

Review

Chemical Constituents in Plants of Genus *Kadsura* Kaempf. ex Juss.

Hai-tao Liu^{1, 2}, Jiu-shi Liu¹, Jin Zhang¹, Yao-jie Guo¹, Yao-dong Qi¹, Xiao-guang Jia², Ben-gang Zhang^{1*}, Pei-gen Xiao^{1*}

1. Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China

2. Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi 830002, China

ARTICLE INFO	ABSTRACT
Article history	Genus Kadsura Kaempf. ex Juss. includes important medicinal plants widely used in the
Received: February 24, 2014	south and southwest of China. The stems and roots are effective in activating blood and
Revised: May 23, 2014	dampness, in which light and triterpenoids are the major bioactive constituents. Here
Accepted: May 28, 2014	we summarized the chemical constituents isolated from genus Kadsura Kaempf. ex
Available online:	Juss., which would provide a primary and strategic platform for further exploiting the
July 15, 2014	medicinal value and resources of genus <i>Kadsura</i> Kaempf. ex Juss.
	Key words
DOI:	lignan; <i>Kadsura</i> Kaempf. ex Juss; Schisandraceae; triterpenoid
10.1016/S1674-6384(14)60028-9	© 2014 published by TIPR Press. All rights reserved.

1. Introduction

Genus *Kadsura* Kaempf. ex Juss. (family Schisandraceae) comprises 16 species, mainly distributed in Asia, and eight of them existed in the south and southeast of China (Wu et al, 2008; Saunders, 1998). The plants of the genus have been used as folk medicines for a long time to activate blood and resolve stasis, promote *qi* circulation to relieve pain, dispell wind and eliminate dampness (Liu et al, 2012). Some species such as *K. interior, K. coccinea, K. longipedunculata*, and *K. heteroclita*, have been recorded in *Chinese Pharmacopoeia 2010* (Pharmacopoeia Committee of P. R. China, 2010) and *Provincial Chinese Materia Medica Standards* (Fujian Food and Drug Administration, 2006; Guangdong Food and Drug

Administration, 2004). (Figure 1)

In recent years, genus *Kadsura* Kaempf. ex Juss. has been extensively studied in chemical constituents including lignans, triterpenoids, flavonoids, sesquiterpenoids, and so on. Among them, lignans and triterpenoids were the main characteristic constituents with various biological activities. Since the pharmacological studies have been reviewed in our previous paper (Liu et al, 2014), we summarized the chemical constituents including bioactive compounds isolated from the plants of genus *Kadsura* Kaempf. ex Juss. over the past 20 years, and provided a primary and strategic platform for the further development and utilization of the medicinal value and resources in the plants of genus *Kadsura* Kaempf. ex Juss.

* Corresponding authors: Zhang BG Tel: +86-10-5783 3191 Fax: +86-10-5783 3196 E-mail: bgzhang@implad.ac.cn Xiao PG Tel: +86-10-6301 1294 Fax: +86-10-5783 3196 E-mail: xiaopg@public.bta.net.cn

Fund: National Natural Sciences Foundation of China (81001609, 81373913); Fundamental Research Funds for the Central Scientific Research Institutes for Public Welfare

Whole plant of K. heteroclite

Blades of K. coccinea

Fruits of K. oblongifolia

2. Chemical constituents

More than 450 compounds had been isolated and identified from the plants of genus *Kadsura* Kaempf. ex Juss., which could enrich the abundant constituents in the natural products in Schisandraceae plants. They were lignans, triterpenoids, flavonoids, sesquiterpenoids, etc. Among them, lignans and triterpenoids were the main chemical constituents, which were the research hotspots for their bioactivities in anti-HIV, antitumor, antihepatitis treatment and so on. Their names, structures, and corresponding plant sources were collected as follows.

2.1 Lignans

Lignans were the major constituents in the plants of genus *Kadsura* Kaempf. ex Juss. Two hundred and eighty-five lignans had been identified and divided into five categories, dibenzocyclooctadienes (A), spirobenzofuranoid dibenzocyclooctadienes (B), aryltetralins (C), diarylbutanes (D), and tetrahydrofurans (E).

2.1.1 Dibenzocyclooctadienes (A)

Abundant dibenzocyclooctadienes were isolated from the plants of genus *Kadsura* Kaempf. ex Juss., occupying above half of total lignans (Table 1). According to their different configurations and conformations, dibenzocyclooctadienes could be further classified into three categories: S-twist boat chair (S-TBC), R-TBC, and S-TB, more than half of which were S-TBC. In addition, a special type of dibenzocyclooctadienes isolated from the plants of genus *Kadsura* Kaempf. ex Juss. had an oxygen-bridged eight-membered ring. (Figure 2)

2.1.2 Spirobenzofuranoid dibenzocyclooctadienes (B)

Fifty-three spirobenzofuranoid dibenzocyclooctadienes were isolated from the plants of genus *Kadsura* Kaempf. ex Juss. Most of them were only found in this genus, considered as the characteristic chemical constituents in genus *Kadsura* Kaempf. ex Juss., and demonstrated important taxonomic significance (Xu et al, 2008b). (Table 2, Figure 3)

2.1.3 Aryltetralins (C)

This category contained eight compounds with the same

nuclear structure. Kadsuralignans H (255) and C (257) were isolated from *K. coccinea*. Kadsurindutin C (256) was isolated from *K. induta*. Other five compounds, namely otobaphenol (258) and arisantetralone A–D (259–262) were isolated from *K. longipedunculata*. (Table 3, Figure 4)

2.1.4 Diarylbutanes (D)

There were seventeen diarylbutane-type lignans isolated from Kadsura plants. Extensive phytochemical studies on the roots and stems of K. longipedunculata collected from different places resulted in the isolation of (+)-anwulignan (263), dihydroguaiaretic acid (264), monomethyl dihydroguaiaretic acid (265), saururenin (266), mesodihydroguaiaretic acid (267), isoanwulignan (269), 4-[4-(3,4-dime-thoxyphenyl)-2,3-dimethyl-butyl]-2-methoxy-phenol (270), and 3-methoxy-3',4'-(methylenedioxy)-9,9'-epoxylignan-4,7'-diol (271). Other diarylbutane-type lignans were also obtained from other species, including lengfantuanjing I (268), kadcoccilignan (272) (from K. coccinea), kadangustins J and K (273 and 274), H (276), I (277), heteroclitin R (275) (from K. heteroclita), meso-dihyroguaiaretic acid (278) (from K. angustifolia), and kadsuphilin J (279) (from K. philippinensis). (Table 4, Figure 5)

2.1.5 Tetrahydrofurans (E)

Only six terahydrofuran-type lignans had been obtained from *Kadsura* plants, namely grandisin (**281**), kadlongirins A and B (**282** and **283**), fragransin B (**284**), and zuihonin A (**285**) isolated from *K. longipedunculata*, and veraguensin (**280**) isolated from an unidentified species of genus *Kadsura* Kaempf. ex Juss. (Liu and Huang, 1988; Pu et al, 2008a; Zaugg et al, 2011). (Figure 6)

2.2 Triterpenoids

Triterpenoid was another kind of major chemical constituent in the plants of genus *Kadsura* Kaempf. ex Juss. Up to now, 160 triterpenoids had been isolated and identified. According to their different structural skeleton, they could be classified into four categories: lanostane-type, cycloartane-type, nortriterpenoids, and others triterpenoids, which could be further divided into several sub-types because of the different oxygenated patterns and structure characteristics.

No	Compounds	Structures	Plant sources	References
1	gomisin J	$B_1 = B_4 = B_7 = B_{10} = B_{11} = B_{10} = H$	K interior	Chen et al 1997
	gomismo	$\mathbf{R}_{1} = \mathbf{R}_{0} = \mathbf{R}_{1} = \mathbf{R}_{0} = \mathbf{R}_{0} = \mathbf{R}_{0} = \mathbf{C} \mathbf{H}_{0}$	K heteroclita	Chen et al. 2006
2	gomisin C (schisantherin A)	$R_2 = R_4 = R_4 = R_4 = R_0 = R_0 = CH_2$	K interior	Chen et al. 2002a
-	gomishi e (sembanaren 1)	$R_1+R_2=CH_2$, $R_{12}=OBz$, $R_7=R_{11}=H$, $R_{10}=OH$		chini ti ul, 2002u
3	schisandrin C (wuweizisu C)	$R_1 + R_2 = R_3 + R_6 = CH_2$ $R_2 = R_4 = R_9 = R_{10} = CH_2$	K longipedunculata	Chen et al 1997
5		$R_7 = R_0 = R_{11} = R_{12} = H$	K. interior	Chen et al. 2002a
			K coccinea	Liu and Li 1995b
4	longipedunin A	$R_1+R_2=CH_2$, $R_2=R_5=R_6=R_8=R_{10}=CH_2$	K. longipedunculata	Sun et al. 2006b
		$R_4 = R_7 = R_0 = R_{12} = H_1 R_{11} = OCin$		<i>2</i> , <i>2</i>
5	schizarin B	$R_1 = R_2 = R_3 = R_7 = R_9 = CH_3, R_5 + R_6 = CH_2, R_{12} = \beta OCin$	K. matsudai	Kuo et al, 2001b
		$R_4 = R_8 = R_{10} = R_{11} = H$		
6	schizarin E	$R_1 = R_2 = R_3 = R_7 = R_9 = CH_3, R_5 + R_6 = CH_2, R_{12} = \beta OBZ$ $R_4 = R_8 = R_{10} = R_{11} = H$	K. matsudai	Kuo et al, 2001b
7	tigloylgomisin P	$R_1+R_2=CH_2, R_3=R_4=R_5=R_6=R_8=R_{10}=CH_3$	K. heteroclita	Han et al, 1992
	0,00	$R_7=R_{11}=H, R_{12}=OTig, R_9=OH$,
8	angeloylgomisin P	$R_1+R_2=CH_2$, $R_3=R_4=R_5=R_6=R_8=R_{10}=CH_3$	K. heteroclita	Han et al, 1992
		R7=R11=H, R12=OAng, R9=OH		
9	longipedunin B	$R_1+R_2=CH_2, R_{11}=Oprop, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. longipedunculata	Sun et al, 2006b
		$R_4 = R_7 = R_9 = R_{12} = H$		
10	kadsuphilin A	$R_1+R_2 = CH_2, R_{11} = t-OCin$	K. philippinensis	Shen et al, 2006
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_7 = R_9 = R_{12} = H_1$	K. polysperma	Dong et al, 2012b
11	angeloylbinankadsurin A	$R_1+R_2=CH_2, R_4=R_7=R_9=R_{12}=H$	K. philippinensis	Shen et al, 2006
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OAng$	K. oblongifolia	Huang et al, 2011
			K. japonica	Ookawa et al, 1981
			K. coccinea	Hu et al, 2012
			K. heteroclita	Lu and Chen, 2008
12	butyrylbinankadsurin A	$R_1+R_2=CH_2, R_4=R_7=R_9=R_{12}=H$	K. sp.s	Liu and Zhou, 1991
		$R_3=R_5=R_6=R_8=R_{10}=CH_3$, $R_{11}=Obutanoyl$		
13	acetylbinankadsurin A	$R_1+R_2=CH_2, R_4=R_7=R_9=R_{12}=H$	K. sp.s	Liu and Zhou, 1991
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OAc$	K. coccinea	Li et al, 1988
			K. japonica	Ookawa et al, 1981
14	deacetyldeangeloyl-kadsurarin	$R_1+R_2=CH_2, R_{10}=R_{11}=R_{12}=OH$	K. longipedunculata	Liu et al, 1991
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = CH_3, R_7 = H$		
15	schizanrin J	$R_1+R_2=CH_2, R_{10}=OH, R_{11}=R_{12}=OAng, R_4=R_7=H$ $R_2=R_5=R_6=R_6=R_0=CH_2$	K. philippinensis	Shen et al, 2006
16	ananosin A	$R_1+R_2=CH_2$, $R_{12}=Tig$, $R_{11}=OH$, $R_7=R_0=H$	K. ananosma	Chen et al. 2001
10		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	It. ununosmu	
17	angustifolin C	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Chen et al, 2001
	c	$R_{11}=OH, R_{12}=OBz, R_7=R_9=H$	0 /	
18	angeloylbinankadsurin B	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. japonica	Ookawa et al, 1995
		R ₄ =OH,R ₁₁ =OAng,R ₇ =R ₉ =R ₁₂ =H		
19	acetylbinankadsurin B	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. japonica	Ookawa et al, 1995
		R_{11} =OAc, R_4 = R_7 = R_9 = R_{12} =H		
20	deangeloylschisantherin F	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. japonica	Ookawa et al, 1995
		R_{11} =OH, R_4 = R_7 = R_9 = R_{12} =H	K. angustifolia	Gao et al, 2008b
21	isovaleroylbinankadsurin A	$R_1+R_2=CH_2, R_4=R_7=R_9=R_{12}=H$	K. coccinea	Ban et al, 2009
		R ₃ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃ , R ₁₁ =OTig		
22	isobutyroylbinankadsurin A	$R_1+R_2=CH_2, R_4=R_7=R_9=R_{12}=H$	K. longipedunculata	Li et al, 1991
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = O-2$ -methylpropanoyl		
23	kadsuralignan J	R ₁ +R ₂ =CH ₂ , R ₁₁ =OH, R ₇ =R ₉ =R ₁₂ =H	K. coccinea	Ban et al, 2009
		R ₃ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃ , R ₄ =Tig		
24	binankadsurin A	$R_1+R_2=CH_2, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. coccinea	Ban et al, 2009
		R ₁₁ =OH, R ₄ =R ₇ =R ₉ =R ₁₂ =H	K. heteroclita	Lu and Chen, 2008
			K. longipedunculata	Lu and Chen, 2008
			K. angustifolia	Gao et al, 2008b

 Table 1
 Dibenzocyclooctadienes (A) isolated from genus Kadsura Kaempf. ex Juss.

⁽Continued Table 1)

No.	Compounds	Structures	Plant sources	References
25	schizandrin N	$R_1=R_2=R_3=R_4=R_4=R_4=R_0=CH_2$ $R_1=OB_Z$	K coccinea	Shinomiya et al. 2009
20	Semizariarini i v	$R_1 = R_2 = R_3 = R_4 = R_3 = R_6 = R_8 = R_9 = C = R_1 = C = R_2 = C = R_1 = C = C = C = C = C = C = C = C = C = $	n. coccinca	Shinohinya et al, 2009
26	kadsuralionan L	$R_{10} = R_{2} = R_{2} = H_{12} = H_{13} = OH_{13} = Oig$	K coccinea	Hu et al. 2012
20	Kuusurunghun E	$R_1 = R_2 = R_2 = R_2 = R_1 = CH_2$	n. coccinca	114 01 41, 2012
27	nolysperlignan A	$R_1 + R_2 = CH_2 R_2 = R_2 = H R_1 = OAng R_2 = OAng$	K nowsperma	Dong et al. 2012h
21	porysperinghan	$R_1 = R_2 = R_2 = R_2 = R_1 = CH_2$	R. polysperma	Doing of ui, 20120
28	nolysperlignan B	$R_3 + R_4 + R_5 + R_6 + R_8 + R_{10} + R_{10} = 0$ $R_1 + R_2 = 0$ $R_2 = R_2 = H + R_2 = 0$ $R_1 = 0$ $R_2 = 0$ $R_2 = 0$ $R_3 = 0$ $R_2 = 0$ $R_3 = 0$ $R_2 = 0$ $R_3 = 0$ $R_3 = 0$ $R_3 = 0$ $R_2 = 0$ $R_3 = 0$	K nobsperma	Dong et al. 2012h
20	porysporngium	$R_1 + R_2 = R_2 = R_2 = R_3 = R_4 = CH_3$	n. potysperma	Doing of ui, 20120
29	polysperlignan C	$R_1+R_2=CH_2$ $R_2=R_2=H$ $R_{11}=OTig$ $R_{12}=OBz$	K polysperma	Dong et al 2012b
	F) . F 8	$R_2 = R_4 = R_5 = R_5 = R_6 = R_1 = CH_2$	<i>F</i> = -, - <i>F</i> =	
30	polysperlignan D	$R_1+R_2=CH_2$, $R_2=R_0=H$, $R_{11}=OTig$, $R_{12}=OAng$	K. polvsperma	Dong et al. 2012b
	r y r o	$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
31	polysperlignan E	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=OAng$, $R_{12}=t-OCin$	K. polysperma	Dong et al, 2012b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	1 7 1	e ,
32	polysperlignan F	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=c-OCin$, $R_{12}=H$	K. polysperma	Dong et al, 2012b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		-
33	polysperlignan G	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₄ =Ang, R ₁₂ =OAng	K. polysperma	Dong et al, 2012b
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OH$		-
34	polysperlignan H	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₁₁ =OH, R ₁₂ =OTig	K. polysperma	Dong et al, 2012b
		R_4 =Ang, R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3		
35	polysperlignan I	R ₇ =R ₉ =H, R ₄ =Ang, R ₁₁ =OH, R ₁₂ =OAng	K. polysperma	Dong et al, 2012b
		$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
36	polysperlignan J	$R_7 = R_9 = H, R_4 = Ang, R_{11} = OH, R_{12} = OTig$	K. polysperma	Dong et al, 2012b
		$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
37	methylschisantherin F	$R_7 = R_9 = R_{12} = H, R_{11} = OH, R_4 = Ang$	K. polysperma	Dong et al, 2012b
		$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
38	interiotherin C	$R_1+R_2=CH_2, R_7=R_9=H, R_{11}=OAc$	K. polysperma	Dong et al, 2012b
		R ₁₂ =OAng	K. heteroclita	Chen et al, 2006
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. interior	Chen et al, 2002a
39	kadsurin	$R_1+R_2=CH_2, R_7=R_9=R_{12}=H, R_{11}=OAc$	K. polysperma	Dong et al, 2012b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. heteroclita	Yang et al, 1992
			K. japonica	Chen et al, 1973
			K. oblongifolia	Chen et al, 2002a
			K. interior	Chen et al, 1996
40	1 1 4 11 1 1 11 4	D D CH D (OC)	K. ananosma	Yang et al, 2011b
40	1-demethylkadsuphilin A	$R_1+R_2 = CH_2, R_{11} = t - OCIn$	K. philippinensis	Shen et al, 2006
41	iaagamisin ()	$K_3 = K_5 = K_6 = K_8 = K_{10} = CH_3, K_4 = K_7 = K_9 = K_{12} = H$	V. nohumouna	Dong at al. 2012h
41	isogomism O	$K_1 + K_2 - C \Pi_2, K_7 - K_9 - K_{12} - \Pi, K_{11} - O \Pi$ $P - P - P - P - P - P - C \Pi$	K. polysperma	Vong et al. 2012b
		$K_3 - K_4 - K_5 - K_6 - K_8 - K_{10} - C_{113}$	K. ananosma K. sn s	lia et al. 2005
12	kadsuralionan G	$\mathbf{R}_{1} + \mathbf{R}_{2} = \mathbf{C}\mathbf{H}_{2}$ $\mathbf{R}_{2} = \mathbf{R}_{2} = \mathbf{R}_{2} = \mathbf{R}_{3} = \mathbf{R}_{4}$	K. sp.s K. coccinea	Hu et al. 2003
72	kausurangnan G	$R_1 = R_2 = R_2 = R_2 = R_2 = H$	K. coccined	11u et al, 2012
43	tiegusanin I	$R_{11} = OProp$ $R_{12} = R_{12} = R_{12} = Prop$	K nowsperma	Dong et al. 2012h
15	uogusunni i	$R_1 = R_2 = R_2 = R_2 = R_2 = R_3 = CH_2 R_{12} = CAn\sigma$	K. ananosma	Yang et al. 2011a
44	vunnankadsurin B	$R_1+R_2=CH_2$ $R_{11}=OH$ $R_2=R_{10}=R_{12}=H$	K polysperma	Dong et al 2012b
	y unitalitadourin D	$R_3 = R_4 = R_5 = R_5 = R_8 = R_9 = CH_3$	K. sp.s	Jia et al. 2005
45	kadsuphilol I	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. philippinensis	Shen et al. 2009
-	r	$R_4=R_7=R_9=H, R_{11}=OH, R_{12}=OAc$	r ····rr	
46	kadsuphilin K	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. philippinensis	Shen et al, 2008
		$R_4=R_7=R_9=H, R_{12}=OH, R_{11}=OAc$,
47	kadsuphilol J	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_9 = CH_3$	K. philippinensis	Shen et al, 2009
	-	R ₄ =R ₇ =H, R ₁₀ =OH, R ₁₁ =OAc, R ₁₂ =OAng		
48	kadsuphilol K	$R_1+R_2=CH_2, R_3=R_5=R_6=R_8=R_9=CH_3$	K. philippinensis	Shen et al, 2009
		$R_{10} = R_{11} = OH, R_4 = R_7 = H, R_{12} = OBz$		

1	Continued	Tabla	1
	Commucu	Table	1

(Con	unued Table I)			
No.	Compounds	Structures	Plant sources	References
49	kadsuphilol L	R ₁ +R ₂ =CH ₂ , R ₃ =R ₇ =H, R ₁₂ =OAc, R ₁₀ =OH	K. philippinensis	Shen et al, 2009
		R_{11} =OCin, R_4 = R_5 = R_6 = R_8 = R_9 = CH ₃		
50	kadsuphilol B	R ₁ +R ₂ =CH ₂ , R ₄ =R ₇ =R ₉ =H	K. philippinensis	Shen et al, 2007a
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OBz, R_{12} = OAc$		
53	acetylepigomisin R	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. coccinea	Ban et al, 2009
		$R_7 = R_9 = R_{11} = H, R_{12} = OAc$		
56	ananolignan E	$R_1+R_2=CH_2, R_{11}=OH, R_{12}=\beta OAc$	K. ananosma	Yang et al, 2011b
	C	$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$, $R_7 = R_0 = H$		0,
57	ananolignan F	$R_1+R_2=CH_2$ $R_{11}=OAc$ $R_2=R_0=H$ $R_{12}=BOAc$	K. ananosma	Yang et al. 2011b
21		$R_{2}=R_{4}=R_{4}=R_{4}=R_{4}=R_{4}=CH_{2}$	-1	
58	ananolionan G	$R_1 + R_2 = CH_2 R_7 = R_2 = H R_1 = OPron R_2 = ROA 2$	K ananosma	Yang et al. 2011b
50	ananongnan O	$R_1 = R_2 = R_2 = R_2 = R_1 = CH$	is. ununosinu	1 ang 01 an, 20110
50	ananolignan H	$\mathbf{P} + \mathbf{P} - \mathbf{C} + \mathbf{P} - \mathbf{P} - \mathbf{H} - \mathbf{P} - \mathbf{H} - \mathbf{D} - \mathbf{O} + \mathbf{D} - \mathbf{O} + $	K ananosma	Vang et al. 2011b
59		$K_1 = K_2 = \bigcup_{1,2,K_7} = K_9 = \Pi, K_{11} = \bigcup_{1,2,K_7} $	к. unun0smu	rang et al, 20110
(0)		$K_3 = K_4 = K_5 = K_6 = K_8 = K_{10} = CH_3$	V	V
60	ananolignan I	$\kappa_1 + \kappa_2 = CH_2, \kappa_7 = R_9 = H, \kappa_{11} = OBut, \kappa_{12} = \beta OAc$	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
61	ananolignan J	$R_1+R_2=CH_2, R_7=R_9=H, R_{11}=OIsoval, R_{12}=\beta OAc$	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
62	ananolignan K	$R_1+R_2=CH_2, R_7=R_9=H, R_{11}=OBz, R_{12}=\beta OAc$	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
63	ananolignan L	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₁₁ =OAc, R ₁₂ =βOTig	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
64	ananolignan M	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₁₁ =OIsobut, R ₁₂ =βOAng	K. ananosma	Yang et al, 2011b
	-	$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		- ·
65	ananolignan N	$R_1+R_2=CH_2, R_7=R_9=H. R_{11}=OBut. R_{12}=BOAng$	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_{10} = CH_2$		
66	kadsunhilin C	$R_1+R_2=CH_2$ $R_2=R_2=H$ $R_2=OH$	K nhilinninensis	Shen et al. 2007b
00	Rucoupinini C	$\mathbf{R}_{1} = \mathbf{R}_{2} $	1. pranpparensis	511011 of ut, 20070
67	kadaunhilin E	$\kappa_3 = \kappa_5 = \kappa_6 = \kappa_8 = \kappa_9 = C \Pi_3, \kappa_{11} = OAC, \kappa_{12} = OBZ$ $D = D = D = D = D = D = C \Pi$	K nhilinnin anci-	Shan at al. 2007
0/	Kausupiiiiii E	$\mathbf{N}_1 = \mathbf{N}_2 = \mathbf{N}_3 = \mathbf{N}_5 = \mathbf{N}_6 = \mathbf{N}_8 = \mathbf{N}_9 = \mathbf{O} \mathbf{D}_3$	к. pnuppinensis	Sheh et al, 20070
(6		$\kappa_4 = \kappa_7 = H, \kappa_{10} = OH, \kappa_{11} = OAc, \kappa_{12} = OBz$	YZ 1.1	
68	schizanrin G	$\kappa_1 + \kappa_2 = CH_2, \kappa_4 = \kappa_7 = H, \kappa_{10} = OH$	K. philippinensis	Shen et al, 2007b
		$K_3 = K_5 = R_6 = R_8 = R_9 = CH_3, R_{11} = OAc, R_{12} = OAng$	K. matsudai	Wu et al, 2003
69	schizanrin F	$R_1+R_2=CH_2, R_{12}=OBz, R_7=H, R_{10}=OH, R_{11}=OAc$	K. philippinensis	Shen et al, 2007b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = CH_3$	K. matsudai	Wu et al, 2003
			K. coccinea	Li et al, 2006
			K. oblongifolia	Liu et al, 2009b
70	schizanrin H	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = CH_3, R_{12} = OBz$	K. matsudai	Wu et al, 2003
		R7=H, R10=OH, R11=OAc	K. coccinea	Li et al, 2006
71	kadsuphilin D	R ₁ +R ₂ =CH ₂ , R ₄ =R ₉ =H, R ₇ =R ₁₂ =OH, R ₁₁ =OAc	K. philippinensis	Shen et al, 2007b
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
72	kadsuphilin F	R ₁ +R ₂ =CH ₂ , R ₄ =R ₉ =H, R ₇ =R ₁₂ =OH, R ₁₁ =OBz	K. philippinensis	Shen et al, 2007b
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$,
73	heteroclitalignan A	$R_1+R_2=CH_2$ $R_2=R_7=H$ $R_1A=OH$	K heteroclita	Wang et al. 2006h
, 5		$R_{1}=R_{2}=R_{1}=R_{2}=R_{2}=CH_{2}$, $R_{1}=R_{2}=CH_{2}$, $R_{2}=R_{2}=CH_{2}$, $R_{3}=CH_{2}$, $R_{4}=CH_{2}$, $R_{4}=CH$	11. notor oontu	
74	heteroclitalianan D	$R_4 R_5 R_6 R_8 R_9 CH_3, R_1 OD2, R_2 ORC$ $R_4 R_5 = CH_6 R_5 = H R_{10} - OH R_{10} - OR R_2 R_2 - OA R_2$	K hataroclita	Wang et al. 2006b
/4	neteroemangnan D	$K_1 + K_2 - CH_2, K_7 - H, K_{10} - OH, K_{11} - ODZ, K_{12} = OAC$ D - D - D - D - D - D - OH	K. neterocilla	wang et al, 20000
75	hotovolits!: D	$\mathbf{N}_{3} = \mathbf{N}_{4} = \mathbf{N}_{5} = \mathbf{N}_{6} = \mathbf{N}_{8} = \mathbf{N}_{1} = \mathbf{N}_{1} = \mathbf{N}_{1} = \mathbf{N}_{1} = \mathbf{N}_{1} = \mathbf{N}_{1} = \mathbf{N}_{2}$	V hotour lit.	Wang et -1 200/1
15	neterocitalignan B	$K_1 + K_2 = CH_2, K_7 = H, K_{10} = OH, K_{11} = Oprop$	л. neterociita	wang et al, 2006b
-		κ_{12} =OAng, $\kappa_3 = \kappa_4 = \kappa_5 = \kappa_6 = \kappa_8 = \kappa_9 = CH_3$	V 1 1:	
76	kadsurarin	$R_1+R_2=CH_2, R_7=H, R_{10}=OH, R_{11}=OAc$	K. heteroclita	Wang et al, 2006b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = CH_3, R_{12} = OAng$	K. matsudai	Li et al, 2000
			K. longipedunculata	Liu et al, 1991
			K. oblongifolia	Liu et al, 2009b
77	heteroclitin A	$R_1+R_2=CH_2, R_7=R_9=R_{12}=H$	K. heteroclita	Chen et al, 1992
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
		$R_{11} = COCH(CH_3)CH_2CH_3$		

(Continued Table 1)

102

103

104

isokadsuranin

kadangustin A

kadangustin C

No.	Compounds	Structures	Plant sources	References
78	heteroclitin B	$R_1 + R_2 = CH_2, R_7 = R_9 = R_{12} = H$	K. heteroclita	Chen et al, 1992
		R ₃ =R ₄ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃ , R ₁₁ =OAng	K. oblongifolia	Huang et al, 2011
79	heteroclitin C	$R_1 + R_2 = CH_2, R_7 = R_9 = R_{12} = H$	K. heteroclita	Chen et al, 1992
		R ₃ =R ₄ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃ , R ₁₁ =OTig		
80	kadsuralignan I	R ₁ +R ₂ =CH ₂ , R ₄ =Ang, R ₇ =R ₉ =R ₁₂ =H, R ₁₁ =OH	K. coccinea	Li et al, 2007
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
81	kadsuralignan K	$R_1+R_2=CH_2, R_7=R_9=R_{12}=H$	K. coccinea	Li et al, 2007
		R ₄ =Bz, R ₁₁ =OH, R ₃ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃		
82	kadangustin L	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₁₁ =R ₁₂ =OH	K. angustifolia	Gao et al, 2012
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
83	ananonin K	$R_1 = R_7 = R_9 = H, R_{11} = R_{12} = OAc$	K. ananosma	Yang et al, 2011a
		$R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
84	ananonin L	R ₁ =R ₇ =R ₉ =H, R ₁₁ =OAc, R ₁₂ =OAng	K. ananosma	Yang et al, 2011a
		$R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
85	ananonin M	R ₁ =R ₇ =R ₉ =H, R ₁₁ =OH, R ₁₂ =OBz	K. ananosma	Yang et al, 2011a
		$R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
86	ananonin N	$R_1 = R_7 = R_9 = H, R_{11} = OAc, R_{12} = OBz$	K. ananosma	Yang et al, 2011a
		$R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
87	ananonin A	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =H, R ₁₁ =OH, R ₁₂ =OBz	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
88	ananonin B	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=OAc$, $R_{12}=OBz$	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
89	ananonin C	R ₁ +R ₂ =CH ₂ , R ₇ = R ₉ =H, R ₁₁ =OProp, R ₁₂ =OBz	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
90	ananonin D	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=OBut$, $R_{12}=OBz$	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
91	ananonin E	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=OIsobut$, $R_{12}=OBz$	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
92	ananonin F	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=OIsoval$, $R_{12}=OBz$	K. ananosma	Yang et al, 2011a
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$		
93	ananonin G	$R_1+R_2=CH_2$, $R_7=R_9=H$, $R_{11}=O$ isoval, $R_{12}=OAng$	K. ananosma	Yang et al, 2011a
0.4		$K_3 = K_4 = K_5 = K_6 = K_8 = K_{10} = CH_3$	V	X (1.0011
94	ananonin H	$K_1+K_2=CH_2, K_3=K_7=K_9=H, K_{11}=Oac, K_{12}=OAng$	K. ananosma	Yang et al, 2011a
05	in Y	$K_4=K_5=K_6=K_8=K_{10}=CH_3$	<i>V</i>	V
95	ananonin I	$R_1+R_2=CH_2, R_3=R_7=R_9=H, R_{11}=Oprop, R_{12}=OAng$ $P_1=P_2=P_2=P_3=P_4=CU$	K. ananosma	Yang et al, 2011a
06	anananin I	$R_4=R_5=R_6=R_8=R_{10}=CH_3$	V	Vana at al. 2011a
90	ananonin J	$R_1 + R_2 - CH_2$, $R_{11} - OISOVAI$, $R_3 - R_7 - R_9 - H$	K. ananosma	Talig et al, 2011a
07	kadauralianan P	R_{12} -OAlig, R_4 - R_5 - R_6 - R_8 - R_{10} - $C\Pi_3$ $P_{\pm}P_{\pm}$ - $C\Pi_{\pm}P_{\pm}$ - $\Pi_{\pm}P_{\pm}$ - $O\Pi_{\pm}P_{\pm}$ - $O\Lambda_{\pm}$	V accesinga	Listal 2006
91	Kausurangnan D	$R_1 + R_2 - CH_2, R_7 - H, R_{10} - OH, R_{11} - R_{12} - OAC$ $P_2 - P_3 - P_2 - P_3 - P_3 - CH_3$	K. coccined	Li et al, 2000
08	kadsuralianan A	$R_3 - R_4 - R_5 - R_6 - R_8 - R_9 - CH_3$ $P_1 + P_2 - CH_2 P_2 - P_2 - P_2 - P_3 - CH_3$	K coccinaa	Listal 2006
70	Rausurangnan A	$R_1 = R_2 = R_1 = R_2 = H_1 R_2 = OH_2$	R. coccineu	Li et al, 2000
99	caprovlbinankadsurin A	$R_0 = R_1 + R_2 = CH_2$ $R_2 = R_2 = R_2 = R_2 = CH_2$	K japonica	Ookawa et al. 198
,,	capityitinankadsurin A	$R_1 = R_2 = R_2 = R_2 = H_1 R_2 = OCan$	К. јароніса	Ookawa et al, 196
100	vunnankadsurin A	$R_1+R_2=CH_2$ $R_2=R_2=R_0=R_{11}=H$	K sp s	Shen et al. 2008
100	J samunicussarin / 1	$R_1 = R_2 = R_2 = R_1 = CH_2 R_{12} = 0x_0$	op.o	Shen et ui, 2000
101	(±)-kadsutherin	$R_1+R_2=CH_2$, $R_7=R_0=R_{12}=R_{12}=H$	K. coccinea	Li et al 1985
		$R_4 = R_5 = R_8 = R_{10} = CH_3$ $R_2 = Ang$	00001104	2. et al, 1700

 $R_1 \!\!+\!\! R_2 \!\!=\!\! CH_2, R_7 \!\!=\!\! R_9 \!\!=\!\! R_{11} \!\!=\!\! R_{12} \!\!=\!\! H$

 $R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$

R12=OH, R4=R7=R9=H, R11=OAc

R10=OH, R11=OAc, R4=R7=H, R12=OCin

 $R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_9 = CH_3$

 $R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$

Li et al, 1985

K. coccinea

K. angustifolia

K. angustifolia

Gao et al, 2008b

Gao et al, 2008b

(To be continued)

1981

- ((Continued	Table 1)	
	Johnmaca	raule r	

	continued Table 1)			
No.	Compounds	Structures	Plant sources	References
105	kadangustin D	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. angustifolia	Gao et al, 2008b
		R ₁₁ =OAc, R ₄ =R ₇ =R ₉ =H, R ₁₂ =OCin		
106	kadangustin E	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. angustifolia	Gao et al, 2008b
		R ₁₁ =OAc, R ₄ =R ₇ =R ₉ =H, R ₁₂ =OBz		
107	kadangustin F	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. angustifolia	Gao et al, 2008b
		R ₄ =R ₇ =R ₉ =H, R ₁₁ =OAc, R ₁₂ =OAng		
108	kadangustin G	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. angustifolia	Gao et al, 2008b
		R ₁₁ =OAc, R ₄ =R ₇ = R ₉ =H, R ₁₂ =OTig		
109	schisantherin F	$R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. angustifolia	Gao et al, 2008b
		R ₁₁ =OH, R ₁ =R ₇ =R ₉ =R ₁₂ =H, R ₄ =Ang	K. oblongifolia	Huang et al, 2011
110	kadangustin B	$R_1+R_2=R_5+R_6=CH_2, R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Gao et al, 2008b
		R ₇ =R ₉ =H, R ₁₁ =OH, R ₁₂ =OAc		
111	schisantherin L	$R_1 + R_2 = R_5 + R_6 = CH_2, R_7 = R_9 = H$	K. angustifolia	Gao et al, 2008b
		R ₃ =R ₄ =R ₈ =R ₁₀ =CH ₃ , R ₁₁ =OH, R ₁₂ =OAng	K. coccinea	Ma et al, 2007
			K. induta	Liu and Li, 1993
112	schisantherin M	$R_1 + R_2 = R_5 + R_6 = CH_2, R_7 = R_9 = H$	K. coccinea	Liu and Li, 1993
		R ₃ =R ₄ =R ₈ =R ₁₀ =CH ₃ , R ₁₁ =OTig, R ₁₂ =OAng		
113	schisantherin N	$R_1+R_2=R_5+R_6=CH_2, R_7=R_9=H$	K. coccinea	Liu and Li, 1993
		$R_3 = R_4 = R_8 = R_{10} = CH_3, R_{11} = R_{12} = OAng$		
114	gomisin R	$R_1+R_2=R_5+R_6=CH_2, R_7=R_9=R_{12}=H$	K. angustifolia	Gao et al, 2008b
		$R_3 = R_4 = R_8 = R_{10} = CH_3, R_{11} = OH$	K. coccinea	Li et al, 2006
115	schisantherin P	$R_1 + R_2 = R_5 + R_6 = CH_2, R_7 = R_9 = H$	K. angustifolia	Gao et al, 2008b
		$R_3 = R_4 = R_8 = R_{10} = CH_3, R_{11} = R_{12} = OH$	K. coccinea	Liu and Li, 1995b
			K. induta	Ma et al, 2007
116	schisantherin Q	$R_1+R_2=R_5+R_6=CH_2, R_3=R_4=R_8=R_{10}=CH_3$	K. coccinea	Liu and Li, 1995b
		$R_7 = R_9 = H, R_{12} = 0x0, R_{11} = 0H$	K. angustifolia	Gao et al, 2008b
117	propinguanin C	$R_1+R_2=CH_2, R_4=R_5=R_6=R_8=R_9=CH_3$	K. oblongifolia	Liu et al, 2009b
		$R_3=R_7=H, R_{10}=OH, R_{11}=OProp, R_{12}=OAng$	07	,
118	schisantherin G	$R_1+R_2=CH_2$, $R_{12}=OAng$, $R_4=R_5=R_6=R_8=R_9=CH_3$	K. oblongifolia	Liu et al, 2009b
			00	,
		$R_3 = R_7 = H, R_{10} = OH, R_{11} = OAc$		
119	heteroclitin Q	$R_1+R_2=CH_2, R_{12}=OBz$	K. oblongifolia	Liu et al, 2009b
	-	$R_3 = R_5 = R_6 = R_8 = R_9 = CH_3$	K. heteroclita	Xu et al, 2008a
		$R_4=R_7=H, R_{10}=OH, R_{11}=OAc$		
120	gomisin B	$R_1+R_2=CH_2, R_3=R_4=R_5=R_6=R_8=R_9=CH_3$	K. heteroclite	Han et al, 1992
		R ₇ =R ₁₁ =H, R ₁₂ =OAng, R ₁₀ =OH	K. matsudai	Wu et al, 2003
121	heteroclitin P	$R_1+R_2=CH_2$, $R_{12}=OAng$, $R_3=R_5=R_6=R_8=R_9=CH_3$	K. heteroclita	Xu et al, 2008a
		$R_{10}=OH, R_4=R_7=H, R_{11}=OBz$		
122	kadsufolin A	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OAng$	K. oblongifolia	Huang et al, 2011
		$R_7 = R_9 = R_{12} = H$	00	0
123	kadsufolin B	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OAc$	K. oblongifolia	Huang et al, 2011
		$R_7 = R_9 = R_{12} = H$	00	C ,
124	kadsutherin A	$R_1+R_2=CH_2$, $R_5+R_6=R_8=R_{10}=CH_3$	K. sp.s	Lu and Chen, 2006
		$R_3 = R_4 = R_7 = R_9 = R_{12} = H, R_{11} = OAng$	1	,
125	kadsutherin B	$R_1+R_2=CH_2$, $R_3=R_4=R_5=R_6=R_8=R_{10}=CH_3$	K. sp.s	Lu and Chen. 2006
		$R_7 = R_0 = R_{12} = H, R_{11} = OProp$	1	,
126	kadsurindutin H	$R_1 + R_2 = R_5 + R_6 = CH_2, R_3 = R_4 = R_8 = R_{10} = CH_3$	K. induta	Ma et al, 2009
-		$R_7=R_9=H, R_{11}=OH, R_{12}=oxo$,*
127	kadsuphilin G	$R_1+R_2=CH_2$, $R_3=R_5=R_8=R_{10}=CH_3$	K. philippinensis	Shen et al. 2008
		$R_{12}=OH, R_4=R_7=R_6=H, R_{11}=OAc$	rrr	, - 000
128	kadsuphilin H	$R_1+R_2=CH_2$, $R_{11}=OAn\sigma$, $R_2=R_4=R_6=R_1=CH_2$	K. philippinensis	Shen et al 2008
0		$R_7=R_{12}=OH, R_4=R_0=H$	promppinonisis	5.101 00 01, 2000
129	kadsurindutin A	$R_1+R_2=R_5+R_6=CH_2$ $R_{12}=OAng R_2=H R_{10}=OH$	K. induta	Ma et al. 2007
/		$R_3 = R_4 = R_9 = CH_3, R_{11} = OAc$		

(Continued Table 1)

No.	Compounds	Structures	Plant sources	References
130	kadsurindutin B	$R_1+R_2=R_5+R_6=CH_2, R_3=R_4=R_8=R_9=CH_3$ $R_2=H_1R_2=R_3=CH_2R_2=CH_2R_2=CH_3$	K. induta	Ma et al, 2007
121	achiconthorin I	$R_7 = 11, R_{10} = R_{11} = 011, R_{12} = 0$ Ang	V longingdungulata	Liu and Dan 1001
151	semsanuterin j	$R_1 + R_2 - CH_2, R_7 - H, R_{10} - OH$ P - P - P - P - P - P - CH	K. longipedunculdid	Liu anu i an, 1991
		$R_3 - R_4 - R_5 - R_6 - R_8 - R_9 - C11_3$ $R_3 - Oicobuttuloval R_3 - OR_7$		
122	ronohangianin C	R_{11} -Olsooutyloyi, R_{12} -Obz P - P - P - P - P - P - CH P - P - P - H	V you oh an oi an a	Chan at al. 2004a
132	Tenchangianin C	$K_1 - K_2 - K_5 - K_6 - K_8 - K_{10} - C \Pi_3, K_3 - K_4 - K_7 - K_9 - \Pi$	K. renchangiana	Chen et al, 2004a
122	hii- A	R_{11} =OAng, R_{12} =tran-OCin	V	Char at al. 2004a
133	renchangianin A	$K_1 = K_2 = K_5 = K_6 = K_8 = K_9 = CH_3, K_{10} = OH, K_{12} = OBZ$	K. renchanglana	Chen et al, 2004a
124	1 · · D	$K_3 = K_4 = K_7 = H, K_{11} = OAC$	<i>V</i> 1 ·	Cl (1 2004
134	renchangianin B	$K_1 = K_2 = K_5 = K_6 = K_8 = K_9 = CH_3, K_{10} = OH, K_{12} = OBZ$	K. renchangiana	Chen et al, 2004a
125	1 · · · D	$K_3 = K_4 = K_7 = H, K_{11} = OAng$	<i>V</i> 1 ·	Cl (1 2004
135	renchangianin D	$R_2 = R_5 = R_6 = R_8 = CH_3$, R_9 , $R_{10} = cyclo$, $R_{12} = OBz$	K. renchangiana	Chen et al, 2004a
10.0		$R_1=R_3=R_4=R_7=H, R_{11}=OAng$	Yr 1.1	CI
136	kadsuphilin l	$R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{12} = OBZ$	K. philippinensis	Shen et al, 2008
	1 1 1715	$R_1 = R_4 = R_7 = R_9 = H, R_{11} = OAc$	Yr 1.1	
137	kadsuphilol P	$R_1+R_2=CH_2, R_{12}=OBZ, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. philippinensis	Cheng et al, 2011
		$R_4 = R_7 = R_9 = H, R_{11} = OAc$		~
138	kadsuphilol Q	$R_1 = R_2 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_4 = R_7 = R_9 = H$	K. philippinensis	Cheng et al, 2011
		R_{11} =OAc, R_{12} =OBz		
139	kadsuphilol R	$R_1+R_2=CH_2, R_4=R_7=H, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. philippinensis	Cheng et al, 2011
		$R_9 = OH, R_{11} = R_{12} = OAng$		
140	kadsuphilol S	$R_1+R_2=CH_2$, $R_{12}=Oang$, $R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. philippinensis	Cheng et al, 2011
		$R_4 = R_7 = H, R_9 = OH, R_{11} = Prop$		
141	kadsuphilol T	$R_1+R_2=CH_2, R_{12}=OBz, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. philippinensis	Cheng et al, 2011
		$R_4 = R_7 = H, R_9 = OH, R_{11} = OAng$		
142	(+)-gomisin K ₃	$R_1 = R_2 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_4 = R_7 = R_9 = OH$	K. matsudai	Wu et al, 2003
143	kadsuphilol C	$R_1+R_2=CH_2, R_3=R_5=R_6=R_8=CH_3$	K. philippinensis	Shen et al, 2007a
		R_9 , R_{10} -cyclo, R_4 = R_7 = H , R_{11} = R_{12} =OAng		
144	interiotherin B	$R_1+R_2=R_5+R_6=CH_2, R_{10}=OH$	K. interior	Chen et al, 1996
		$R_3=R_4=R_8=R_9=CH_3$, $R_7=R_{11}=H$, $R_{12}=OAng$	K. angustifolia	Sun et al, 2011
145	kadoblongifolin A	$R_1+R_2=CH_2, R_3=R_5=R_6=R_8=R_9=CH_3$	K. oblongifolia	Liu et al, 2009b
		$R_7=OH, R_{11}=oxo, R_4=R_{10}=R_{12}=H$		
146	kadoblongifolin B	$R_1+R_2=CH_2$, $R_3=R_4=R_5=R_8=R_9=CH_3$	K. oblongifolia	Liu et al, 2009b
		$R_7=OH, R_{11}=oxo, R_6=R_{10}=R_{12}=H$		
147	interiotherin A	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. interior	Chen et al, 1996
		$R_7 = R_9 = R_{11} = H, R_{12} = OBz$		
148	schisantherin D	$R_1+R_2=R_5+R_6=CH_2, R_{10}=OH$	K. interior	Chen et al, 1996
		$R_3=R_4=R_8=R_9=CH_3, R_7=R_{11}=H, R_{12}=OBz$	K. angustifolia	Sun et al, 2011
149	schisantherin B	R ₁ =R ₂ =R ₃ =R ₄ =R ₈ =R ₉ =CH ₃ , R ₁₂ =OAng	K. angustifolia	Sun et al, 2011
		R ₅ +R ₆ =CH ₂ , R ₁₀ =OH, R ₇ =R ₁₁ =H		
150	angeloylgomisin R	$R_1+R_2=R_5+R_6=CH_2, R_7=R_9=R_{11}=H$	K. interior	Chen et al, 1996
		$R_3 = R_4 = R_8 = R_{10} = CH_3, R_{12} = OAng$	K. longipedunculata	Pu et al, 2005
151	angustifolin A	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Chen et al, 1998
		$R_7 = R_9 = H, R_{11} = R_{12} = OBen$		
152	angustifolin B	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Chen et al, 1998
		$R_7 = R_9 = H, R_{12} = OBen, R_{11} = OAc$		
153	angustifolin C	$R_1+R_2=R_5+R_6=CH_2, R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Chen et al, 1998
		$R_7 = R_9 = H, R_{12} = OBen, R_{11} = OH$		
154	acetylschisantherin L	$R_1+R_2=R_5+R_6=CH_2$, $R_3=R_4=R_8=R_{10}=CH_3$	K. angustifolia	Chen et al, 1998
		R ₇ =R ₉ =H, R ₁₂ =OAng, R ₁₁ =OAc	K. coccinea	Liu and Li, 1995b
155	gomisin G	$R_1 = R_2 = R_3 = R_4 = R_8 = R_9 = CH_3$	K. interior	Chen et al, 1997
		$R_5+R_6=CH_2, R_{10}=OH, R_7=R_{11}=H, R_{12}=OBz$	K. matsudai	Wu et al, 2003
156	(±)-kadsutherin	$R_1 = R_2 = R_4 = R_5 = R_6 = R_7 = R_9 = CH_3$	K. coccinea	Li et al, 1985

R₃=Ang, R₁₀=OH, R₈=R₁₁=R₁₂=H

179

Plant sources

References

Structures

157	(±)-gomisin M ₁	$R_1 = R_2 = R_4 = R_8 = R_{10} = CH_3, R_5 + R_6 = CH_2$	K. longipedunculata	Tan et al, 1984
		$R_3 = R_7 = R_9 = R_{11} = R_{12} = H$	K. heteroclita	Han et al, 1992
158	angeloylgomisin M1	R ₅ +R ₆ =CH ₂ , R ₁ =R ₂ =R ₄ =R ₈ =R ₁₀ =CH ₃	K. longipedunculata	Tan et al, 1984
		R ₃ =Ang, R ₉ =OH, R ₇ =R ₁₁ =R ₁₂ =H		
159	(+)gomisin M ₂	$R_1 = R_2 = R_3 = R_8 = R_{10} = CH_3, R_5 + R_6 = CH_2$	K. longipedunculata	Tan et al, 1984
		$R_4 = R_7 = R_9 = R_{11} = R_{12} = H$		
160	kadsuranin	$R_1 = R_2 = R_3 = R_4 = R_8 = R_{10} = CH_3$	K. longipedunculata	Tan et al, 1984
		$R_5+R_6=CH_2, R_7=R_9=R_{11}=R_{12}=H$	K. interior	Chen et al, 1997
161	schisantherin O	$R_4 = R_7 = R_9 = R_{12} = H, R_1 + R_2 = CH_2$	K. coccinea	Liu and Li, 1993
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_{11} = OAc$		
162	gomisin A (schisandrol B)	$R_1 + R_2 = CH_2, R_7 = R_{11} = R_{12} = H,$	K. interior	Chen et al, 1997
		R ₉ =OH, R ₃ =R ₄ =R ₅ =R ₆ =R ₈ =R ₁₀ =CH ₃	K. heteroclita	Han et al, 1992
163	schisandrin	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_9 = CH_3$	K. angustifolia	Sun et al, 2011
		R ₇ =R ₁₁ =R ₁₂ =H, R ₁₀ =OH		
164	gomisin H	$R_1 = R_2 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. coccinea	Li et al, 1985
		$R_3 = R_7 = R_9 = R_{11} = R_{12} = H$		
165	angeloylgomisin H	$R_1 = R_2 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. heteroclita	Han et al, 1992
		$R_7 = R_9 = R_{11} = R_{12} = H, R_3 = Ang$	K. longipedunculata	Li and Chen, 1986
166	schisanlignone A	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_9 = CH_3$	K. sp.s	Liu and Zhou, 1991
		$R_8 = R_{10} = R_{12} = H, R_{11} = 0x0$		
167	schisanlignone B	$R_2 = R_3 = R_4 = R_5 = R_6 = R_7 = R_9 = CH_3$	K. sp.s	Liu and Zhou, 1991
		$R_1 = R_8 = R_{10} = R_{12} = H, R_{11} = oxo$		
168	longipedunin C	$R_1+R_2=CH_2, R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. longipedunculata	Sun et al, 2006b
		$R_4 = R_7 = R_9 = R_{12} = H, R_{11} = OBz$		
169	kadoblongifolin C	$R_1+R_2=CH_2, R_3=R_4=R_5=R_6=R_8=R_9=CH_3$	K. oblongifolia	Liu et al, 2009b
		R ₇ =OH, R ₁₁ =oxo, R ₁₀ =R ₁₂ =H		
170	schizandrin	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. interior	Chen et al, 1997
		$R_7 = R_{11} = R_{12} = H, R_9 = OH$	K. heteroclita	Han et al, 1992
171	ananolignan A	$R_1+R_2=CH_2, R_7=R_9=R_{12}=H$	K. ananosma	Yang et al, 2011b
		R_{11} =OAc, R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3	K. polysperma	Dong et al, 2012b
172	ananolignan B	R ₁ +R ₂ =CH ₂ , R ₁₁ =βOAc, R ₇ =R ₉ =H, R ₁₂ =oxo	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_7 = R_{10} = CH_3$		
173	polysperlignan K	R ₁ +R ₂ =CH ₂ , R ₇ =R ₉ =R ₁₂ =H, R ₁₁ =βOH	K. polysperma	Dong et al, 2012b
		$R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_4 = Ac$		
174	kadsuphilol A	$R_1+R_2=CH_2$, $R_3=R_5=R_6=R_8=R_{10}=CH_3$	K. philippinensis	Shen et al, 2007a
		$R_{11}=\beta OH, R_4=R_7=R_9=R_{12}=H$		
175	kadsuphilol D	$R_1 = R_3 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. philippinensis	Shen et al, 2007a
		$R_{11}=\beta OCin, R_2=R_4=R_7=R_9=R_{12}=H$		
176	kadsufolin C	$R_1+R_2=CH_2, R_3=R_4=R_5=R_8=R_{10}=CH_3$	K. oblongifolia	Huang et al, 2011
		R ₁₂ =t-OCin, R ₆ =R ₇ =R ₉ =R ₁₁ =H		
177	kadsufolin D	$R_1+R_2=CH_2, R_3=R_4=R_5=R_8=R_{10}=CH_3$	K. oblongifolia	Huang et al, 2011
		$R_{12} = OBz, R_6 = R_7 = R_9 = R_{11} = H$		
178	(+)-deoxyschizandrin	$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3$	K. interior	Chen et al, 1997
		$R_7 = R_9 = R_{11} = R_{12} = H$	K. coccinea	Wang et al, 2012b
179	schizanrin M	$R_1+R_2=CH_2, R_6=R_7=R_9=R_{11}=H$	K. japonica	Kuo et al, 2005
		$R_{12}=oxo, R_3=R_4=R_5=R_8=R_{10}=CH_3$		
180	schizanrin N	$R_1 = R_2 = R_3 = R_8 = R_{10} = CH_3, R_{12} = oxo$	K. japonica	Kuo et al, 2005
		$R_4 = R_7 = R_9 = R_{11} = H, R_5 + R_6 = CH_3$		
181	kadsumarin A	$R_1 = R_2 = R_3 = R_8 = R_9 = CH_3, R_{12} = OAc$	K. matsudai	Kuo et al, 1999
		$R_5+R_6=CH_2$, $R_4=R_7=R_{10}=R_{11}=H$		
182	ananolignan C	R ₁ +R ₂ =CH ₂ , R ₁₁ =OH, R ₁₂ =OH	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_7 = R_9 = H_1$		

R₁+R₂=CH₂, R₁₁=OAc, R₁₂=OH

 $R_3 \!\!=\!\! R_4 \!\!=\!\! R_5 \!\!=\!\! R_6 \!\!=\!\! R_8 \!\!=\!\! R_{10} \!\!=\!\! CH_3, R_7 \!\!=\!\! R_9 \!\!=\!\! H$

(To be continued)

Yang et al, 2011b

K. ananosma

No.

183

ananolignan D

⁽Continued Table 1) lo. Compounds

(Co	ontinued Table 1)			
No.	Compounds	Structures	Plant sources	References
184	ananolignan C	R ₁ +R ₂ =CH ₂ , R ₁₁ =OH, R ₁₂ =OH	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_7 = R_9 = H$		
185	ananolignan D	R ₁ +R ₂ =CH ₂ , R ₁₁ =OAc, R ₁₂ =OH	K. ananosma	Yang et al, 2011b
		$R_3 = R_4 = R_5 = R_6 = R_8 = R_{10} = CH_3, R_7 = R_9 = H$		
186	gomicin D		K. japonica	Chen et al, 1977
187	kadsuphilin N	9-αCH ₃	K. philippinensis	Lin et al, 2013
188	kadsulignan A	R=H	K. coccinea	Liu et al, 1989
189	kadsulignan B	R=OAc	K. coccinea	Liu et al, 1989
190	kadsulignan L	$R_1+R_2=CH_2, R_3=R_4=CH_3$	K. coccinea	Liu and Li, 1995a
			K. angustifolia	Gao et al, 2008b
			K. oblongifolia	Huang et al, 2011
191	kadsulignan M	R ₁ +R ₂ =CH ₂ , R ₃ =CH ₃ , R ₄ =H	K. coccinea	Liu and Li, 1995a
192	epoxideschisandrin C	$R_1 + R_2 = R_4 + R_3 = CH_2$	K. angustifolia	Gao et al, 2008b
193	kadsulignan N	$R_1 = R_2 = R_3 = R_4 = CH_3$	K. coccinea	Shinomiya et al, 2009
			K. matsudai	Li et al, 2000
194	neokadsuranin	$R_3 + R_4 = CH_2$	K. coccinea	Shinomiya et al, 2009
		$R_1 = R_2 = CH_3$	K. interior	Chen et al, 2002a
195	kadsuphilin O		K. philippinensis	Lin et al, 2013
196	kadsulignan K		K. philippinensis	Shen et al, 2006
	(heteroclitin G)		K. sp.s	Liu et al, 1992
			K. angustifolia	Gao et al, 2008b
			K. heteroclita	Yang et al, 1992
197	kadsuralignan D		K. coccinea	Li et al, 2006
198	kadsuphilin L	R=βOH	K. philippinensis	Shen et al, 2008
199	kadsuphilin M	R=aOH	K. philippinensis	Shen et al, 2008

1-155

OR₁

186-187

OCH₃

CH₃

CH₃

H₃CO

Figure 2 Structures of lignans (A) isolated from genus Kadsura Kaempf. ex Juss.

No. Compounds	Structures	Plant sources	References
200 heteroclitin D	R ₁ =R ₄ =R ₆ =H, R ₂ =OAng, R ₃ =R ₅ =CH ₃	K. heteroclita	Chen et al, 1992
		K. interior	Chen et al, 2002a
201 heteroclitin E	R ₁ =OH, R ₄ =R ₆ =H, R ₂ =OAng, R ₃ =R ₅ =CH ₃	K. heteroclita	Chen et al, 1992
202 isovaleroyloxokadsurane	R ₁ =R ₄ =R ₆ =H, R ₂ =OIsovaleroyl, R ₃ =R ₅ =CH ₃	K. longipedunculata	Li et al, 1991
		K. coccinea	Li and Xue, 1990
203 acetoxyloxokadsurane	R ₁ =R ₃ =R ₅ =H, R ₂ =OAc, R ₄ =R ₆ =CH ₃	K. coccinea	Li and Xue, 1990
		K. heteroclita	Pu et al, 2008b
204 isovaleroyloxokadsurano	l R ₁ =OH, R ₂ =OIsovaleroyl, R ₃ =R ₅ =CH ₃ , R ₄ =R ₆ =H	K. coccinea	Li and Xue, 1990
205 benzoyloxokadsurane	$R_1 = R_4 = R_6 = H, R_2 = OBz, R_3 = R_5 = CH_3$	K. coccinea	Li and Xue, 1990
		K. heteroclita	Pu et al, 2008b
206 propoxyloxokadsurane	R ₁ =R ₄ =R ₆ =H, R ₂ =OProp, R ₃ =R ₅ =CH ₃	K. coccinea	Li and Xue, 1990
207 kadsulignan H	$R_1=R_3=R_6=H$, $R_2=\alpha OButanoyl$, $R_4=R_5=CH_3$	K. sp.s	Liu et al, 1992
208 kadsulignan I	R ₁ =R ₃ =R ₆ =H, R ₂ =αOProp, R ₄ =R ₅ =CH ₃	K. sp.s	Liu et al, 1992
209 kadsulignan J	R ₁ =R ₃ =R ₆ =H, R ₂ =aOIsovalcroyl, R ₄ =R ₅ =CH ₃	K. sp.s	Liu et al, 1992
210 heteroclitin K	R1=OBz=OBz, R3=R5=CH3, R4=R6=H	K. heteroclita	Xu et al, 2007
211 heteroclitin I	R1=OBz, R2=OAng, R3=R5=CH3, R4=R6=H	K. heteroclita	Xu et al, 2007
212 kadsulignan P	R1=OAc, R2=OCin, R3=OH, R4=R5=CH3, R6=H	K. oblongifolia	Liu et al, 2011
213 kadsulignan C	R1=OAc, R2=OBz, R3=OH, R4=R5=CH3, R6=H	K. oblongifolia	Liu et al, 2011
		K. longipedunculata	Liu et al, 1991
214 kadsulignan G	R1=OBz, R2=OAc, R3=OH, R4=R5=CH3, R6=H	K. oblongifolia	Liu et al, 2011
		K. longipedunculata	Liu and Huang, 1992
215 kadsulignan D	R ₁ = R ₂ =OAng, R ₃ =OH, R ₄ =R ₅ =CH ₃ , R ₆ =H	K. longipedunculata	Liu et al, 1991
216 heteroclitin L	R ₁ =OAng, R ₂ =OBz, R ₄ =R ₅ =H, R ₃ =R ₆ =CH ₃	K. heteroclita	Xu et al, 2007
217 kadsutherin C	R ₁ =O, R ₂ =OProp, R ₃ =R ₅ =CH ₃ , R ₄ =R ₆ =H	K. sp.s	Lu and Chen, 2006
218 kadsuphilol M	R ₁ =OAng, R ₂ =OAc, R ₃ =OH, R ₄ =R ₅ =CH ₃ , R ₆ =H	K. philippinensis	Shen et al, 2009
219 kadsuphilol E	R ₁ =OBz, R ₂ =OAng, R ₃ =OH, R ₄ =R ₅ =CH ₃ , R ₆ =H	K. philippinensis	Shen et al, 2007a
220 kadsuphilol F	R ₁ =OAng, R ₂ =OBz, R ₃ =OH, R ₄ =R ₅ =CH ₃ , R ₆ =H	K. philippinensis	Shen et al, 2007a
221 heteroclitin H	R ₁ =H, R ₂ =OTig, R ₃ =R ₅ =CH ₃ , R ₄ =R ₆ =H	K. heteroclita	Chen et al, 2006
222 heteroclitin O	R ₁ =OBz, R ₂ =OAng, R ₃ , R ₄ =cyclo,R ₅ =CH ₃ , R ₆ =H	K. heteroclita	Xu et al, 2008a
223 kadsutherin D	R_2 =OAng, R_3 = R_5 =CH ₃ , R_1 = R_4 = R_6 =H	K. sp.s	Lu and Chen, 2008
224 schiarisanrin A	$R_1=H, R_2=OIsoval, R_4=R_6=CH_3, R_3=R_5=H$	K. matsudai	Kuo et al, 2001b
225 schiarisanrin B	R ₁ =H, R ₂ =OAc, R ₄ =R ₆ =CH ₃ , R ₃ =R ₅ =H	K. matsudai	Kuo et al, 2001b
226 schiarisanrin C	$R_1=H, R_2=OBz, R_4=R_6=CH_3, R_3=R_5=H$	K. matsudai	Kuo et al, 2001b
227 schiarisanrin D	R ₁ =H, R ₂ =OCin, R ₄ =R ₆ =CH ₃ , R ₃ =R ₅ =H	K. matsudai	Kuo et al, 2001b
228 schiarisanrin E	$R_1 = R_3 = R_5 = H, R_2 = OAng, R_4 = R_6 = CH_3$	K. matsudai	Wu et al, 2003
229 kadsuphilol U	R ₁ =OAc, R ₂ =OCin, R ₃ =OH, R ₄ =R ₅ =CH ₃ , R ₆ =H	K. philippinensis	Cheng et al, 2011
230 interiorin B	$R_1 = R_4 = H, R_2 = OAng, R_3 = CH_3$	K. interior	Ding and Luo, 1990
		K. heteroclita	Pu et al, 2008b
231 interiorin	$R_1 = R_4 = H, R_2 = OAng, R_3 = CH_3$	K. interior	Shide et al, 1988
		K. heteroclita	Pu et al, 2008b
232 interiorin C	$R_1 = R_4 = H, R_2 = OAc, R_3 = CH_3$	K. interior	Ding and Luo, 1990
233 interiorin D	$R_1 = R_4 = H, R_2 = OBz, R_3 = CH_3$	K. interior	Ding and Luo, 1990
234 isointeriorin	$R_1 = R_4 = H, R_2 = OAng, R_3 = CH_3$	K. interior	Ding and Luo, 1990
235 heteroclitalignan C	R_1 =OAng, R_2 =OProp, R_3 =OH, R_4 =CH ₃	K. heteroclita	Wang et al, 2006b
236 kadsulignan E	R_1 =OAc, R_2 =OBz, R_3 =OH, R_4 =CH ₃	K. heteroclite	Wang et al, 2006b
		K. coccinea	Li et al, 2007
		K. longipeduncunlta	Liu and Huang, 1992
		K. oblongifolia	Liu et al, 2011
237 kadsulignan F	R_1 =OAng, R_2 =OAc, R_3 =OH, R_4 =CH ₃	K. longipeduncunlta	Liu and Huang, 1992
		K. oblongifolia	L1 et al, 2007
		K. coccinea	Liu et al, 2011
238 kadsulignan O	K_1 =UAc, K_2 =UCin, R_3 =UH, R_4 =CH ₃	K. oblongifolia	Liu et al, 2011
239 heteroclitin J	$K_1 = K_2 = OAng, K_3 = OH, R_4 = CH_3$	K. oblongifolia	Liu et al, 2011
240 kadsuphilol V	R_1 =OAc, R_2 =OCin, R_3 =OH, R_4 =CH ₃	K. philippinensis	Cheng et al, 2011

 Table 2
 Spirobenzofuranoid dibenzocyclooctadienes (B) isolated from genus Kadsura Kaempf. ex Juss.

(Continued Table 2)			
No. Compounds	Structures	Plant sources	References
241 interiotherin D		K. interior	Chen et al, 2002a
242 kadsuphilol G		K. philippinensis	Shen et al, 2007a
243 kadsuphilol H		K. philippinensis	Shen et al, 2007a
244 heteroclitin F	R=OAng	K. heteroclita	Yang et al, 1992
(heterolitin F)		K. interior	Chen et al, 1997
245 taiwanschirin C	R=OBz	K. matsudai	Li et al, 2000
246 taiwanschirin D	R=OCap	K. matsudai	Li et al, 2000
247 taiwankadsurin A	1-OH, R1=Ac, R2=Bz, R3=OAc, R4=H	K. philippinensis	Shen et al, 2005b
248 taiwankadsurin B	1-OH, R ₁ =Bz, R ₂ =Ac, R ₃ =OAc, R ₄ =H	K. philippinensis	Shen et al, 2005b
249 taiwankadsurin C	R ₁ =Ac, R ₂ =Bz, R ₃ =H, R ₄ =OAc	K. philippinensis	Shen et al, 2005b
250 taiwankadsurin D	R ₁ =Ang, R ₂ =Ac, R ₃ = α OH, R ₄ =OCH ₃	K. philippinensis	Lin et al, 2013
251 taiwankadsurin E	R ₁ =Ang, R ₂ =Ac, R ₃ =βOH, R ₄ =OCH ₃	K. philippinensis	Lin et al, 2013
252 heteroclitin N	$R_1=R_2=Ang, R_4=Ac, R_3=OH$	K. heteroclita	Xu et al, 2008a
253 heteroclitin I		K. heteroclita	Pu et al, 2008b
254 heteroclitin J		K. heteroclita	Pu et al, 2008b

Figure 3 Structures of lignans (B) isolated from genus Kadsura Kaempf. ex Juss.

 Table 3 Aryltetralins (C) isolated from genus Kadsura Kaempf. ex Juss.

No.	Compounds	Structures	Plant sources	References
255	kadsuralignan H		K. coccinea	Li et al, 2007
256	kadsurindutin C	$R_1 + R_2 = R_5 + R_6 = CH_2, R_3 = R_4 = OCH_3$	K. induta	Ma et al, 2009
257	kadsuralignan C	$R_1 = R_4 = R_6 = OCH_2, R_2 = R_5 = OH$	K. coccinea	Li et al, 2006
258	otobaphenol	R ₁ =R ₅ =R ₆ =OCH ₂ , R ₃ =OH, R ₄ =H	K. longipedunculata	Pu et al, 2008a
259	arisantetralone A	$R_1 = R_4 = H, R_2 = R_3 = R_5 = CH_3$	K. longipedunculata	Zaugg et al, 2011
260	arisantetralone B	$R_1 = R_3 = R_5 = CH_3, R_2 = R_4 = R_6$	K. longipedunculata	Zaugg et al, 2011
261	arisantetralone C	$R_1 = R_6 = H, R_2 = R_3 = R_4 = R_5 = CH_3$	K. longipedunculata	Zaugg et al, 2011
262	arisantetralone D	$R_1 = R_5 = H, R_2 = R_3 = R_4 = R_6 = CH_3$	K. longipedunculata	Zaugg et al, 2011

Figure 4 Structures of lignans (C) isolated from genus Kadsura Kaempf. ex Juss.

 Table 4
 Diarylbutanes (D) isolated from genus Kadsura Kaempf. ex Juss.

No.	Compounds	Structures	Plant sources	References
263	(+)-anwulignan	R ₁ +R ₂ =OCH ₂ O, R ₃ =R ₄ =H, R ₅ =OH	K. longipedunculata	Zaugg et al, 2011
		R ₆ =OCH ₃	K. heteroclita	Liu et al, 1988
264	dihydroguaiaretic acid	R ₁ =R ₅ =OH, R ₂ =R ₄ =OCH ₃ , R ₃ =R ₆ =H	K. longipedunculata	Zaugg et al, 2011
265	monomethyl	R ₁ =OH, R ₂ =R ₄ =R ₅ =OCH ₃ , R ₃ =R ₆ =H	K. longipedunculata	Zaugg et al, 2011
	dihydroguaiaretic acid			
266	saururenin	R ₁ +R ₂ =OCH ₂ O, R ₃ =R ₆ =H, R ₄ =R ₅ =OCH ₃	K. longipedunculata	Zaugg et al, 2011
267	mesodihydroguaiaretic acid	R ₁ =R ₆ =OCH ₃ , R ₃ =R ₄ =H, R ₂ =R ₅ =OH	K. longipedunculata	Liu et al, 1988
			K. angustifolia	Chen et al, 1998
			K. heteroclita	Lu et al, 2008
			K. coccinea	
268	lengfantuanjing I	R ₁ =R ₄ =H, R ₂ =OH, R ₃ =OCH ₃ , R ₅ +R ₆ =OCH ₂ O	K. coccinea	Liu et al, 1989
269	isoanwulignan	R ₁ +R ₂ =OCH ₂ O, R ₃ =R ₆ =H, R ₄ =OCH ₃ , R ₅ =OH	K. longipedunculata	Pu et al, 2008a
270	4-[4-(3,4-dimethoxyphenyl)-	$R_1 = R_2 = R_4 = OCH_3, R_3 = R_6 = H, R_5 = OH$	K. longipedunculata	Pu et al, 2008a
	2,3-dimethyl-butyl]-2- methoxy-phenol			
271	3-methoxy-3',4'-		K. longipedunculata	Pu et al, 2007b
	(methylenedioxy)-9,9'-			
	epoxylignan-4,7'-diol			
272	kadcoccilignan		K. coccinea	Gao et al, 2012
273	kadangustin J	R=OCH ₃	K. angustifolia	Gao et al, 2008b
274	kadangustin K	R=OH	K. angustifolia	Gao et al, 2008b
275	heteroclitin R	$R_1 = R_2 = R_7 = R_8 = OCH_3, R_3 = R_4 = R_5 = OH, R_6 = H$	K. heteroclita	Xu et al, 2010b
276	kadangustin H	$R_1 = R_2 = R_6 = R_7 = OCH_3$, $R_3 = H$, $R_4 = R_5 = R_8 = OH$	K. angustifolia	Gao et al, 2008b
277	kadangustin I	R ₁ +R ₂ =OCH ₂ O, R ₃ =R ₆ =R ₇ =OCH ₃	K. angustifolia	Gao et al, 2008b
		$R_4 = R_5 = R_8 = OH$		
278	meso-dihyroguaiaretic acid	$R_1 = R_6 = OCH_3, R_2 = R_3 = OH, R_4 = R_5 = R_7 = R_8 = H$	K. angustifolia	Gao et al, 2008b
279	kadsuphilin J		K. philippinensis	Shen et al, 2008

Figure 5 Structures of lignans (D) isolated from genus Kadsura Kaempf. ex Juss.

Figure 6 Structures of lignans (E) isolated from genus Kadsura Kaempf. ex Juss.

2.2.1 Lanostane-type triterpenoids

1) Intact lanostanes (F) This category contained 16 compounds featured by a hydroxyl group or ketone at C-3. Among them, only four members belonged to the C-3 hydroxyl substitution series, including epianwuweizic acid (1) isolated from the fruits of K. longipedunculata and the stems of K. angustifolia, anwuweizic acid (2) isolated from K. angustifolia, isoanwuweizic acid (4) isolated from the roots of K. heteroclita, and 3-hydroxy-12-acetoxycoccinic acid (15) isolated from K. coccinea. Ten other members had a ketone at C-3, namely coccinic acid (3) from K. coccinea, (24Z)- $3-0x0-12\alpha$ -acetoxylanosta-8,24-dien-26-oic acid (5) and (24Z)-3-oxo-12 α -hydroxylanosta-8,24-dien-26-oic acid (6) isolated from K. longipedunculata, and 12β-acetoxycoccinic acid (7), 12\beta-hydroxycoccinic acid (8), 12a-acetoxycoccinic acid (9), 12α -hydroxycoccinic acid (10), and schisanhenric acid (11) isolated from K. heteroclita, kadnanosic acid B (14) isolated from K. ananosma, and kadindutic acid (16) isolated from K. induta. In addition, kadpolysperins D (12) and N (13) isolated from K. polysperma had an acetoxy at C-3. (Table 5, Figure 7)

2) 3,4-Seco-lanostanes (G) There were nineteen 3,4-seco- lanostane type triterpenoids isolated from the plants of genus *Kadsura* Kaempf. ex Juss. including manwuweizic acid (17), kadsuric acid (18), kadpolysperins H (19), B (20), J (24), K (25), kadsuracoccinic acid A (21), C (22), B (27), seco-coccinic acid F (23), K (28), J (32), 3,4-seco-(24Z)-lanosta-4(30),8,24,triene-3,26-dioic acid (26), schisanlactone F (30), coccinilactone A (31), seco-coccinic acid G (29), kadnanosic acid A (33), kadnanolactones D (34) and R (35), and they were isolated from *K. coccinea, K. ananosma*, and *K. polysperma*, respectively. Moreover, manwuweizic acid (17) and kadsuric acid (18) were also isolated from *K. renchangiana*. (Table 6, Figure 7)

3) 18(13 \rightarrow 12)-Abeo-lanostanes (H) The first 18(13 \rightarrow 12)-abeo-lanostane, ananosic acid A (40), was isolated from the stem barks of K. ananosma. Further phytochemical studies on the same plants led to the discovery of ananosic acids B-D (43-45). Kadpolysperins C (36), L (37), M (38), E (41), F (42), G (46), I (47), 20(R),24(E)-3-0x0-9\beta-lanosta-7,24-dien-26-oic acid (39), seco-

coccinic acids A–F (**48–53**), and I (**54**) were isolated and identified from *K. polysperma* and *K. coccinea*, respectively. (Table 7, Figure 8)

4) 14(13 \rightarrow 12)-abeo-Lanostanes (I) Neokadsuranic acid A (55), the first compound with 14(13 \rightarrow 12)-abeolanostane skeleton, was isolated from the stem of *K*. *heteroclita*. From the same plants, seco-neokadsuranic acid A (60) was obtained. Following the discovery of compounds 55 and 60, other four compounds were isolated from other species, including neo- kadsuranic acids B-C (57–58) (from *K. longipedunculata*), 3-hydroxy-neokadsuranic acid A (56) from *K. coccinea*, and kadpolysperin A (59) from *K. polysperma*. (Table 8, Figure 9)

5) Norlanostanes (J) Only two norlanostanes were obtained from *Kadsura* plants, namely micranoic acid A (**61**) and seco-coccinic acid H (**62**) isolated from *K. coccinea* (Li et al, 2008; Shinomiya et al, 2009; Wang et al, 2012c). This sub-type featured an unusual octanor-triterpenoid backbone degraded by the oxidative fission of the C-17–C-20 bond. (Figure 9)

2.2.2 Cycloartane-type triterpenoids

1) Intact cycloartanes (K) This category of cycloartane-type triterpenoids featured a hydroxyl group or a ketone at C-3. There was only one C-3 hydroxyl-substituted member. Isoschizandrolic acid (63) was isolated from an unidentified species of genus *Kadsura* Kaempf. ex Juss. Three C-3 ketone compounds, namely heteroclic acid (64), cycloartenone (65), and schisandronic acid (66) were isolated from the stems of *K. heteroclita*. Another one, namely kadsulactone (67), was isolated from *K. longipedunculata*. (Table 9, Figure 9)

2) 3,4-Seco-cycloartanes (L) 3,4-Seco-cycloartanes were abundant in the plants of genus *Kadsura* Kaempf. ex Juss., and 38 triterpenoids belonged to this group. Phytochemical studies on the roots and stems of *K. heteroclita* collected from different places resulted in the isolation of kadsuranic acid A (68), changnanic acid (69), nigranoic acid (70), heteroclitalactones A–C (73–75), D (91), and E (92), F (76), G–M (96–102), schisanlactone E (77),

3,4-secolanosta-4(28),24-dien-26-oic acid 22,26-lactone (78), 3,4-secolanosta-4,24-dien-26-oic acid 22,26-lactone (79), 3,4-secolanosta-4(28),6,24-trien-26-oic acid 22,26-lactone (80), and schisanlactone B (86). Other 3,4-seco-cycloartanes triterpenoids were isolated and identified from other species, such as nigranoic acid (70), angustific acid B (71), angustifodilactones A (104) and B (105) from K. angustifolia, changnanic acid (69), schisanlactone E (77), kadsulactone acid (82), kadsudilactone (84), schisanlactone A (93) from K. longipedunculata, kadnanolactones B (72), C (85) from K. ananosma, lancilactones A (94), B (95), C (82), kadsulactone A (87) from K. lancilimba, polysperlactones A (103), B (83), schisanlactone E (77) from K.polysperma, kadsuphilactone B (88) from K. philippinensis, kadsulactone A (87), renchanglactone A (89) from K.renchangiana, and kadsudilactone (84), kadsuphilactone B (88), and kadcoccilactone Q (90) from K. coccinea. (Table 10, Figure 10)

3) 14(13 \rightarrow 12)-Abeo-cycloartanes (M) From the leaves and stems of K. longipedunculata, longipedlactones A–C, E–F, H, L, M, J (106–114), longipedlactones D, G, I, N (115–118), K (119), O (120), and P (121) were isolated, which showed an unprecedented rearranged pentacyclic system. Some of them were also isolated from other species, such as K. ananosma, K. coccinea, and K. heteroclita. Moreover, kadcoccilactones A (123), B (124), and P (122) were also isolated from K. coccinea and K. heteroclita, respectively. (Table 11, Figure 11)

4) Norcycloartane (N) There was only one norcycloartane triterpenoid isolatd from the plants of genus *Kadsura* Kaempf. ex Juss. Micranoic acid B (125), an octanor-triterpenoid due to the loss of the entire C-17 side chain, was isolated from *K. angustifolia* (Sun et al, 2011). (Figure 12)

Fable 5	Intact lanostanes	(F) is	solated from	genus K	adsura	Kaempf.	ex Juss.
---------	-------------------	--------	--------------	---------	--------	---------	----------

No.	Compounds	Structures	Plant sources	References
1	epianwuweizic acid	3-βOH;24(Z) - $\Delta^{8(9)}$	K. longipedunculata	Liu et al, 1991;
			K. angustifolia	Chen et al, 2002b
2	anwuweizic acid	$3-\alpha OH, 24(Z) - \Delta^{8(9)}$	K. angustifolia	Chen et al, 2002b
3	coccinic acid	$3-0x0,24(Z) - \Delta^{9(11)}$	K. coccinea	Li and Xue, 1986;
				Song et al, 2010
4	isoanwuweizic acid	$3-\alpha OH, 24(Z)-\Delta^{9(11)}$	K. heteroclita	Dai et al, 1990
5	(24Z)-3-oxo-12α-acetoxyl	$3 \text{-} \text{oxo}, 12 \text{-} \alpha \text{OAc}, 24(\text{Z}) \text{-} \Delta^{8(9)}$	K. longipedunculata	Li et al, 1989
	anosta-8,24-dien-26-oic acid			
6	(24Z)-3-oxo-12α-hydroxyl	3-oxo,12- α OH,24(Z)- $\Delta^{8(9)}$	K. longipedunculata	Li et al, 1989
	anosta-8,24-dien-26-oic acid			
7	12β-acetoxycoccinic acid	3-oxo,12- β OAc,24(Z)- $\Delta^{9(11)}$	K. heteroclita	Li et al, 1989c
8	12β-hydroxycoccinic acid	3-oxo,12- β OH,24(Z)- $\Delta^{9(11)}$	K. heteroclita	Li et al, 1989c
9	12α-acetoxycoccinic acid	3-oxo,12- α OAc,24(Z)- $\Delta^{9(11)}$	K. heteroclita	Li et al, 1989c
10	12α-hydroxycoccinic acid	3-oxo,12- α OH,24(Z)- $\Delta^{9(11)}$	K. heteroclita	Li et al, 1989c
11	schisanhenric acid	$3-0x0,22-OAc,24(E)-\Delta^{9(11)}$	K. heteroclita	Li et al, 1989c
12	kadpolysperin D	3-αOAc,12-βCH ₃ ,20-βOH,24(Z)-Δ ⁸⁽⁹⁾	K. polysperma	Dong et al, 2012a
13	kadpolysperin N	$3-\alpha OAc, 12-\alpha OH, 24(Z)-\Delta^{8(9)}$	K. polysperma	Dong et al, 2012a
14	kadnanosic acid B	$3-oxo, 22-OAc, 24(E)-\Delta^{8(9)}$	K. ananosma	Yang et al, 2010a
15	3-hydroxy-12-acetoxycoccinic acid	$3-\alpha OH, 12-\alpha OAc, 24(E)-\Delta^{9(11)}$	K. coccinea	Li and Xue, 1986;
16	kadindutic acid	3-oxo, 12- β CH ₃ , 24(Z)- Δ ^{8(9), 13(17)}	K. induta	Ma et al, 2009

Figure 7 Structures of triterpenoids (F, G, and H) isolated from genus Kadsura Kaempf. ex Juss.

No.	Compound	Structure	Plant source	Reference
17	manwuweizic acid	27-=R=COOH,(24Z)-Δ ⁸⁽⁹⁾	K. polysperma	Dong et al, 2012a
			K. ananosma	Yang et al, 2010a
			K. renchangiana	Chen and Chen, 2008
18	kadsuric acid	27-=R=COOH,(24Z)-Δ ⁹⁽¹¹⁾	K. coccinea	Li et al, 2008
			K. renchangiana	Chen and Chen, 2008
19	kadpolysperin H	27-=R=COOH,(24Z)-Δ ⁸⁽⁹⁾	K. polysperma	Dong et al, 2012a
20	kadpolysperin B	27-=R=OAc,12- β CH ₃ ,(24Z)- Δ ^{8(9),13(17)}	K. polysperma	Dong et al, 2012a
21	kadsuracoccinic acid A	27-=R=COOH,24(E)- $\Delta^{17(20)}$	K. coccinea	Li et al, 2008
22	kadsuracoccinic acid C	27-=R=COOH,(24E)-Δ ⁹⁽¹¹⁾	K. coccinea	Li et al, 2008
23	seco-coccinic acid F	27-=R=COOH,24(E)-Δ ⁹⁽¹¹⁾	K. coccinea	Wang et al, 2008
24	kadpolysperin J	27-=R=OAc,(24Z)- $\Delta^{8(9)}$	K. polysperma	Dong et al, 2012a
25	kadpolysperin K	$27 = R = OAc, (24E) - \Delta^{8(9)}$	K. polysperma	Dong et al, 2012a
26	3,4-seco-(24Z)-lanosta-4(30),	27-=R=COOH,(24Z)-Δ ⁸⁽⁹⁾	K. heteroclita	Li et al, 1989b
	24,triene-3,26-dioic acid			
27	kadsuracoccinic acid B	R=COOH,8-βCH ₃ ,24(Z)-Δ ^{9(11),24(25)}	K. coccinea	Li et al, 2008
28	seco-coccinic acid K	R=OAc,23-oxo,24(Z)- $\Delta^{9(11)}$	K. coccinea	Wang et al, 2012a
29	seco-coccinic acid G	R=COOH,24(Z)-Δ ^{8(9),24(25)}	K. coccinea	Wang et al, 2012a
30	schisanlactone F		K. ananosma	Yang et al, 2010a
			K. longipedunculata	Liu and Pan, 1991
31	coccinilactone A		K. coccinea	Wang et al, 2008
32	seco-coccinic acid J		K. coccinea	Wang et al, 2012a
33	kadnanosic acid A		K. ananosma	Yang et al, 2010a
34	kadnanolactone D	R=COOCH ₃	K. ananosma	Yang et al, 2010a
35	kadcoccilactone R	R=COOH	K. ananosma	Yang et al, 2010a
			K. coccinea	Gao et al. 2008c

 Table 6
 3,4-Seco-lanostanes (G) isolated from genus Kadsura Kaempf. ex Juss.

Table 7 18(13→12)-Abeo-lanostanes (H) isolated from genus *Kadsura* Kaempf. ex Juss.

No.	Compounds	Structures	Plant sources	References
36	kadpolysperin C	3-αOAc,12-βCH ₃ ,20-βOH,24(Z)	K. polysperma	Dong et al, 2012a
37	kadpolysperin L	3-0x0,2-αOAc,12-αOH,24(Z)	K. polysperma	Dong et al, 2012a
38	kadpolysperin M	3-oxo,12-αOH,24(Z)	K. polysperma	Dong et al, 2012a
39	20(R),24(E)-3-oxo-9β-lanosta-	3-oxo	K. coccinea	Ban et al, 2009
	7,24-dien-26-oic acid			
40	ananosic acid A	$R_1=H, R_2=OH$	K. ananosma	Chen et al, 2001
			K. polysperma	Dong et al, 2012a
41	kadpolysperin E	$R_1 = R_2 = O$	K. polysperma	Dong et al, 2012a
42	kadpolysperin F	$R_1=OH, R_2=H$	K. polysperma	Dong et al, 2012a
43	ananosic acid B	$R_1=H, R_2=OAc$	K. ananosma	Chen et al, 2004b
			K. polysperma	Dong et al, 2012a
44	ananosic acid C	$R_1 = R_2 = O$	K. ananosma	Chen et al, 2004b
			K. polysperma	Dong et al, 2012a
45	ananosic acid D	$R_1=H, R_2=OH$	K. polysperma	Dong et al, 2012a
46	kadpolysperin G	$R_1=OH, R_2=H$	K. polysperma	Dong et al, 2012a
47	kadpolysperin I	26-COOH,24(Z)Δ ²⁴⁽²⁵⁾	K. polysperma	Dong et al, 2012a
48	seco-coccinic acid F	$\Delta^{24(25)}$	K. coccinea	Wang et al, 2008
49	seco-coccinic acid A	23-oxo	K. coccinea	Wang et al, 2008
50	seco-coccinic acid B	23-oxo, $\Delta^{24(25)}$	K. coccinea	Wang et al, 2008
51	seco-coccinic acid E	24- β OH, $\Delta^{25(26)}$	K. coccinea	Wang et al, 2008
52	seco-coccinic acid C	23-oxo, R=OH	K. coccinea	Wang et al, 2008
53	seco-coccinic acid D	$\Delta^{23(24)}$, R=OH	K. coccinea	Wang et al, 2008
54	seco-coccinic acid I	24-βОН, R=ОН	K. coccinea	Wang et al, 2012c

Figure 8 Structures of triterpenoids (H) isolated from genus Kadsura Kaempf. ex Juss.

N		<u></u>		D.C.
NO.	Compounds	Structures	Plant sources	References
55	neokadsuranic acid A	3-oxo,(24Z)- $\Delta^{9(11),13(18)}$	K. heteroclita	Kangouri et al, 1989
56	3-hydroxy-neokadsuranic acid A	3-OH,13-oxo,Δ ⁹⁽¹¹⁾	K. coccinea	Song et al, 2010
57	neokadsuranic acid B	3-oxo,(24Z)- $\Delta^{8(9),13(18)}$	K. longipedunculata	Li et al, 1989a
			K. coccinea	Shinomiya et al, 2009
58	neokadsuranic acid C	3-oxo,13-βOH,13-αCH ₃ , (24Z)-Δ ⁸⁽⁹⁾	K. longipedunculata	Li et al, 1989a
59	kadpolysperin A	3-αOAc,20-αCH ₃ ,13-CH ₃ , (24Z)-Δ ^{7(8),13(17)}	K. polysperma	Dong et al, 2012a
60	seco-neokadsuranic acid A		K. heteroclita	Li et al, 1989b

Table 8 14(13→12)-Abeo-lanostanes (I) isolated from genus Kadsura Kaempf. ex Juss.

Table 9 Intact cycloartanes (K) isolated from genus Kadsura Kaempf. ex Juss.

No.	Compounds	Structures	Plant sources	References
63	isoschizandrolic acid	R ₁ =COOH, R ₂ =H, 3-βOH	K. sp.(s)	Liu and Huang, 1988
64	heteroclic acid	R ₁ =COOH, R ₂ =OAc	K. heteroclita	Wang et al, 2006a
			K. coccinea	Gao et al, 2008c;
65	cycloartenone	R ₁ =CH ₃ , R ₂ =H	K. heteroclita	Wang et al, 2006a
66	schisandronic acid	R_1 =COOH, R_2 =H	K. coccinea	Gao et al, 2008c;
			K. heteroclita	Wang et al, 2006a
67	kadsulactone		K. longipedunculata	Wang et al, 2006a

62 (J)

67 (K)

Figure 9 Structures of triterpenoids (I, J, and K) isolated from genus Kadsura Kaempf. ex Juss.

63-66 (K)

Ŕ₁

No.	Compounds	Structures	Plant sources	References
68	kadsuranic acid A	$(24Z)-\Delta^{17(20)}$	K. heteroclita	Xu et al, 2010a
69	changnanic acid	$(24Z)-\Delta^{6(7)}$	K.longipedunculata	Liu et al, 1991
			K. heteroclita	Wang et al, 2006a
70	nigranoic acid	(24 <i>Z</i>)	K. heteroclita	Wang et al, 2006a
			K. angustifolia	Sun et al, 2006a
71	angustific acid B		K. angustifolia	Sun et al, 2006a
72	kadnanolactone B		K. ananosma	Yang et al, 2010a
73	heteroclitalactone A	R ₁ =OH, R ₂ =OAc	K. heteroclita	Wang et al, 2006a
74	heteroclitalactone B	R ₁ =OCH ₃ , R ₂ =OAc	K. heteroclita	Wang et al, 2006a
75	heteroclitalactone C	R ₁ =EtO, R ₂ =OAc	K. heteroclita	Wang et al, 2006a
76	heteroclitalactone F	R ₁ =OCH ₃ , R ₂ =H	K. heteroclita	Wang et al, 2006a
77	schisanlactone E	$R_1=OH, R_2=H$	K. heteroclita	Wang et al, 2006a
			K. longipedunculata	Jia et al, 2007
			K. polysperma	Pu et al, 2007
78	(8R,9S,22R)-3-ethoxy-3-oxo-9,19-	$\Delta^{4(28)}$	K. heteroclita	Wang et al, 2006a
	cyclo-3,4-secolanosta-4(28),24-dien-			
	26-oic acid 22,26-lactone			
79	(8R,9S,22R)-3-Ethoxy-3-oxo-9,19-	$\Delta^{4(5)}$	K. heteroclita	Wang et al, 2006a
	cyclo-3,4-secolanosta-4,24-dien-26-			
	oic acid 22,26-Lactone			
80	(8R,9S,22R)-3-ethoxy-3-oxo-9,19-cyclo-	$\Delta^{4(28),6}$	K. heteroclita	Wang et al, 2006a
	3,4-secolanosta-4(28),6,24-trien-26-oic			
	acid 22,26-lactone			
81	kadsulactone acid		K. longipedunculata	You et al, 1997
82	lancilactone C		K. lancilimba	Chen et al, 1999a
83	polysperlactone B		K. polysperma	Jia et al, 2007
84	kadsudilactone	9,19-cyclo	K. longipedunculata	Gao et al, 2008c
			K. coccinea	Luo et al, 2009
			K. heteroclite	
85	kadnanolactone C	19-βCH ₃ ,Δ ⁸⁽⁹⁾	K. ananosma	Yang et al, 2010a
86	schisanlactone B	9,19-cyclo, $\Delta^{1(2)}$	K. heteroclite	Wang et al, 2007
87	kadsulactone A	6-βOH, 9,19-cyclo, $\Delta^{1(2)}$	K. lancilimba	Chen et al, 1999a
			K. renchangiana	Chen et al, 2008
88	kadsuphilactone B		K. philippinensis	Shen et al, 2005a
			K. coccinea	Gao et al, 2008c
89	renchanglactone A	6-βОН,	K. renchangiana	Chen et al 2008
90	kadcoccilactone Q	5-αН,6-βОН,8-βН	K. coccinea	Gao et al, 2008c
91	heteroclitalactone D	12-αOAc	K. heteroclita	Wang et al, 2006a
92	heteroclitalactone E	12- α OAc,20-OH, $\Delta^{6(7)}$	K. heteroclita	Wang et al, 2006a
93	schisanlactone A		K. longipedunculata	Sun et al, 2006a;
94	lancilactone A	6-βОН	K. lancilimba	Chen et al, 1999a
95	lancilactone B	$\Delta^{6(7)}$	K. lancilimba	Chen et al, 1999a
96	heteroclitalactone G	$R_1 = R_2 = R_3 = H_2 \Delta^{6(7)}$	K. heteroclita	Wang et al, 2007
97	heteroclitalactone H	R_1 =OH, R_2 = R_3 =H, $\Delta^{6(7)}$	K. heteroclita	Wang et al, 2007
98	heteroclitalactone I	$R_1 = R_2 = OH, R_3 = H, \Delta^{6(7)}$	K. heteroclita	Wang et al, 2007
99	heteroclitalactone J	R_1 =OH, R_2 =OAc, R_3 =H, $\Delta^{6(7)}$	K. heteroclita	Wang et al, 2007
100	heteroclitalactone K	R_1 =OH, R_2 =O, R_3 =H, $\Delta^{6(7)}$	K. heteroclita	Wang et al, 2007
101	heteroclitalactone L	R ₁ =H, R ₂ =H, R ₃ =OH	K. heteroclita	Wang et al, 2007
102	heteroclitalactone M		K. heteroclita	Wang et al, 2007
103	polysperlactone A		K. polysperma	Jia et al, 2007
104	angustifodilactone A	R=OH	K. angustifolia	Sun et al, 2011

angustifodilactone B

105

R=H

K. angustifolia

Sun et al, 2011

 Table 10
 3,4-Seco-cycloartanes (L) isolated from genus Kadsura Kaempf. ex Juss.

Figure 10 Structures of triterpenoids (L) isolated from genus Kadsura Kaempf. ex Juss.

5) Kadlongilactone-type triterpenoids (O) Eleven kadlongilactone-type triterpenoids were isolated from the plants of genus Kadsura Kaempf. ex Juss. Kadlongilactones A–F (126–131) had been isolated from the leaves and stems of K. longipedunculata, and some of them were also isolated from K. coccinea and K. angustifolia. Since these compounds featured an unprecedented rearranged hexacyclic system, they were assigned to a new group, named kadlongilactone-type triterpenoids. Subsequent studies on K. coccinea led to the isolation of other five compounds, kadcoccilactones K–O (132–136). (Table 12, Figure 12)

2.2.3 Nortriterpenoids (P)

In earlier years, more than 60 highly oxygenated polycyclic nortriterpenoids had been isolated from the plants of genus *Schisandra* Michx., and some scholars assigned this series of unique nortriterpenoids as *Schisandra* nortriterpenoids (Xiao et al, 2008). But the lastest phytochemical studies showed 19 compounds were isolated from *Kadsura* plants. Kadcoccilactones A–F (146–151), H–J (152–154) and wuweizidilactone B (155) had been isolated from *K. coccinea* (Gao et al, 2008a). Another eight compounds, named

kadnanolactones A (137), F (138), G (139), H (140), I (141), micrandilactones B (143), C (142), and wuweizidilactone H (144), were isolated from *K. ananosma* (Yang et al, 2010a). Moreover, kadsuphilactone A (145) was isolated from *K. philippinensis* (Shen et al, 2005a). (Figure 13)

2.2.4 Others triterpenoids (Q)

There were two other-type triterpenoids including angustific acid A (**156**) and kadnanolactone E (**157**) isolated from *K. angustifolia* (Sun et al, 2011) and *K. ananosma* (Yang et al, 2010a), respectively. Three new triterpenoids, kadcotriones A–C (**158–160**) were isolated from *K. coccinea* (Liang et al, 2013). (Figure 14)

2.3 Others

Some other kinds of chemical constituents were also isolated from genus *Kadsura* Kaempf. ex Juss. including flavonoids, sesquiterpenoids, etc. Seven flavonoids were isolated and identified from *K. oblongifolia* (Liu et al, 2009a), including kaempferol-3-O- α -L-arabofuranoside, kaempferol-3-O- α -D-arabofuranoside, quercetin-3-O- α -L-arabofuranoside,

No.	Compounds	Structures	Plant sources	References
106	longipedlactone A	$R_1 = H, R_2 = H, \Delta^{16(17)}$	K. longipedunculata	Pu et al, 2006
			K. ananosma	Yang et al, 2010
			K. coccinea	
107	longipedlactone J	$R_1 = OAc, R_2 = H, \Delta^{16(17)}$	K. heteroclita	Pu et al, 2008b
			K. ananosma	
108	longipedlactone E	$R_1 = H, R_2 = OH, \Delta^{16(17)}$	K. longipedunculata	Pu et al, 2006
			K. coccinea	Gao et al, 2008c
109	longipedlactone F	$R_1 = OH, R_2 = H, \Delta^{16(17)}$	K. longipedunculata	Pu et al, 2006
			K. coccinea	Gao et al, 2008c
			K. ananosma	
110	longipedlactone B	R ₁ =H, R ₂ =H,17-βH	K. longipedunculata	Pu et al, 2006
			K. coccinea	Gao et al, 2008c
111	longipedlactone C	R ₁ =H, R ₂ =H,17-βOH	K. longipedunculata	Pu et al, 2006
			K. coccinea	Gao et al, 2008c
112	longipedlactone M	R ₁ =OAc, R ₂ =H,17-βOH	K. ananosma	Yang et al, 2010
113	longipedlactone L	R ₁ =OAc, R ₂ =H, 17-βH	K. ananosma	Yang et al, 2010
			K. heteroclita	
114	longipedlactone H	R ₁ =OH, R ₂ =H,17-βOH	K. longipedunculata	Pu et al, 2006
			K. ananosma	
115	longipedlactone D	$R=H,\Delta^{16(17)}$	K. longipedunculata	Pu et al, 2006
116	longipedlactone G	R=OH, $\Delta^{16(17)}$	K. longipedunculata	Pu et al, 2006
117	longipedlactone I	R=OH,17-βOH	K. longipedunculata	Pu et al, 2006
118	longipedlactone N	R=OAc	K. ananosma	Yang et al, 2010
119	longipedlactone K		K. ananosma	Yang et al, 2010
120	longipedlactone O	R_1 =OAc, R_2 =H	K. ananosma	Yang et al, 2010
121	longipedlactone P	R_1 =OAc, R_2 =OH	K. ananosma	Yang et al, 2010
122	kadcoccilactone P	$R_1=H, R_2=OH$	K. coccinea	Gao et al, 2008c
123	kadheterilactone A		K. heteroclita	Xu et al, 2010a
124	kadheterilactone B		K. heteroclita	Xu et al, 2010a

Table 11 14(13→12)-abeo-cycloartanes (M) isolated from genus *Kadsura* Kaempf. ex Juss.

Figure 11 Structures of triterpenoids (M) isolated from genus Kadsura Kaempf. ex Juss.

quercetin-3-O- α -D-arabinopyranoside, quercetin-3-O- β -D-glucopyranoside, quercetin, and kaempferol. In addition, two guaianolide-type sesquiterpenoids (4 β ,9 β -dihydroxy-1 α ,5 α -H-guaia-6,10(14)-dien and 4 β ,9 β ,10 α -trihydroxy-1 α ,5 α -Hguaia-6-en) were isolated and identified from *K. interior* (Dong et al, 2013).

3. Discussion

Lignans and triterpenoids were the main chemical constituents from the plants of genus *Kadsura* Kaempf. ex Juss. as summarized above. According to our previous investigation, lignans and triterpenoids exhibited various activities, including

Figure 12	Structures of triterpenoids (N and O) isolated from genus Kadsura Kae	empf. ex Juss.
0	• • • • •	-

Table 12	Kadlongilactone-type	e triterpenoids (O) isolated from g	genus <i>Kadsura</i> Kaen	pf. ex Juss.
			/		

No.	Compounds	Structures	Plant sources	References
126	kadlongilactone A	R=aOH	K. longipedunculata	Gao et al, 2008c
			K. coccinea	Pu et al, 2007a
			K. angustifolia	Pu et al, 2005
127	kadlongilactone C	R=aOCH ₃	K. longipedunculata	Pu et al, 2007a
128	kadlongilactone D	R=βOH	K. longipedunculata	Gao et al, 2008c
			K. coccinea	Pu et al, 2007a
129	kadlongilactone E	R=BOCH3	K. longipedunculata	Pu et al, 2007a
130	kadlongilactone F	16,17-cyclo	K. longipedunculata	Pu et al, 2007a
131	kadlongilactone B	R=oxo	K. longipedunculata	Gao et al, 2008c
			K. angustifolia	Pu et al, 2005
			K. coccinea	
132	kadcoccilactone K	19- β OCH ₃ , $\Delta^{1(10)}$	K. coccinea	Gao et al, 2008c
133	kadcoccilactone L	$\Delta^{1(2),10(19),}$	K. coccinea	Gao et al, 2008c
134	kadcoccilactone M	10,19-cyclo, $\Delta^{1(2)}$	K. coccinea	Gao et al, 2008c
135	kadcoccilactone N	$10,19$ -cyclo, 16 - α OH, $\Delta^{13(17)}$	K. coccinea	Gao et al, 2008c
136	kadcoccilactone O	$16,17$ -cyclo,13- β OCH ₃ , $\Delta^{10(19)}$	K. coccinea	Gao et al, 2008c

′н Уон

143

НQ

н•

HO

H

0

Ĥ

H

0

он

0

OH

144

ò

'H

ó

Figure 13

Structures of triterpenoids (P) isolated from genus Kadsura Kaempf. ex Juss.

Figure 14 Structures of triterpenoids (Q) isolated from genus Kadsura Kaempf. ex Juss.

anti-HIV, antitumor, antihepatitis, anti-oxidant, anti-platelet aggregation, immunomodulatory activities, neuroprotective effect, depigmentation effect, etc (Wang et al, 2013; Goh et al, 2013; Liu et al, 2014). Some promising compounds with good bioactivities were emerged, for example anti-HIV activity (gomisin G, kadsulignan N, etc), antitumor activity (ananosic acids A–C, etc), anti-oxidant activity (kadsuphilol C, kadsurin, etc), antihepatitis activity (acetylepigomisin R, etc), antiplatelet aggregation activity (heteroclitin D, etc), neuroprotective effect (ananolignan F, ananonin M, etc), and NO production inhibitory activity (kadsuralignans C, G, etc) (Liu et al, 2014).

Genus *Kadsura* Kaempf. ex Juss. is a good source with considerable characteristic chemical constituents and potential bioactivities. With the development and improvement of pharmacological models, some valuable lead compounds would be acquired by continuous and in-depth studies. Moreover, some pharmacophylogenetics and structure-activity relationships would greatly increase the opportunity of finding new and promising lead compounds and promote the reasonable development and utilization of the plants in genus *Kadsura* Kaempf. ex Juss.

4. Conclusion

Phytochemical studies on the plants of genus *Kadusra* Kaempf. ex Juss. led to the isolation and identification of more than 450 compounds, including 285 lignans and 160 triterpenoids. Lignans and triterpenoids are the main characteristic constituents from the plants of genus *Kadsura* Kaempf. ex Juss., and some of them exhibit unprecedented structural skeleton and exciting bioactivities, which has brought great interests and challenges for phytochemists and pharmacologists. Genus *Kadsura* Kaempf. ex Juss., the economically and medicinally important plants, consists of 16 species in the world, but only about eight species are investigated in-depth. So it is necessary to further carry out the chemical, pharmacological, and pharmacophylogenetic study on the other plants of genus *Kadsura* Kaempf. ex Juss.

References

- Ban, NK, Bui VT, Phan VK, Chau VM, Nguyen XC, Nguyen XN, Hoang TH, 2009. Dibenzocyclooctadiene lignans and lanostane derivatives from the roots of *Kadsura coccinea* and their protective effects on primary rat hepatocyte injury induced by t-butyl hydroperoxide. *Planta Med* 75(11): 1253-1257.
- Chen DF, 2007. Bioactive constituents of *Kadsura* medicinal plants. *Chin J Nat Med* 5: 15-19.
- Chen DF, Xu GJ, Yang XW, Hattori M, Tezuka Y, Kikuchi T, Namba T, 1992. Dibenzocyclooctadiene lignans from *Kadsura heteroclita. Phytochemistry* 31(2): 629-632.
- Chen DF, Zhang SX, Chen K, Zhou BN, Wang P, Cosentino LM, Lee KH, 1996. Two new lignans, interiotherins A and B, as anti-HIV principles from *Kadsura interior*. J Nat Prod 59(11): 1066-1068.
- Chen DF, Zhang SX, Kozuka M, Sun QZ, Feng J, Wang Q, Mukainaka T, Nobukuni Y, Tokuda H, Nishino H, 2002a. Interiotherins C and D, two new lignans from *Kadsura interior* and antitumor-promoting effects of related neolignans on

epstein-barr virus activation. J Nat Prod 65(9): 1242-1245.

- Chen DF, Zhang SX, Wang HK, Zhang SY, Sun QZ, Cosentino LM, Lee KH, 1999a. Novel anti-HIV lancilactone C and related triterpenes from *Kadsura lancilimba*. J Nat Prod 62(1): 94-97.
- Chen DF, Zhang SX, Wang HK, Zhang SY, Sun QZ, Cosentino LM, Lee KH, 1999b. Novel anti-HIV lancilactone C and related triterpenes from *Kadsura lancilimba*. J Nat Prod 62(1): 94-97.
- Chen M, Chen DF, 2008. Renchanglactone A, a new triterpenoid lactone from *Kadsura renchangiana*. Nat Prod Res 22(3): 203-207.
- Chen M, Jia ZW, Chen DF, 2006. Heteroclitin H, a new lignan from *Kadsura heteroclita. J Asian Nat Prod Res* 8(7): 643-648.
- Chen M, Liao ZX, Chen DF, 2004a Four new dibenzocyclooctene lignans from Kadsura renchangiana. Helv Chim Acta 87(6): 1368-1376.
- Chen YG, Lin ZW, Cao L, Sun HD, Qin GW, Xie YY, 2002b. Antifertility triterpenoid acids from Kadsura angustifolia. Chin J Mod Appl Pharm 19(2): 103-105.
- Chen YG, Hai LN, Liao XR, Qin GW, Xie YY, Halaweish F, 2004b. Ananosic acids B and C, two new 18 (13→12)-abeo-lanostane triterpenoids from Kadsura a nanosma. J Nat Prod 67(5): 875-877.
- Chen YG, Wang P, Lin ZW, Sun HD, Qin GW, Xie YY, 1998. Dibenzocyclooctadiene lignans from *Kadsura angustifolia*. *Phytochemistry* 48(6): 1059-1062.
- Chen YG, Xie YY, Cheng KF, Cheung KK, Qin GW, 2001. Compounds from Kadsura ananosma. Phytochemistry 58(8): 1277-1280.
- Chen YP, Liu R, Hsu HY, Yamamura S, Shizuri Y, Hirata Y, 1973. The structures and conformations of two new lignans, kadsurin and kadsurarin. *Tetrahedron Lett* 14(11): 4257-4260.
- Chen YP, Liu RL, Hsu HY, Yamamura S, Shizuri Y, Hirata Y, 1977. The new schizandrin-type lignans, kadsurin and kadsurarin. *Bull Chem Soc Jpn* 50: 1824-1826.
- Cheng YB, Lin YC, Taha KA, Liou SS, Lee GC, Kuo YH, Shen YC, 2011. Seven new lignan esters from Kadsura philippinensis. Helv Chim Acta 94(1): 148-158.
- Dai P, Han GQ, Arison B, 1990. A new triterpenoid form *Kadsllra Heteroclita* (Roxb) Craib. *Chem Res Chin Univ* 4: 423-424.
- Ding ZH, Luo SD, 1990. Study on new lignans from Kadsura interior A. C. Smith. Acta Chim Sin 11: 1075-1079.
- Dong K, Pu JX, Du X, Li XN, Sun HD, 2013. Two new guaianolide-type sesquiterpenoids from *Kadsura interior*. Chin Chem Lett 2(2): 111-113.
- Dong K, Pu JX, Du X, Su J, Li XN, Yang JH, Zhao W, Li Y, Sun HD, 2012a. Kadpolysperins A–N, lanostane triterpene acids possessing rich structure types from *Kadsura polysperma*. *Tetrahedron* 68(24): 4820-4829.
- Dong K, Pu JX, Zhang HY, Du X, Li XN, Zou J, Yang JH, Zhao W, Tang XC, Sun HD, 2012b. Dibenzocyclooctadiene lignans from *Kadsura polysperma* and their antineurodegenerative activities. J Nat Prod 75(2): 249-256.
- Fujian Food and Drug Administration, 2006. Chinese materia medica standards of Fujian province. HaiFeng Press, Fujian.
- Gao XM, Pu JX, Huang SX, Lu Y, Lou LG, Li RT, Xiao WL, Chang Y, Sun, HD, 2008a. Kadcoccilactones A–J, triterpenoids from Kadsura coccinea. J Nat Prod 71(2): 1182-1188.
- Gao XM, Pu JX, Huang SX, Yang LM, Huang H, Xiao WL, Zheng YT, Sun HD, 2008b. Lignans from *Kadsura angustifolia*. J Nat Prod 71(4): 558-563.
- Gao XM, Pu JX, Xiao WL, Huang SX, Lou LG, Sun HD, 2008c. Kadcoccilactones K–R, triterpenoids from *Kadsura coccinea*. *Tetrahedron* 64(11): 11673-11679.

- Gao XM, Pu JX, Zhao Y, Yang LB, Sun HD, 2012. Lignans from Kadsura angustifolia and Kadsura coccinea. J Asian Nat Prod Res 14(2): 129-134.
- Goh MJ, Lee HK, Cheng L, Kong DY, Yeon JH, He QQ, Cho JC, Na YJ. 2013. Depigmentation effect of kadsuralignan f on melan-a murine melanocytes and human skin equivalents. *Int J Mol Sci* 14(1):1655-1666.
- Guangdong Food and Drug Administration, 2004. *Chinese materia medica standards of Guangdong province*. Guangdong Science and Technology Press, Guangzhou.
- Han GQ, Dai P, Xue R, Arison BH, Lankin DC, Hwang SB, 1992. Dibenzocyclooctadiene lignans with platelet-activating factor (PAF) antagonist activity from *Kadsura heteroclita*. J Chin Pharm Sci 1: 20-27.
- Hu W, Li L, Wang Q, Ye Y, Fan J, Li H, Kitanaka S, Li H, 2012. Dibenzocyclooctadiene lignans from *Kadsura coccinea*. J Asian Nat Prod Res 14(4): 364-369.
- Huang ZH, Lu Y, Liu YN, Bastow KF, Lee KH, Chen DF, 2011. Kadsufolins A–D and related cytotoxic lignans from *Kadsura* oblongifolia. Helv Chim Acta 94(3): 519-527.
- Jia ZW, Liao ZX, Chen DF, 2005. Two new dibenzocyclooctene lignans from the water extract of *Kadsura* spp. *Helv Chim Acta* 88(8): 2288-2293.
- Jia ZW, Lu Y, Liao ZX, Chen DF, 2007. Two new triterpene lactones from the stems of *Kadsura polysperma*. *Helv Chim Acta* 90(6): 1236-1243.
- Kangouri K, Miyoshi T, Kawashima A, Ikeda A, Mizutani T, Omura S, Li LN, Hong X, 1989. Isolation and structure elucidation of neokadsuranic acid A, the first triterpenoid with the 14(13→12) abeo lanostane skeleton, and (24Z)-3-oxo-lanosta-8,24-dien-26-oic acid1. *Planta Med* 55: 297.
- Kuo YH, Li SY, Huang RL, Wu MD, Huang HC, Lee KH, 2001a. Schizarin B, C, D, and E, four new lignans from *Kadsura matsudai* and their antihepatitis activities. J Nat Prod 64(4): 487-490.
- Kuo YH, Li SY, Wu MD, Huang RL, Yang KL, Chen CF, 1999. A new anti-HBeAg lignan, kadsumarin A, from *Kadsura matsudai* and *Schizandra arisanensis*. Chem Pharm Bull 47(7): 1047-1048.
- Kuo YH, Wu MD, Huang RL, Kuo LMY, Hsu YW, Liaw CC, Hung CC, Shen YC, Ong CW, 2005. Antihepatitis activity (anti-HBsAg and anti-HBeAg) of C₁₉ homolignans and six novel C₁₈ dibenzocyclooctadiene lignans from *Kadsura japonica*. *Planta Med* 71(07): 646-653.
- Li HR, Feng YL, Yang ZG, Wang J, Daikonya A, Kitanaka S, Xu LZ, Yang SL, 2006. New lignans from *Kadsura coccinea* and their nitric oxide inhibitory activities. *Chem Pharm Bull* 54(7): 1022-1025.
- Li HR, Wang LY, Miyata S, Kitanaka S, 2008. Kadsuracoccinic acids A–C, ring-A seco-lanostane triterpenes from *Kadsura coccinea* and their effects on embryonic cell division of xenopus laevis. J Nat Prod 71(4): 739-741.
- Li HR, Wang LY, Yang ZG, Kitanaka S, 2007. Kadsuralignans H-K from *Kadsura coccinea* and their nitric oxide production inhibitory effects. *J Nat Prod* 70(12): 1999-2002.
- Li L, Xue H, Ge D, Kangouri K, Miyoshi T, Omura S, 1989a. Isolation and structure elucidation of seco-neokadsuranic acid A and 3,4-seco-(24Z)-lanosta-4(30),8,24-triene-3,26-dioic acid. *Planta Med* 55: 300-302.
- Li L, Xue H, Ge D, Kangouri K, Miyoshi T, Omura S, 1989b. Triterpenoid acids from *Kadsura heteroclita*. part II. isolation and structure elucidation of seco-neokadsuranic acid A and 3,4seco-(24Z)-lanosta-4(30),8,24-triene-3,26-dioic acid. *Planta Med* 55: 300-302.

- Li LN, Chen Y, 1986. Further dibenzocyclooctadiene lignans from roots and stems of *Kadsura longipedunculata*. *Planta Med* 5: 410.
- Li LN, Hong X, Kangouri K, Kawashima A, Omura S, 1989c. Triterpenoid acids from *Kadsura heteroclita*. 3. isolation and structure elucidationof 12-beta-acetoxycoccinic acid, and 12-alpha-hydroxycoccinic acid. *Planta Med* 6: 548-550.
- Li LN, Qi XJ, Ge DL, Kung M, 1988. Neokadsuranin, a tetrahydrofuranoid dibenzocyclooctadiene lignan from stems of *Kadsura coccinea*. *Planta Med* 54: 45-46.
- Li LN, Xue H, 1986. Triterpenoids from roots and stems of Kadsura coccinea. Planta Med 52: 492-493.
- Li LN, Xue H, 1990. Dibenzocyclooctadiene lignans possessing a spirobenzofuranoid skeleton from *Kadsura coccinea*. *Phytochemistry* 29: 2730-2732.
- Li LN, Xue H, Li X, 1991. Three new dibenzocyclooctadiene lignans from Kadsura longipedunculata. Planta Med 57: 169-171.
- Li LN, Xue H, Kangouri K, Ikeda A, Omura S, 1989. Triterpenoid acids from *Kadsura longipedunculata* neokadsuranic acids B and C: two novel triterpenoids with 14(13→12)abeo-lanostane skeletons. *Planta Med* 55(03): 294-296.
- Li LN, Xue H, Tan R, 1985. Dibenzocyclooctadiene lignans from roots and stems of *Kadsura coccinea*. *Planta Med* 51: 297-300.
- Li SY, Wu MD, Wang CW, Kuo YH, Huang RL, Lee KH, 2000. A novel anti-HBeAg homolignan, taiwanschirin D from Kadsura matsudai. Chem Pharm Bull 48(12): 1992-1993.
- Li XG, Luo HM, 2002. Study on chemical constituents of the essential oil from *Kadusra heteroclita* (Roxb.) Craib. *Chin J Med Chem* 12(2): 89-90.
- Liang CQ, Shi YM, Li XY, Luo RH, Li Y, Zheng YT, Zhang HB, Xiao WL, Sun HD, 2013. Kadcotriones A–C: tricyclic triterpenoids from *Kadsuta coccinea*. J Nat Prod 76(12): 2350-2354.
- Lin YC, Cheng YB, Liaw CC, Lo IW, Kuo YH, Chiang MY, Shen YC, 2013. New lignans from the leaves and stems of *Kadsura philippinensis*. *Molecules* 18(6): 6573-6583.
- Liu HT, Qi YD, Xu LJ, Peng Y, Zhang BG, Xiao PG, 2012. Ethno-pharmacological investigation of *Schisandraceae* plants in China. *China J Chin Mater Med* 37(10): 1353-1359.
- Liu HT, Xu LJ, Peng Y, Li RT, Xiao PG, 2009a. Chemical study on ethyl acetate soluble portion of *Kadsura oblongifolia*. *China J Chin Mater Med* 34(7): 864-866.
- Liu HT, Xu LJ, Peng Y, Yang JS, Yang XW, Xiao PG, 2009b. Complete assignments of ¹H and ¹³C NMR data for new dibenzocyclooctadiene lignans from *Kadsura oblongifolia*. *Magn Reson Chem* 47(7): 609-612.
- Liu HT, Zhang BG, Peng Y, Qi YD, Xu LJ, Yang XW, Xiao PG, 2011. New spirobenzofuranoid dibenzocyclooctadiene lignans from Kadsura oblongifolia. Fitoterapia 82(5): 731-734.
- Liu JS, Huang MF, 1988. The isolation and structure of (+)-anwulignan. *Acta Chim Sin* 49: 502-506.
- Liu JS, Huang MF, 1992. Kadsulignans E–G from Kadsura longipedunculata. Phytochemistry 31(3): 657-960.
- Liu JS, Huang MF, Zhou HX, 1991. Kadsulignan C and D, two novel lignans from *Kadsura longipedunculata*. Can J Chem 69(9): 1403-1407.
- Liu JS, Li L, 1993. Schisantherins L–O and acetylschisantherin L from Kadsura coccinea. Phytochemistry 32: 1293-1296.
- Liu JS, Li L, 1995a. Kadsulignans L–N, three dibenzocyclooctadiene lignans from Kadsura coccinea. Phytochemistry 38(1): 241-245.
- Liu JS, Li L, 1995b. Schisantherins P and Q, two lignans from *Kadsura coccinea*. *Phytochemistry* 38(4): 1009-1011.
- Liu JS, Li L, Yu HG, 1989. Kadsulignan A and B, two novel lignans from *Kadsura coccinea*. Can J Chem 67(4): 682-684.

- Liu JS, Pan YP, 1991. Isolation and structures of schisantherin J and schisanlactone F. *Acta Chim Sin* 49: 308-312.
- Liu JS, Zhou HX, 1991. Isolation and structures of schisanlignone A, B and butyrybinankadsurin A. *Acta Chim Sin* 49: 412-416.
- Liu JS, Qi YD, Lai HW, Zhang J, Jia XG, Liu HT, Zhang BG, Xiao PG, 2014. Genus *Kadsura*, a good source with considerable characteristic chemical constituents and potential bioactivities. *Phytomedicine* 21:1092–1097.
- Liu JS, Zhou HX, Li L, 1992. Kadsulignans H, I, J and K from a *Kadsura* species. *Phytochemistry* 31(4): 1379-1382.
- Liu XJ, Wang BK, 1989. Isolation and structures of lengfantuanjing I. Chin Tradit Herb Drugs 20: 2-3.
- Lu Y, Chen DF, 2006. Kadsutherins A–C: Three new dibenzocyclooctane lignans from the stems of *Kadsura* species. *Helv Chim Acta* 89(5): 895-901.
- Lu Y, Chen DF, 2008. Kadsutherin D, a new dibenzocyclooctadiene lignan from Kadsura species. Nat Prod Res 22(15): 1344-1349.
- Luo YQ, Wang SJ, Zhao JF, Yang XD, Li L, 2009. Study on the chemical constituents of *Kadsura heteroclita*. J Yunnan Univ: Nat Sci Ed 31(3): 406-409.
- Ma WH, Ma XL, Huang H, Zhou P, Chen DF, 2007. Dibenzocyclooctane lignans from the stems of *Kadsura induta* and their antiviral effect on hepatitis B virus. *Chem Biodivers* 4(5): 966-972.
- Ma WH, Ma XL, Lu Y, Chen DF, 2009. Lignans and triterpenoids from the stems of *Kadsura induta*. *Helv Chim Acta* 92(4): 709-715.
- Minh PT, Lam do T, Tien NQ, Tuan NN, Nhung VP, Van Hai N, Van Kiem P, Nhiem NX, Van Minh C, Ju PS, Hyun KS. 2014. New schiartane-type triterpene from Kadsura heteroclita and their cytotoxic activities. *Nat Prod Commun* 9(3):373-374.
- Ookawa N, Ikeya Y, Sugama K, Taguchi H, Maruno M, 1995. Dibenzocyclooctadiene lignans from Kadsura japonica. *Phytochemistry* 39(5): 1187-1191.
- Ookawa N, Ikeya Y, Taguchi H, Yosioka I, 1981. The constituents of *Kadsura japonica* Dunal. I. The structures of three new lignans, acetyl-, angeloyl-and caproyl-binankadsurin A. *Chem Pharm Bull* 29: 123-127.
- Pharmacopoeia Committee of P. R. China, 2010. *Pharmacopoeia of People's Republic of China*. China Medical Science and Technology Press: Beijing.
- Pu J, Gao X, Lei C, Xiao W, Wang R, Yang L, Zhao Y, Li L, Huang S, Zheng Y, 2008a. Three new compounds from *Kadsura longipedunculata. Chem Pharm Bull* 56(8): 1143-1146.
- Pu JX, Huang SX, Ren J, Xiao WL, Li LM, Li RT, Li LB, Liao TG, Lou LG, Zhu HJ, 2007a. Isolation and structure elucidation of kadlongilactones C–F from *Kadsura longipedunculata* by NMR spectroscopy and DFT computational methods. *J Nat Prod* 70(11): 1706-1711.
- Pu JX, Li RT, Xiao WL, Gong NB, Huang SX, Lu Y, Zheng QT, Lou LG, Sun HD, 2006. Longipedlactones A–I, nine novel triterpene dilactones possessing a unique skeleton from *Kadsura longipedunculata. Tetrahedron* 62(25): 6073-6081.
- Pu JX, Xiao WL, Li HM, Huang SX, Li SH, Sun HD, 2007b. Three new compounds from *Kadsura longipedunculata*. *Helv Chim Acta* 90(4): 723-729.
- Pu JX, Xiao WL, Lu Y, Li RT, Li HM, Zhang L, Huang SX, Li X, Zhao QS, Zheng QT, 2005. Kadlongilactones A and B, two novel triterpene dilactones from *Kadsura longipedunculata* possessing a unique skeleton. Org Lett 7(22): 5079-5082.
- Pu JX, Yang LM, Xiao WL, Li RT, Lei C, Gao XM, Huang SX, Li S, Zheng YT, Huang, H, 2008b. Compounds from *Kadsura heteroclita* and related anti-HIV activity. *Phytochemistry* 69(5):

1266.

- Saunders RM, 1998. Monograph of Kadsura (Schisandraceae). Systematic Botany Monographs, 1-106.
- Shen YC, Cheng YB, Lan TW, Liaw CC, Liou SS, Kuo YH, Khalil AT, 2007a. Kadsuphilols A-H, oxygenated lignans from *Kadsura philippinensis*. J Nat Prod 70(7): 1139-1145.
- Shen YC, Liaw CC, Cheng YB, Ahmed AF, Lai MC, Liou SS, Wu TS, Kuo YH, Lin YC, 2006. C₁₈ dibenzocyclooctadiene lignans from *Kadsura philippinensis. J Nat Prod* 69(6): 963-966.
- Shen YC, Lin YC, Ahmed AF, Cheng YB, Liaw CC, Kuo YH, 2007b. Four new nonaoxygenated C₁₈ dibenzocylcooctadiene lignans from *Kadsura philippinensis*. *Chem Pharm Bull* 55(2): 280-283.
- Shen YC, Lin YC, Cheng YB, Chang CJ, Lan TW, Liou SS, Chien CT, Liaw CC, Khalil AT, 2008. New oxygenated lignans from Kadsura philippinensis. Helv Chim Acta 91(3): 483-494.
- Shen YC, Lin YC, Cheng YB, Chiang MY, Liou SS, Khalil AT, 2009. Dibenzocyclooctadiene lignans from Kadsura philippinensis. Phytochemistry 70(1): 114-120.
- Shen YC, Lin YC, Cheng YB, Kuo YH, Liaw CC, 2005b. Taiwankadsurins A, B, and C, three new C₁₉ homolignans from *Kadsura philippinensis*. Org Lett 7(23): 5297-5300.
- Shen YC, Lin YC, Chiang MY, Yeh SF, Cheng YB, Liao CC, 2005a. Kadsuphilactones A and B, two new triterpene dilactones from *Kadsura philippinensis*. Org Lett 7(15): 3307-3310.
- Shide L, Zhikuei D, Mayer R, Ruecker G, Will G, Kirfel A, Langen R, 1988. Interiorin: a neolignan with a new skeleton from *Kadsura interior*. *Planta Med* 54(5): 440-443.
- Shinomiya K, Li H, Kitanaka S, Ito Y, 2009. Countercurrent chromatographic separation of lipophilic ascorbic acid derivatives and extract from *Kadsura coccinea* using hydrophobic organic-aqueous two-phase solvent systems. J Liq Chromatogr Relat Technol 32(16): 2361-2371.
- Song W, 1988. Herbal studies on the plants of *Schisandraceae*. *China J Chin Mater Med* 13: 3-6.
- Song Y, Zhao QJ, Jin YS, Feng CW, Chen HS, 2010. A new triterpenoid from *Kadsura coccinea*. Chin Chem Lett 21(11): 1352-1354.
- Sun QZ, Chen DF, Ding PL, Ma CM, Kakuda H, Nakamura N, Hattori M, 2006a. Three new lignans, longipedunins A–C, from Kadsura longipedunculata and their inhibitory activity against HIV-1 protease. Chem Pharm Bull 54(1): 129-132.
- Sun R, Song HC, Wang CR, Shen KZ, Xu YB, Gao YX, Chen YG, Dong JY, 2011. Compounds from *Kadsura angustifolia* with anti-HIV activity. *Bioorg Med Chem Lett* 21(3): 961-965.
- Tan R, Li LN, Fang QC, 1984. Studies on the chemical constituents of *Kadsura longipedunculata*: isolation and structure elucidation of five new lignans. *Planta Med* 50(05): 414-417.
- Toda S, Kimura M, Ohnishi M, Nakashima K, Ikeya Y, Taguchi H, Mitsuhashi M, 1988. Natural antioxidants. IV. antioxidative components isolated from *schisandra* fruit. *Shoyakugak Zasshi* 42: 156-159.
- Wang H, Deng X, Zhou T, Wang C, Hou Y, Jiang H, Liu G. 2013. The in vitro immunomodulatory activity of a polysaccharide isolated from *Kadsura marmorata*. *Carbohydr Polym* 97(2): 710-715.
- Wang N, Li ZL, Liu XQ, Hua HM, 2012b. Chemical constituents from the roots of Kadsura coccinea. Chin J Med Chem 22(4): 305-308.
- Wang N, Li ZL, Song DD, Li W, Fu HW, Koike K, Pei YH, Jing YK, Hua HM, 2008. Lanostane-type triterpenoids from the roots of *Kadsura coccinea*. J Nat Prod 71(6): 990-994.
- Wang N, Li ZL, Song DD, Li W, Pei YH, Jing YK, Hua HM, 2012a. Five new 3, 4-seco-lanostane-type triterpenoids with antiproliferative activity in human leukemia cells isolated from the

roots of Kadsura coccinea. Planta Med 78(15): 1661-1666.

- Wang N, Li ZL, Song DD, Li W, Pei YH, Jing YK, Hua HM, 2012c. Five new 3, 4-seco-lanostane-type triterpenoids with antiproliferative activity in human leukemia cells isolated from the roots of *Kadsura coccinea*. *Planta Med* 78(15): 1611-1666.
- Wang W, Liu JZ, Han J, Xu ZR, Liu RX, Liu P, Ma XX, Guan SH, Guo D, 2006a. New triterpenoids from *Kadsura heteroclita* and their cytotoxic activity. *Planta Med* 72(05): 450-457.
- Wang W, Liu JZ, Liu RX, Xu ZR, Yang M, Wang WX, Liu P, Sabia G, Wang XM, Guo D, 2006b. Four new lignans from the stems of *Kadsura heteroclita. Planta Med* 72(03): 284-288.
- Wang W, Liu JZ, Ma XC, Yang M, Wang WX, Xu ZR, Liu P, Guo DA, 2006c. Three new cyclolanostane triterpenoids from the ethanol extract of the stems of *Kadsura heteroclita*. *Helv Chim Acta* 89(9): 1888-1893.
- Wang W, Xu Z, Yang M, Liu R, Liu P, Guo D, 2007. Structural determination of seven new triterpenoids from *Kadsura heteroclita* by NMR techniques. *Magnc Resonin Chem: MRC* 45(6): 522-526.
- Wu ZY, Raven PH, Hong DY, 2008. Flora of China (Vol. 7). Science Press, Beijing.
- Xiao PG, 2001. Modern Chinese Materia Medica. Chemical Industry Press, Beijing.
- Xiao WL, Li RT, Huang SX, Pu JX, Sun HD, 2008. Triterpenoids from the Schisandraceae family. *Nat Prod Rep* 25(5): 871-891.
- Xu LJ, Liu HT, Peng Y, Chen SB, Chen SL, Xiao PG, 2008a. Heteroclitins N–Q, new compounds from stems of *Kadsura*

heteroclita (Roxb.) Craib. Helv Chim Acta 91(2): 220-226.

- Xu LJ, Peng ZG, Chen HS, Wang J, Xiao PG, 2010a. Bioactive triterpenoids from *Kadsura heteroclita*. Chem Biodivers 7(9): 2289-2295.
- Xu LJ, Peng Y, Chen SB, Chen SL, Xiao PG, 2007. Four new lignans from *Kadsura heteroclita*. *Heterocycles* 71: 941-947.
- Xu LJ, Xiao W, Peng Y, Liu HT, Xiao PG, 2010b. A novel lignan dimer from stems of *Kadsura heteroclita*. *China J Chin Mater Med* 35(15): 1970-1972.
- Yang JH, Wen J, Du X, Li XN, Wang YY, Li Y, Xiao WL, Pu JX, Sun HD, 2010a. Triterpenoids from the stems of *Kadsura* ananosma. Tetrahedron 66(46): 8880-8887.
- Yang JH, Zhang HY, Du X, Wang W, Xiao WL, Wen J, Pu JX, Tang XC, Sun HD, 2011a. New dibenzocyclooctadiene lignans from the Kadsura ananosma. Tetrahedron 67(25): 4498-4504.
- Yang XW, Miyashiro H, Hattori M, Namba T, Tezuka Y, Kikuchi T, Chen DF, Xu GJ, Hori T, Extine M, 1992. Isolation of novel lignans, heteroclitins F and G, from the stems of *Kadsura heteroclita*, and anti-lipid peroxidative actions of heteroclitins A–G and related compounds in the *in vitro* rat liver homogenate system. *Chem Pharm Bull* 40(6): 1510-1516.
- You ZP, Liao MJ, Shi YH, Chen YZ, 1997. Studies on chemical constituents of *Kadsura longepedunculata*. Acta Pharm Sin 32(6): 455-457
- Zhao LQ, 2008. Advanced research on terpenoids in Kadsura and their biological activity. *Lishizhen Med Mater Med Res* 19: 756-758.