in bone abnormalities such as OP, which is characterized by a reduction in bone mass and a higher incidence of bone fractures (Weinreb, Rodan, and Thompson, 1989). Currently, the treatment of OP is mainly focused on using Western medicines, which could be divided into two parts, bone resorption inhibitors and bone formation stimulants. However, these drugs do not address the multifactor caused OP. In particular, they do not mitigate the detrimental effect on bone marrow fat metabolism and circulatory system.

Table 1 Brief description of three categories of OP

<table>
<thead>
<tr>
<th>Categories</th>
<th>Types</th>
<th>Syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td>postmenopausal OP</td>
<td>Type I</td>
<td>often happens in women after menopause</td>
</tr>
<tr>
<td></td>
<td>Type II</td>
<td>occurs as a result of calcium deficiency and occurs in individuals over 70 years old</td>
</tr>
<tr>
<td></td>
<td>Type III</td>
<td>triggered by diseases or drugs, including endocrine OP, nutritional deficiencies OP, drug-induced OP, renal OP, and so on</td>
</tr>
<tr>
<td>senile OP</td>
<td>Type IV</td>
<td>more common in 8—14 year-old teenagers or adults, mostly with a genetic family history, more women than men</td>
</tr>
</tbody>
</table>

* Corresponding author: Peng Y. Address: 151 Malianwa North Road, Haidian District, Beijing 100193, China
Tel/Fax: +86-10-6289 4462 E-mail: ypeng@implad.ac.cn
Received: March 20, 2012; Revised: May 18, 2012; Accepted: July 26, 2012
Online time: November 2, 2012 Online website: http://www.cnki.net/kcms/detail/12.11410.R.20121102.1645.004.html
(Kerachian, Seguin, and Harvey, 2009; Weinstein, 2010). For the drawbacks of Western medicines, we should seek effective ways from other treatments, such as Chinese herbal medicines (CHM).

Traditional Chinese medicine theory on OP

CHM have been used for more than 2000 years as a common treatment. According to traditional Chinese medicines (TCM) theory, kidney stores essence, governs bone, and produces marrow, and deficiency of kidney is most closely related to OP. On account of its clinical symptoms (lumbago, fracture-prone, and humpback), OP could be classified as “Guwei” or “Gubi”. From the perspective of TCM, kidney is the innate origin of human body and the waxing and waning of kidney Qi directly affect the growth, development, and aging of human body. Marrow is stored in the bone and nourishes the bone. Sufficient kidney essence could make the bones strong. For OP patients, the deficiency syndrome is mainly the result of kidney deficiency, while the excess syndrome points to blood stasis and Qi stagnation. On the other hand, OP is related to not only the kidney but also the spleen. These two organs are dependent on each other, and they have a mutually reinforcing relationship in physiology while they have a mutually destructive relationship in pathology. In general, kidney deficiency is the primary cause of OP, and spleen deficiency is its secondary factor.

In recent years, CHM have achieved many effects on the prevention and treatment of OP (Zhang and Li, 2012; Yue et al., 2009). From the perspective of its chemical ingredients and action mechanism as well as categories of OP, the present review would elaborate single herbs and compound herbs applied in the treatment of OP.

Single herbs

Epimedii Folium (Yinyanghuo)
Epimedii Folium is the dried leaves of *Epimedium brevicornum* Maxim., *E. sagittatum* (Sieb. et Zucc.) Maxim., *E. pubescens* Maxim., or *E. koreanum* Nakai (Berberidaceae). The polysaccharides and total flavonoids are the main components of *Epimedii Folium* (Meng et al., 2009). Pharmacokinetic experiments showed that icariin (Fig. 1) could dose-dependently promote osteogenic differentiation of rats’ bone marrow stromal cells (rBMSCs) at each stage of culture by the increasing of alkaline phosphatase (ALP) activity and the colony forming unit-fibroblast (CFU-F) stained positive number for ALP at early stage as well as by the enhancement of osteocalcin secretion and the deposition of calcium level at late stage. The most effective concentration of icariin is 10 μmol/L (Ma, 2007). Icariside II (Fig. 1), which is the main metabolite of icariin after it is given, has more powerful effects on bone formation. It also improves the osteogenic differentiation of rBMSCs, which is the same with icariin in other effects. Additionally, icariside II also enhances the gene expression of basic fibroblast growth factor, insulin-like growth factor-1 (IGF-1), Osterix, and Runx-2.

Salviae Miltiorrhizae Radix et Rhizoma (Danshen)
Salviae Miltiorrhizae Radix et Rhizoma is the dried roots and rhizomes of *Salvia miltiorrhiza* Bge. (Labiatae). Salvianolic acid B (Sal B) and tanshinone IIα (Tan IIα) (Fig. 1) are the bioactive ingredients in Danshen. Clinical experiments demonstrated that Tan IIα could efficiently reduce biological indexes of bone resorption, lower bone turnover, and prolong or block bone loss in postmenopausal women with OP (Wang, Zhang, and Yang, 2006). Recent studies showed the

Fig. 1 Structures of icariin, icariside II, Tan IIα, and Sal B
following facts: (1) In vivo study: Daily treatment with Sal B in glucocorticoid (GC)-induced male rats could prevent cancellous bone loss and adipogenesis increasing, while it could increase cancellous bone formation rate and improve local microcirculation by capillary dilation; (2) In vitro study: Sal B stimulated the differentiation of osteoblast (OB) from rBMSCs, increased OB activities, decreased GC-associated adipogenic differentiation by down-regulation of the peroxisome proliferator-activated receptor c mRNA expression, and increased Runx-2 mRNA expression without OB inducement (Cui et al., 2012).

Rehmanniae Radix Praeparata (Shudihuang)

Rehmanniae Radix Praeparata is the processing products of root tubers of Rehmannia glutinosa Libosch. (Scrophulariaceae). Shudi has been widely used as a herbal medicine in Eastern Asia for more than 2000 years. The major constituents of the herb are β-sitosterol and mannitol. Recently, Kim et al. (1999) demonstrated that Shudi inhibited the secretion of both interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) from mouse astrocytes. Stashenko et al. (1987) reported that TNF-α could synergize with IL-1 in their ability to decrease bone resorption. The significant effects of Shudi extracts on OB were shown as following: (1) to increase both the proliferation of OB and ALP activity; (2) to increase the expression of bone-related genes; and (3) to increase osteoprotegerin secretion markedly. The effects on the osteoclast (OC) were shown as below: (1) to decrease the resorption areas; (2) to alleviate the decreasing in the trabecular bone marrow depression (BMD); and (3) to increase the cortical bone thickness and trabeculation of the bone marrow spaces in vivo (Oh et al., 2003). The introductions of other ten single herbs were shown in Table 2.

Except for all the single herbs mentioned above, more than 80 single herbs with efficacy in treating OP have also been reported. These drugs could reinforce kidney Qi or enrich blood, respectively. Their efficacies in treating OP exhibited in four aspects: (1) effects on bone cell; (2) hormone-like effect; (3) effects on trace element balance; and (4) effects on cytokine.

Table 2 Summary of other ten single herbs

<table>
<thead>
<tr>
<th>Herbs</th>
<th>Active ingredients</th>
<th>Types</th>
<th>Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corni Fructus</td>
<td>water extract</td>
<td>Type I</td>
<td>to increase fatigue resistance, calcium, phosphorus contents, and density, lower parathyroid hormone level, and inhibit bone resorption (Cui and Chen, 2007)</td>
</tr>
<tr>
<td>Cnidii Fructus</td>
<td>osthole</td>
<td>Type I</td>
<td>to increase serum OC level by promoting OB to synthesize and secrete OC (Tang et al, 2006)</td>
</tr>
<tr>
<td>Psoraleae Fructus</td>
<td>acetone extract, ethanol extract, water solution</td>
<td>Type I</td>
<td>to improve bone metabolism index and serum cytokine levels (Cai and Zhang, 2009); estrogen-like effect (Huang et al, 2000)</td>
</tr>
<tr>
<td>Dipsaci Radix</td>
<td>ethanol extract, total glycosides</td>
<td>Type I</td>
<td>to promote the proliferation of OB (Wang, Zhang, and Yang, 2006) and accelerate the ALP secretion (Zhang and Yang, 2008)</td>
</tr>
<tr>
<td>Astragali Radix</td>
<td>water extract</td>
<td>Type II</td>
<td>to inhibit bone resorption of OC and promote bone formation (Xie et al, 1997)</td>
</tr>
<tr>
<td>Ginseng Radix et Rhizoma</td>
<td>water solution</td>
<td>Type I</td>
<td>to increase bone mass and trabeculae; to decrease OB count, bone resorption, and turnover rate (Liu et al, 2003); to have estrogen-like effect (Liao, Newmark, and Zhou, 2002)</td>
</tr>
<tr>
<td>Puerariae Lobatae Radix</td>
<td>isoflavone</td>
<td>Type I</td>
<td>to have estrogen-like effect (He, 2008); to inhibit the reduction of trabecular number and thickness; to restore the separation of the trabecular bone growth (Wang et al, 2003)</td>
</tr>
<tr>
<td>Eucommiae Folium</td>
<td>total flavonoids</td>
<td>Type I</td>
<td>to strengthen the proliferation and metabolism of OB in vitro culture (Rao et al, 2004)</td>
</tr>
<tr>
<td>Achyranthis Bidentatae Radix</td>
<td>total saponins</td>
<td>Type II</td>
<td>to accelerate the bone regeneration rate by lowering conversion factor (such as ALP and OC) (Zhang et al, 2012)</td>
</tr>
<tr>
<td>Drynariae Rhizoma</td>
<td>total flavonoids</td>
<td>Type I</td>
<td>to decrease the apoptosis of OB by improving the ratio of Bel-2 mRNA to Bax mRNA (Huang et al, 2011)</td>
</tr>
</tbody>
</table>
Compound herbs

The three basic principles for treating OP were proposed in the theory of TCM, such as tonifying kidney to strengthen bone, invigorating spleen to nourish Qi, and activating blood to dredge collaterals (Jin et al., 2007). According to common syndromes, OP could be divided into seven types of diseases (Table 3).

So far, by the most authoritative data reports on using CHM for OP, Xianling Gubao (XLGB) is the first CHM formula which has been approved for the clinical use in accordance with FDA (US) standards by the United States and SYNARC Clinical Research Centers. XLGB is composed of *Epimedi Foliun, Dipsaci Radix, Psoraleae Fructus, Rehmanniae Radix Praeparata, Salviae Miltiorrhizae Radix et Rhizoma, and Anemarrhena Rhizoma*. Previous studies (Zhu et al., 2012) have shown that bone mineral density of lumbar spine was significantly improved by 2.11% after treating with XLGB for six months, which was more significant than that in the control group and maintaining hip bone mineral density. In clinical application, other researchers revealed that XLGB could improve the contents of ALP, BGP, and IGF-1. XLGB could also reduce IL-6, TNF-α, and type I collagen levels. So XLGB played a dual role in regulating bone metabolism (Zhang et al., 2004). In addition, XLGB was able to prevent ovariectomized (OVX)-induced deterioration of musculoskeletal tissues at the hip without causing uterine stimulation (Qin et al., 2005). The results showed the following facts: (1) XLGB-treated OVX rats showed no difference compared to the Sham group whereas OVX-induced significant deterioration in variables related to bone density, microarchitecture, and mechanical strength (P < 0.05); (2) Biochemical markers showed no difference between Sham and XLGB groups as compared

<table>
<thead>
<tr>
<th>Disease types</th>
<th>Common formulas and compositions</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>syndrome of Yin deficiency of liver and kidney</td>
<td>Zuogui Wan: Rehmanniae Radix Praeparata, Dioscoreae Rhizoma, Corni Fructus, Lycii Fructus, Cervi Cornus Colla, Testudinis Cara Pacis et Plastri Colla, Castastae Semen, Achyranthis Bidentatae Radix, Anemarrhena Rhizoma, Phellodendri Chinensis Cortex</td>
<td>nourishing Yin to strength bone and replenishing kidney essence (Sun, 2002)</td>
</tr>
<tr>
<td>syndrome of Qi deficiency of spleen</td>
<td>Shenlin Baizhu San: Nelumbinis Semen, Coicts Semen, Anomii Fructus, Platycodonis Radix, Lablab Semen Album, Poria, Ginseng Radix et Rhizoma, Glycyrrhize Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, Dioscoreae Rhizoma, Citri Reticulatae Pericarpium</td>
<td>invigorating spleen and replenishing Qi, warming and recuperating kidney (Yang, Wei, Wang, and Wei, 2001)</td>
</tr>
<tr>
<td>syndrome of kidney essence deficiency</td>
<td>Heche Dazao Wan: Hominis Placenta, Rehmanniae Radix Praeparata, Eucommiae Foliun, Asparagi Radix, Ophiopogonis Radix, Testudinis Cara Pacis et Plastri Colla, Phellodendri Chinensis Cortex, Achyranthis Bidentatae Radix</td>
<td>invigorating kidney, replenishing kidney essence and tonifying blood</td>
</tr>
<tr>
<td>syndrome of both Qi and blood deficiency</td>
<td>Shiquan Dabu Decoct: Rehmanniae Radix Praeparata, Paeoniae Radix Alba, Angelicae Sinensis Radix, Chuanxiong Rhioma, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, Poria, Glycyrrhizae Radix et Rhizoma, Praeparata Cum Melle, Astragali Radix, Cinnamomi Cortex</td>
<td>invigorating Qi and strengthening the spleen to nourish the blood</td>
</tr>
<tr>
<td>syndrome of Qi stagnation and blood stasis</td>
<td>Shentong Zhuyu Decoct: Gentianae Macrophyllae Radix, Chuanxiong Rhioma, Persicae Semen, Carthami Flos, Glycyrrhizae Radix et Rhioma, Notopterygii Rhioma et Radix, Myrrha, Cypri Rhioma, Togopteri Faeces, Achyranthis Bidentatae Radix, Pheretima, Angelicae Sinensis Radix</td>
<td>activating Qi and promoting blood circulation for removing blood stasis (Liu, 2003)</td>
</tr>
<tr>
<td>exogenous wind syndrome</td>
<td>Fangfeng Decoct: Saposhnikoviae Radix, Ephedrae Herba, Angelicae Sinensis Radix, Gentianae Macrophyllae Radix, Cinnamomi Cortex, Pueraiae Lobatae Radix, Poria, Zingiberis Rhioma Recens, Juubiae Fructus, Glycyrrhizae Radix et Rhizoma</td>
<td>dispelling pathogenic wind, dredging channel blockade and relieving pain</td>
</tr>
</tbody>
</table>
with the higher bone turnover in OVX rats ($P < 0.05$); (3) mRNA expressions of MHC-I Ila and IIb were down-regulated in OVX rats but up-regulated by XLGB treatment ($P < 0.05$); (4) As compared with the OVX group, no uterine hypertrophy was found in XLGB-treated rats.

Over the past years, a number of studies have emerged besides XLGB to better reveal the therapeutic effects of CHM on the treatment of OP.

A triple herbal product Buguling, composed of *Epimedi Foli um*, *Psoraleae Fructus*, and *Ligustri Lucidi Frutus*, increased the spine BMD by 0.69%, the hip BMD by 0.21%, and the tibia strength strain index by 1.94% in the subjects which were more than 10 years after menopause (Leung, Cheng, and Chan, 2011).

Conclusion

The single herbs or compound herbs described are only the representatives of diversified CHM. According to the information collected in this paper, it could be concluded that herbs with kidney-tonifying, spleen-tonifying, or stasis-removing effects all have potential to be used in treating OP. The treatment with CHM is comprehensive and integrated. When treating OP, most of the herbal medicines used are sweet in flavor and warm in nature with an effect of nourishing the liver and kidney. Compound herbs with different specialties and various compatibilities are applied under the guidance of the principles of tonifying kidney and liver, strengthening spleen and Qi, and activating blood to remove stasis, which could improve the clinical symptoms of OP and the life quality of patients. In brief, the effects of CHM on OP are manifest.

At present, several problems are still unsolved on CHM in the treatment and prevention of OP. Extensive and in-depth studies are required to focus on the action mechanism owning to the complicated constituents in compound herbs. The treatment of secondary OP and male OP requires further attention. Further explorations on the rational compatibilities of CHM are expected. Standards on syndrome differentiation, diagnosis, and treatment of OP and the efficacy of CHM need to be unified. Large sample studies on randomized, placebo-controlled, and double-blind trials are urged to be supplemented. Long-term observations on the treatment of OP with CHM are to be conducted and reported. More biological researches on OP are required. All the problems above are worth being further discussed.

References

Liu QX, Cui L, Wu T, Qin DY, 2003. Skeletal effects of ginseng on

